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ABSTRACT 
In this paper, we present a novel motion-orientated path planning algorithm fo r real-time navigation of mobile  
agents. The algorithm works well in dynamical and un-configured environments, and is able to produce a 
collision-free, time -optimal motion trajectory in order to find a navigation path. In addition to the motion 
constraint path planning, our approach can deal with the unknown obstacle-space terrains to moving agents. It 
therefore solves the drawbacks of traditional obstacle-space configuration methods. Multi-agent behaviour has 
been explored based on the algorithm. In the simulation a simple physically-based aircraft model has been 
developed, which is addressing the manoeuvring capabilities of the moving agents, while the moving agents' 
accelerations and velocities are always continuous and bounded. The generated motion path is constituted 
smoothly and has continuous curvature on the whole state space of the motion, thus satisfying the major 
requirement for the implementation of such strategies  in real-time animation or in simulation applications in VR 
environments.  
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1 INTRODUCTION 
Path planning with motion modelling is an important 
and challenging task that has many applications in 
the fields of AI, virtual reality, autonomous agent 
simulation, and robotics. The various approaches 
reported have different criteria to be met, which 
result in a number of algorithms, and provide 
solutions to specific application problems. The basic 
task for the motion constraint path planning is to 
perform navigations from one place to another by co-
ordination of planning, sensing and controlling whilst 
maintaining a smooth motion trajectory. Navigation 
may be decomposed into three sub-tasks: mapping 
and modelling the environment; path planning and 
generation; and path following and collision 
avoidance. Path-finding is properly the most popular 
and  frustrating  game  AI problem in computer game  
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industries [Ari01, Tat91]. Early work was 
concentrated on offline planners. These methods used 
the map of the environment to produce a configured 
path [Oom87, Lum90]. The common ground for this 
type of method is that the planner must have full 
information about the environment [Pad00, Lat91]. 
Most of the current successful approaches lead to 
some sort of graph search strategy [Jos97]. An 
approach called line intersection was proposed when 
the data consisted only of geometrical objects. The 
objects here were solid and all the space not occupied 
by an object was  considered unobstructed. There was 
no variation in vehicle speed or other parameters. 
The idea was to construct the convex hull of all 
objects using vertices and connect all vertices with 
edges. These edges are then filtered to find the 
shortest valid path between source and destination 
along a series of edges using standard graph 
algorithms. These methods suffer from the problem 
of a rapid increase in computation time and memo ry 
for large and complex maps [Mon87, Hol92]. 
Another popular approach is called weighted graph 
[Woo97], which divides the search space into a 
number of discrete regions, called cells, and restricts 
movement from a particular space cell to its 
neighbour. Neighbouring cells are those that can be 
directly reached from a particular cell. A weight 
function is defined by the cost of the connection 



 

between neighbour cells [Woo97]. A* is the most 
popular algorithm of this kind, which uses the 
weighted graph idea. Recently an approach called 
path planning algorithm D* [Ste95, Yah98] was 
reported, which resembled the A* algorithm for 
applications in partially known environments, and 
only achieved limited success [Yah98]. 
 
Given that motion factors must be taken into 
consideration, the main problem is to generate a 
smooth trajectory curve by joining two distinct 
configurations in the space with constraints using 
interpolated piecewise polynomials. Curves have 
been an object of mathematical study and also a tool 
for solving technical problems and applications. The 
construction of smooth curves is  the trajectory 
generation for moving agent path planning and 
motion control, for example , the simulation of an 
autonomous car or aircraft in a virtual environment, 
and the robot motion trajectory control in the real 
world. A C2 smooth curve is necessary for the agent 
or its control system to track either in a virtual 
environment or in the real world. Motion trajectory 
was discussed by L.E.Dubins [Dub57], who proposed 
the solution using straight segments connected with 
tangential circular arcs of minimum radius and 
proved that the shortest distance between two 
configurations was such a path. However it is 
important to note that the curvature along such a 
trajectory curve is discontinuous; the discontinuities 
occur at the transitions between segments and arcs. 
The non-continuous curvatures may result in 
difficulties in agent control. Continuous-Curvature 
Curve (3C) generation has become a key technique 
for on-going research in this area. A few types of 
splines have been proposed to solve this problem. 
Yamamoto et al [Yam99] studied the B-spline-based 
path planning for finding the time optimal trajectory; 
Tomas et al [Ber03] used the bezier curve in path 
planning, having considered minimizing the square 
of the arc-length derivative of curvature along the 
curve. Y. Kanayama and N.Miyake [Kan86] 
suggested that using clothoid curve would form a 
smooth path with continuous curvature, and the 
resulted curve curvature varies linearly along the 
path. Later, Y.Kanayama and Hartman, B. I [Kan89] 
proposed another solution using a cubic curve. A. 
Scheuer and Th. Fraichard [Sch96, Fra01] used 
clothoid curves in their vehicle control experiment. 
Bryan Nagy and Alonzo Kelly [Nag01] adopted 
cubic splines in their trajectory generation algorithm. 
However, previous work has mainly been focused on 
the static trajectory generation problem and on 
finding the solutions for 2D applications. 
 
In this paper, we propose a new approach for motion 
modelling for autonomo us moving agents in virtual 
environments. We improve the conventional A* 

method by developing a dynamical visible point 
detection system, which allows the system to update 
its optimised node system based on the viewed vision 
field, rather than the pre-configured environments, to 
find a smooth motion path in real-time. Our method 
is capable of dealing with dynamic unknown 
environments using motion constraints  and is very 
efficient in terms of computational cost. 
 
2 UNKNOWN ENVIRONMENTS 
One of our objectives in the current work is to study 
and develop a path planning algorithm for 
autonomous agent navigation or exploration in 
unknown environments. The task can be divided into 
three parts, plan a main path according to the pre-
information, keep tracking the difference between the 
map and the real environment, and then locally 
amend the pre-designed path. This strategy can 
efficiently use the available information and reduce 
the re-planning time. Navigation in an unknown 
environment is a more challenging topic; at the same 
time it is also the most promising technology that 
could be used for generic applications. For example, 
unmanned robots with navigation ability in unknown 
environments could achieve tasks in many dangerous 
places that humans would not wish to entry for safety 
or health reasons. Navigation is an important part of 
AI. Navigation in an unknown environment means 
no pre-information is available before the path-
planning algorithm has been executed. The self-
guided agent uses the sensor equipped to detect the 
surrounding environment and obtain the local 
information. It then uses the local information to 
generate the path to the destination. In our current 
work, a virtual environment has been built, which 
consists of a terrain with unknown configuration and 
obstacles. A hierarchical strategy has been developed 
in the current work for creating a navigation 
environment using raw terrain data. 
 
3 MOTION DYNAMICS 
Representing all the motion characteristics by 
analytical equations can be unpractical. A simplified 
motion model is considered in the current work. The 
moving agent model developed has six degrees of 
freedom and the dynamics of the model can be 
represented as a set of motion parameters in terms of 
mass, accelerations and steering angles as well as 
external force conditions, such as air resistance or 
ground frictions. The dynamics of a moving 
autonomous agent must follow the basic law of 
motion dynamics, which may be represented as a set 
of general ordinary deferential equations in the form: 
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δXXf
dt

Xd &=     (1) 

where, X, X& ∈ ℜ which is the motion state of the 
agents  and its first derivative, and δ  is the motion 



 

control input. We can recast the equation for our 
motion optimisation problem in the form: 
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where, X̂& , â  and θ̂  are approximate values of 
motion velocity, acceleration and direction of motion 
(i.e. a steering angle) respectively, and the motion 
control δ  is a function of acceleration a and moving 
direction θ. A desired or predicted motion state of the 
moving object is pre-estimated by a set of 
approximate functions according to the state of 
moving object and the environment conditions 
related to the surrounding obstacle–space. The actual 
motion track is then computed. The difference 
between the predicted motion and the actual motion 
will be used for estimating the control input to the 
motion system above. 
 
4 PERCEPTION AND CONTROL 
ARCHITECTURE 
In our system the "visual sensor" captures the 
information about the environment. It is a simple 
method to compute which parts of objects  can be 
seen from the location of the agent. A virtual camera 
performs perspective projection, all points along a 
line pointing from the optical centre towards the 
location of the agent are projected to a single point. 
We assume all the obstacles are opaque. The mutual 
occlusion of objects and self-occlusion are analysed. 
The maximum detection distance and view angle are 
then calculated. All the obstacles out of the 
maximum detection distance or view angle are 
assumed to be invisible. If in one direction there is no 
obstacle within the maximum detection distance, we 
can use the point at the end of the detection distance 
as the flag in this direction. 
 
The motion control for the agent moves through a 
field of obstacles to a goal, which includes finding 
and predicting an optimised path and controlling its 
motion parameters in order to follow this path. We 

use the information from the virtual vision sensor to 
identify the key obstacle points and edges, then 
create and add the obstacle nodes and path nodes to 
the vision system. One of the advantages of our 
approach is that the generated desired or predicted 
path is dynamic but it is not necessarily the ones the 
mobile agent must pass exactly at a given time and 
the actual motion track is therefore smoother in terms 
of curvature. The position errors between exact 
desired path nodes and the actual motion track are 
then used to modify the motion parameters. Another 
advantage over other methods is that our approach is 
quite robust with respect to errors and external 
disturbances. If both errors and the disturbances are 
within certain bounds, the algorithm can still work 
effectively. The architecture of the system is shown 
in Figure 1. 
 
5 PATH-PLANNING ALGORITHM  
The Path-Planning in our work can be stated as 
follows: given an arbitrary rigid polyhedral object, P, 
and polyhedral environment, find a continuous 
collision-free and smooth motion trajectory path 
taking P from some initial configuration to a desired 
goal configuration. For a path planning problem, the 
A* algorithm appears to be an obvious option, and it 
is so far the most widely used searching algorithm 
associate with heuristic search. A* explores paths 
from an initial state in a systematic manner whilst 
paying a little attention to the path finding cost. It is 
the optimal solution under certain conditions. The A* 
path planning algorithm will execute actions 
(sequence of actions from a state to another in the 
state space) after the shortest path has  been found.  
However, it is basically an offline search algorithm 
and can not be used for unknown or dynamic 
environments. Our method uses dynamically 
allocated points through on-line searching, sensing 
and reasoning in the environment. At any location of 
the environment, we could find the points of 
visibility that are concerned with the co-ordination of 
the agent. The information perceived is analysed and 
the  resultant  path  points  are   recorded  and used to  

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1: The architecture of the motion control system 
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construct memorised path nodes. The algorithm uses 
the angle to partition the obstacle-space, while 
keeping a safe margin, which allows the agent to plan 
its path and motion trajectory at any location in the 
environment.  Penalty functions were  introduced  to 
make the state node with no obstacles a higher 
priority. It then chooses the lowest cost state as the 
local goal and keeps iterating until it reaches the 
destination goal. 
 
 
 
 
 
 
 
 
 
 
Figure 2: Creating a smooth motion path trajectory in 

a dynamically allocated safe-pass valley. 
As noted earlier, in order to deal with unknown or 
dynamic environments, a suitable path planning 
algorithm must be a real-time one. The agent 
executes actions before finding the global solution. 
So it is an exploration in an unknown environment or 
a dynamic environment. A number of heuristic 
functions were defined, which could provide the least 
cost path estimated from the current state to a goal 
state and the actual cost estimated from the initial 
state to the current path state. The actions defined 
will return a list of possible solutions in the state 
space. Assuming that an action is deterministic, the 
agent might have access to an admissible heuristic 
function, which estimates the distance from the 
current to a goal state. The objective of this 
consideration is to reach the goal with shortest 
distance with a motion constrained minimum cost. 
For example, the agent is required to go through a 
complex obstacle block to reach a destination in a 
reasonable time whilst maintaining smooth motion 
characteristics. Figure 2 shows an example of 
generating a smooth path in the range of a safe valley 
identified by the agent’s perception and reasoning. 

6 BUILDING UP A DYNAMIC TREE 
FOR PATH FINDING 
A dynamic path tree must be created for the 
searching process. The planning algorithm searches 
in a state space for the least expensive path from a 
start state to a goal state by examining the 
neighbouring or adjacent states of particular states 
(the states are formed according to the map 
representation). By repeatedly examining the 
promising unexplored location area, the algorithm 
will reach an end if a configuration is the final goal. 
Otherwise, it takes notes of all that location’s 
neighbours for further exploration. 
 
In order to avoid the agent being halted in a dead-
end, we assume the path or actions executed are 
reversible. So if our real-time path planning reaches a 
dead-end state, where no goal state is reachable, the 
agent could seek to reverse it actions. It should be 
noted that no algorithm can avoid dead-ends in all 
state spaces . In cases where the agent reaches a dead-
end, it must find a way back by its own reasoning 
according to the information available . According to 
the requirements of motion dynamics, it can not 
simply travel back to the state it previously visited. 
Instead a number of extra actions must be executed, 
and an extra set of states must be added, in order to 
return the motion back to the state. After that it 
should follow the path in a reverse direction until it  
finds a branch node, which was executed before. The 
algorithm does not make the agent follow the action 
path tree in a reverse order, because of the motion 
constraints. We must guarantee the motion is smooth 
or at least C1 continuity. Once the agent reverts  to 
the nearest branch path node, the sequence of the 
path node state will be pruned from the path tree. The 
searching algorithm uses two data structures to 
record the path information, one is a list called Close 
to record the passed states , and the other is called a 
tree called PathTree to record the path map. At the 
start, Closed is empty, and PathTree has only the 
starting state. In each iteration, the algorithm 
removes the most  promising  neighbour  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: An illustrating example of building up a dynamical tree 
b: Branch node; c: Current node; O: Dead-end. 
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state for examination. If the state is not a goal, all the 
other neighbouring states are sorted. If they are 
already in Closed, they are ignored. Otherwise they 
are kept in temporary locations. The algorithm will 
then perform a procedure called Merging to reduce 
the useless neighbour states. If some states could 
survive, then the current state is recorded as a split 
node, and the neighbours are recorded as crosses in 
PathTree. If no neighbour state is available, the 
PathTree will trace back to the nearest split node, and 
switch to a new cross. If all the crosses in the 
PathTree have been tested before the goal is reached, 
it concludes that there is no path to the goal from the 
specified start configuration. Figure 3 shows an 
illustrating example, in which an agent performed an 
on-line path search: It reached a dead-end in (a), and 
found a way back, (b), reached a branch node (c), and 
pruned the path sequence unsuccessful and planed 
the path in another route (d). 
 
7 MOTION TRAJECTORY CURVE 
Trajectory generation is important for the motion 
constraint path planning, because the moving agent 
will have to adjust or control its motion state to 
follow the trajectory reasonably closely whilst 
maintaining good motion characteristics. The 
clothoid curve is very useful because its curvature 
varies linearly along the arc. Kanayama [Kan89] 
proposed to use this curve for motion trajectory 
design. It is now the most commonly used curve type 
for highways and railroad design [Esv01]. It is 
chosen for generating a smooth path since it satisfies 
all the requirements for agent motion control tasks 
and modelling. The Clothoid curve is an intrinsic 
spline, it can not be expressed in a close form, and 
this is the biggest disadvantage and results in 
calculation difficulty. However, its curvature varies 
linearly along the arc, and the curve can be 
constructed from its curvature. On the other hand, 
since the parameter t is proportion to the length of the 
arc, it can be used directly as a trajectory. The 
derivative of the curvature of clothoid curve is a 
constant which is identical with the Bang-bang 
control theory in aiming at giving solution to the 
optimal-control problem. The clothoid curve is 
defined as following form: 

0)( CvsksCv +∗=      … (3) 

where s is the arc length, )(sCv is the curvature and k 
is a constant. The direction of the tangent vector is 
the integration of the curvature and expressed by 
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                                                                 …(4) 
In our work, three dynamically allocated points in a 
3D space are identified at each state for each basic 
curve element configuration. Unlike a conventional 

approach, we do not restrict the curve as a symmetric 
pair since it may encounter difficulties in a global 
configuration. The global trajectory is made up of a 
set of local curve pieces and we should not only 
guarantee the smooth agent movement along local 
curve, but also the smooth transition between these 
curve elements. Our approach is to use an un-
symmetric clothoid curve element plus two extra 
dynamic control points S2 and S4 to offer the more 
flexible and powerful solution to the trajectory 
generation problem. In practice, a symmetric pattern 
cannot always be guaranteed to be the optimal 
trajectory to follow, and the un-symmetric pattern is 
the general situation and offers more flexibility for 
the control process. In order to achieve a successful 
smooth connection at the joints between curve 
elements, keeping in mind that each destination state 
is also the new initial state for the next move step, the 
direction of the motion trajectory at the current 
destination location should be the same as at the next 
new initial agent location. The curvatures at the both 
locations should also be the same for smooth 
curvature transition. To meet these requirements, two 
transition points are introduced which are determined 
by the motion kinematical states of the agent to 
produce a smooth transition between curve elements. 

 
As shown in Figure 4, the agent starts at S1. S3 S6 are 
the points  perceived, and S2 , S4 are the two points 
added to control the agent movement to make a 
smooth transition between adjacent clothoid curve 
elements, which are derived from the agent motion 
requirements that satisfy the agent kinematical 
conditions and the equations (3) and (4). The first 
local curve element ends at the destination point S4, 
which is also the new initial position of the next 
clothoid curve element. At S4, the curvature is 
decreased to zero and the direction is from S3 to S6, 
The trajectory generation will keep going as long as 
subsequent path points are supplied. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure4: An example of the global configuration 
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8 GROUP BEHAVIOUR 
Our multi-agent path planning algorithm in unknown 
environments is developed based on the single agent 
path planning environments. In the multi-agent 
environments, introducing more than one agent 
simply will lead to poor performance if they are just 
simply added. Therefore the agent path planning 
algorithms must be changed to introduce elements for 
joint activities. The observation and prediction about 
other agents will be included in order to operate 
effectively and in a timely manner. Our method is to 
plan actions jointly via coordination and 
communication. In a simulation, the agent also acts 
as an obstacle or part of the environment, although 
they are not static most of the time. The path 
planning problem and strategy for joint activities is 
best constructed according to the goals  specified for 
the location and motion states of each agent. The 
algorithm is  summarised as follows: 
 
Agent A: Init ialise agents A, which including agents’ 
state location, behaviours etc. 
Goals: Assign specific goals to A, including a final 
goal and sub-goals  
Actions: Move, how to move, perceiving 
environment, recognise other agents and the 
environment. Predict other’s intention etc. 
Approaching other agents   
Agent B: 
… 
Plan and strategy: Coordination, communication, 
competition and collaboration etc. 
 
The algorithm has been implemented in our 
simulation and a basic exploration test was conducted 
at this stage. 
 
9 SIMULATION RESULTS 
A number of simulations have been conducted in our 
work for evaluating the motion trajectory generation 
algorithm. An auto-pilot-aircraft was created as an 
intelligent agent  and it has the ability to perceive the 
visual information about the environment when it is 
in a navigation. Sensors have been created and 
attached to the aircraft. 
 
Figure 5 show three instances of a path planning 
simulation. using the algorithm discussed above. 
Figure 5a shows that the moving agent moves to the 
entrance of an unknown alley, where there are three 
potential paths that have been created and a split 
node is created and added to the path tree. Figure 5b 
shows the agent moving back to the nearest split 
node. Figure 5c shows that the moving agent's 
successful navigation through the alley. 
 

a)   

b)    

c)  
Figure 5: A simulation test; a. 1 merge paths and 
search optimal path    b. exit from blind alley   c. 

successful navigation through obstacle block 

Figures 6 and 7 show two simulation experiments. 
The experiments were designed for an autonomous 
moving agent to navigate through complex obstacle 
environments with different motion characteristics. 
The simulations were quite successful and the res ults 
are satisfactory.  Figure 8 shows a screen capture of 
real-time aircraft simulation in a virtual environment, 
in which the aircraft acted as an autonomous agent 
who used visual information to detect obstacles in 
order to find a path to conduct an obstacle-free 
navigation. 

 
 

Figure 6 Navigation Simulation Case 1. 



 

 
Figure 7 Navigation Simulation Case 2 

Figure 9 show two instances of path planning 
simulation involving two agents. The final goal for 
one agent is market as g and the goal for the other 
agent is actually the first agent’s configuration. 
Therefore, the two agents perform a chasing 
simulation. Each agent is a part of the environment. 
Figure 10 shows a 3D path planning simulation 
involving two aircrafts in a virtual environment. 

 
Figure.8 A aircraft simulation in a 3D environment 

 
 

 

 
Figure.9 Two agents chasing in a 2D environment 

g: final goal 
 

 
Figure.10 Two aircraft chasing training simulation 

 
The algorithm has been implemented in C++ and 
tested on a 1000 MHz Pentium processor PC with 
256M memory and Matrox G450 graphics card 
(360MHz, 32M memory). The experiments of indoor 
scene simulation shown in Figure 7 were using a 
500*500 units’ space. The time cost of trajectory 
generation, the accurate trajectory length and the 
average end position error, using different space 
curves, are shown in Tablet 1. 
 
9 CONCLUSIONS 
A novel motion constraint path planning approach for 
real-time navigation of agents is proposed in this 
paper. The algorithm works well in dynamical and 
un-configured environments, and is able to produce a 
collision-free, time -optimal smooth motion 
trajectory. Multi-agents behaviour has been explored 
based  on  the algorithm.  A simple   physically-based 
 

Tablet.1. Time cost of trajectory generation, trajectory length and average end position error of an indoor scene 
 

 Trajectory Length (unit) 
35000 steps 

Total Time cost (ms) Average end position error (unit) 

Bezier Curve 1131.405 240 0.0 
Clothoid curve 1049.296 280 0.0445 
Cubic Spline 1033.071 280 0.0768 

(b) 

g 

(a) 
g 



 

aircraft model has been developed, which is 
addressing the manoeuvring capabilities of the 
moving agents, while the moving agents' 
accelerations and velocities are always continuous 
and bounded. The generated motion path is 
constituted smoothly and has continuous curvature in 
the whole state space of the motion thus satisfying 
the major requirements for the implementation of 
such strategies in real-time navigation. The clothoid 
curve has been chosen as the basis for the motion 
trajectory generation. A 3D aircraft simulation has 
been conducted and the result is quite promising. The 
simulation result is quite satisfactory. The next step 
for our research is to refine the algorithm and look at 
path planning with more complex group behaviours 
in simulated environments. 
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