

A Motion Constrained Dynamic Path Planning
Algorithm for Multi-Agent Simulations

T. R. Wan

Department of EIMC,
School of Informatics,
University of Bradford,

Bradford, West Yorkshire, UK,
BD7 1DP

T.Wan@Bradford.ac.uk

H. Chen
Department of EIMC,
School of Informatics,
University of Bradford,

Bradford, West Yorkshire, UK,
BD7 1DP

H.Chen3@Bradford.ac.uk

R.A. Earnshaw
Department of EIMC,
School of Informatics,
University of Bradford,

Bradford, West Yorkshire, UK,
BD7 1DP

R.A.Earnshaw@Bradford.ac.uk

ABSTRACT
In this paper, we present a novel motion-orientated path planning algorithm fo r real-time navigation of mobile
agents. The algorithm works well in dynamical and un-configured environments, and is able to produce a
collision-free, time -optimal motion trajectory in order to find a navigation path. In addition to the motion
constraint path planning, our approach can deal with the unknown obstacle-space terrains to moving agents. It
therefore solves the drawbacks of traditional obstacle-space configuration methods. Multi-agent behaviour has
been explored based on the algorithm. In the simulation a simple physically-based aircraft model has been
developed, which is addressing the manoeuvring capabilities of the moving agents, while the moving agents'
accelerations and velocities are always continuous and bounded. The generated motion path is constituted
smoothly and has continuous curvature on the whole state space of the motion, thus satisfying the major
requirement for the implementation of such strategies in real-time animation or in simulation applications in VR
environments.

Keywords
Motion modelling, Constraint motion, path planning, trajectory generation, multi-agents.

1 INTRODUCTION
Path planning with motion modelling is an important
and challenging task that has many applications in
the fields of AI, virtual reality, autonomous agent
simulation, and robotics. The various approaches
reported have different criteria to be met, which
result in a number of algorithms, and provide
solutions to specific application problems. The basic
task for the motion constraint path planning is to
perform navigations from one place to another by co-
ordination of planning, sensing and controlling whilst
maintaining a smooth motion trajectory. Navigation
may be decomposed into three sub-tasks: mapping
and modelling the environment; path planning and
generation; and path following and collision
avoidance. Path-finding is properly the most popular
and frustrating game AI problem in computer game

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Conference proceedings ISBN 80-903100-7-9
WSCG’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

industries [Ari01, Tat91]. Early work was
concentrated on offline planners. These methods used
the map of the environment to produce a configured
path [Oom87, Lum90]. The common ground for this
type of method is that the planner must have full
information about the environment [Pad00, Lat91].
Most of the current successful approaches lead to
some sort of graph search strategy [Jos97]. An
approach called line intersection was proposed when
the data consisted only of geometrical objects. The
objects here were solid and all the space not occupied
by an object was considered unobstructed. There was
no variation in vehicle speed or other parameters.
The idea was to construct the convex hull of all
objects using vertices and connect all vertices with
edges. These edges are then filtered to find the
shortest valid path between source and destination
along a series of edges using standard graph
algorithms. These methods suffer from the problem
of a rapid increase in computation time and memo ry
for large and complex maps [Mon87, Hol92].
Another popular approach is called weighted graph
[Woo97], which divides the search space into a
number of discrete regions, called cells, and restricts
movement from a particular space cell to its
neighbour. Neighbouring cells are those that can be
directly reached from a particular cell. A weight
function is defined by the cost of the connection

between neighbour cells [Woo97]. A* is the most
popular algorithm of this kind, which uses the
weighted graph idea. Recently an approach called
path planning algorithm D* [Ste95, Yah98] was
reported, which resembled the A* algorithm for
applications in partially known environments, and
only achieved limited success [Yah98].

Given that motion factors must be taken into
consideration, the main problem is to generate a
smooth trajectory curve by joining two distinct
configurations in the space with constraints using
interpolated piecewise polynomials. Curves have
been an object of mathematical study and also a tool
for solving technical problems and applications. The
construction of smooth curves is the trajectory
generation for moving agent path planning and
motion control, for example , the simulation of an
autonomous car or aircraft in a virtual environment,
and the robot motion trajectory control in the real
world. A C2 smooth curve is necessary for the agent
or its control system to track either in a virtual
environment or in the real world. Motion trajectory
was discussed by L.E.Dubins [Dub57], who proposed
the solution using straight segments connected with
tangential circular arcs of minimum radius and
proved that the shortest distance between two
configurations was such a path. However it is
important to note that the curvature along such a
trajectory curve is discontinuous; the discontinuities
occur at the transitions between segments and arcs.
The non-continuous curvatures may result in
difficulties in agent control. Continuous-Curvature
Curve (3C) generation has become a key technique
for on-going research in this area. A few types of
splines have been proposed to solve this problem.
Yamamoto et al [Yam99] studied the B-spline-based
path planning for finding the time optimal trajectory;
Tomas et al [Ber03] used the bezier curve in path
planning, having considered minimizing the square
of the arc-length derivative of curvature along the
curve. Y. Kanayama and N.Miyake [Kan86]
suggested that using clothoid curve would form a
smooth path with continuous curvature, and the
resulted curve curvature varies linearly along the
path. Later, Y.Kanayama and Hartman, B. I [Kan89]
proposed another solution using a cubic curve. A.
Scheuer and Th. Fraichard [Sch96, Fra01] used
clothoid curves in their vehicle control experiment.
Bryan Nagy and Alonzo Kelly [Nag01] adopted
cubic splines in their trajectory generation algorithm.
However, previous work has mainly been focused on
the static trajectory generation problem and on
finding the solutions for 2D applications.

In this paper, we propose a new approach for motion
modelling for autonomo us moving agents in virtual
environments. We improve the conventional A*

method by developing a dynamical visible point
detection system, which allows the system to update
its optimised node system based on the viewed vision
field, rather than the pre-configured environments, to
find a smooth motion path in real-time. Our method
is capable of dealing with dynamic unknown
environments using motion constraints and is very
efficient in terms of computational cost.

2 UNKNOWN ENVIRONMENTS
One of our objectives in the current work is to study
and develop a path planning algorithm for
autonomous agent navigation or exploration in
unknown environments. The task can be divided into
three parts, plan a main path according to the pre-
information, keep tracking the difference between the
map and the real environment, and then locally
amend the pre-designed path. This strategy can
efficiently use the available information and reduce
the re-planning time. Navigation in an unknown
environment is a more challenging topic; at the same
time it is also the most promising technology that
could be used for generic applications. For example,
unmanned robots with navigation ability in unknown
environments could achieve tasks in many dangerous
places that humans would not wish to entry for safety
or health reasons. Navigation is an important part of
AI. Navigation in an unknown environment means
no pre-information is available before the path-
planning algorithm has been executed. The self-
guided agent uses the sensor equipped to detect the
surrounding environment and obtain the local
information. It then uses the local information to
generate the path to the destination. In our current
work, a virtual environment has been built, which
consists of a terrain with unknown configuration and
obstacles. A hierarchical strategy has been developed
in the current work for creating a navigation
environment using raw terrain data.

3 MOTION DYNAMICS
Representing all the motion characteristics by
analytical equations can be unpractical. A simplified
motion model is considered in the current work. The
moving agent model developed has six degrees of
freedom and the dynamics of the model can be
represented as a set of motion parameters in terms of
mass, accelerations and steering angles as well as
external force conditions, such as air resistance or
ground frictions. The dynamics of a moving
autonomous agent must follow the basic law of
motion dynamics, which may be represented as a set
of general ordinary deferential equations in the form:

),,(2

2

δXXf
dt

Xd &= (1)

where, X, X& ∈ ℜ which is the motion state of the
agents and its first derivative, and δ is the motion

control input. We can recast the equation for our
motion optimisation problem in the form:

)(),,(ˆ
2

2

δδ ∆+= XXf
dt

Xd & (2)

))ˆ,(,ˆ,(ˆ),,()(ˆ θδδδ aXXfXXf && −=∆ (3)

where, X̂& , â and θ̂ are approximate values of
motion velocity, acceleration and direction of motion
(i.e. a steering angle) respectively, and the motion
control δ is a function of acceleration a and moving
direction θ. A desired or predicted motion state of the
moving object is pre-estimated by a set of
approximate functions according to the state of
moving object and the environment conditions
related to the surrounding obstacle–space. The actual
motion track is then computed. The difference
between the predicted motion and the actual motion
will be used for estimating the control input to the
motion system above.

4 PERCEPTION AND CONTROL
ARCHITECTURE
In our system the "visual sensor" captures the
information about the environment. It is a simple
method to compute which parts of objects can be
seen from the location of the agent. A virtual camera
performs perspective projection, all points along a
line pointing from the optical centre towards the
location of the agent are projected to a single point.
We assume all the obstacles are opaque. The mutual
occlusion of objects and self-occlusion are analysed.
The maximum detection distance and view angle are
then calculated. All the obstacles out of the
maximum detection distance or view angle are
assumed to be invisible. If in one direction there is no
obstacle within the maximum detection distance, we
can use the point at the end of the detection distance
as the flag in this direction.

The motion control for the agent moves through a
field of obstacles to a goal, which includes finding
and predicting an optimised path and controlling its
motion parameters in order to follow this path. We

use the information from the virtual vision sensor to
identify the key obstacle points and edges, then
create and add the obstacle nodes and path nodes to
the vision system. One of the advantages of our
approach is that the generated desired or predicted
path is dynamic but it is not necessarily the ones the
mobile agent must pass exactly at a given time and
the actual motion track is therefore smoother in terms
of curvature. The position errors between exact
desired path nodes and the actual motion track are
then used to modify the motion parameters. Another
advantage over other methods is that our approach is
quite robust with respect to errors and external
disturbances. If both errors and the disturbances are
within certain bounds, the algorithm can still work
effectively. The architecture of the system is shown
in Figure 1.

5 PATH-PLANNING ALGORITHM
The Path-Planning in our work can be stated as
follows: given an arbitrary rigid polyhedral object, P,
and polyhedral environment, find a continuous
collision-free and smooth motion trajectory path
taking P from some initial configuration to a desired
goal configuration. For a path planning problem, the
A* algorithm appears to be an obvious option, and it
is so far the most widely used searching algorithm
associate with heuristic search. A* explores paths
from an initial state in a systematic manner whilst
paying a little attention to the path finding cost. It is
the optimal solution under certain conditions. The A*
path planning algorithm will execute actions
(sequence of actions from a state to another in the
state space) after the shortest path has been found.
However, it is basically an offline search algorithm
and can not be used for unknown or dynamic
environments. Our method uses dynamically
allocated points through on-line searching, sensing
and reasoning in the environment. At any location of
the environment, we could find the points of
visibility that are concerned with the co-ordination of
the agent. The information perceived is analysed and
the resultant path points are recorded and used to

Figure 1: The architecture of the motion control system

Motion
Planning

Path
Planning

Path/Motion
Implementation

Environment

Virtual sensor Tracking
control

New Agent
State

State
Machine

Reasoning and
decision-making

construct memorised path nodes. The algorithm uses
the angle to partition the obstacle-space, while
keeping a safe margin, which allows the agent to plan
its path and motion trajectory at any location in the
environment. Penalty functions were introduced to
make the state node with no obstacles a higher
priority. It then chooses the lowest cost state as the
local goal and keeps iterating until it reaches the
destination goal.

Figure 2: Creating a smooth motion path trajectory in

a dynamically allocated safe-pass valley.
As noted earlier, in order to deal with unknown or
dynamic environments, a suitable path planning
algorithm must be a real-time one. The agent
executes actions before finding the global solution.
So it is an exploration in an unknown environment or
a dynamic environment. A number of heuristic
functions were defined, which could provide the least
cost path estimated from the current state to a goal
state and the actual cost estimated from the initial
state to the current path state. The actions defined
will return a list of possible solutions in the state
space. Assuming that an action is deterministic, the
agent might have access to an admissible heuristic
function, which estimates the distance from the
current to a goal state. The objective of this
consideration is to reach the goal with shortest
distance with a motion constrained minimum cost.
For example, the agent is required to go through a
complex obstacle block to reach a destination in a
reasonable time whilst maintaining smooth motion
characteristics. Figure 2 shows an example of
generating a smooth path in the range of a safe valley
identified by the agent’s perception and reasoning.

6 BUILDING UP A DYNAMIC TREE
FOR PATH FINDING
A dynamic path tree must be created for the
searching process. The planning algorithm searches
in a state space for the least expensive path from a
start state to a goal state by examining the
neighbouring or adjacent states of particular states
(the states are formed according to the map
representation). By repeatedly examining the
promising unexplored location area, the algorithm
will reach an end if a configuration is the final goal.
Otherwise, it takes notes of all that location’s
neighbours for further exploration.

In order to avoid the agent being halted in a dead-
end, we assume the path or actions executed are
reversible. So if our real-time path planning reaches a
dead-end state, where no goal state is reachable, the
agent could seek to reverse it actions. It should be
noted that no algorithm can avoid dead-ends in all
state spaces . In cases where the agent reaches a dead-
end, it must find a way back by its own reasoning
according to the information available . According to
the requirements of motion dynamics, it can not
simply travel back to the state it previously visited.
Instead a number of extra actions must be executed,
and an extra set of states must be added, in order to
return the motion back to the state. After that it
should follow the path in a reverse direction until it
finds a branch node, which was executed before. The
algorithm does not make the agent follow the action
path tree in a reverse order, because of the motion
constraints. We must guarantee the motion is smooth
or at least C1 continuity. Once the agent reverts to
the nearest branch path node, the sequence of the
path node state will be pruned from the path tree. The
searching algorithm uses two data structures to
record the path information, one is a list called Close
to record the passed states , and the other is called a
tree called PathTree to record the path map. At the
start, Closed is empty, and PathTree has only the
starting state. In each iteration, the algorithm
removes the most promising neighbour

Figure 3: An illustrating example of building up a dynamical tree
b: Branch node; c: Current node; O: Dead-end.

Goal
State

Initial
State Safe Valley

Boundaries

Obstacles

c

c c c

(a) (b) (c) (d)

e

b

state for examination. If the state is not a goal, all the
other neighbouring states are sorted. If they are
already in Closed, they are ignored. Otherwise they
are kept in temporary locations. The algorithm will
then perform a procedure called Merging to reduce
the useless neighbour states. If some states could
survive, then the current state is recorded as a split
node, and the neighbours are recorded as crosses in
PathTree. If no neighbour state is available, the
PathTree will trace back to the nearest split node, and
switch to a new cross. If all the crosses in the
PathTree have been tested before the goal is reached,
it concludes that there is no path to the goal from the
specified start configuration. Figure 3 shows an
illustrating example, in which an agent performed an
on-line path search: It reached a dead-end in (a), and
found a way back, (b), reached a branch node (c), and
pruned the path sequence unsuccessful and planed
the path in another route (d).

7 MOTION TRAJECTORY CURVE
Trajectory generation is important for the motion
constraint path planning, because the moving agent
will have to adjust or control its motion state to
follow the trajectory reasonably closely whilst
maintaining good motion characteristics. The
clothoid curve is very useful because its curvature
varies linearly along the arc. Kanayama [Kan89]
proposed to use this curve for motion trajectory
design. It is now the most commonly used curve type
for highways and railroad design [Esv01]. It is
chosen for generating a smooth path since it satisfies
all the requirements for agent motion control tasks
and modelling. The Clothoid curve is an intrinsic
spline, it can not be expressed in a close form, and
this is the biggest disadvantage and results in
calculation difficulty. However, its curvature varies
linearly along the arc, and the curve can be
constructed from its curvature. On the other hand,
since the parameter t is proportion to the length of the
arc, it can be used directly as a trajectory. The
derivative of the curvature of clothoid curve is a
constant which is identical with the Bang-bang
control theory in aiming at giving solution to the
optimal-control problem. The clothoid curve is
defined as following form:

0)(CvsksCv +∗= … (3)

where s is the arc length,)(sCv is the curvature and k
is a constant. The direction of the tangent vector is
the integration of the curvature and expressed by

∫ ++=+=
s

sCvskdsCvsks
0 00

2
0 ***

2
1

)*()(θθ

 …(4)
In our work, three dynamically allocated points in a
3D space are identified at each state for each basic
curve element configuration. Unlike a conventional

approach, we do not restrict the curve as a symmetric
pair since it may encounter difficulties in a global
configuration. The global trajectory is made up of a
set of local curve pieces and we should not only
guarantee the smooth agent movement along local
curve, but also the smooth transition between these
curve elements. Our approach is to use an un-
symmetric clothoid curve element plus two extra
dynamic control points S2 and S4 to offer the more
flexible and powerful solution to the trajectory
generation problem. In practice, a symmetric pattern
cannot always be guaranteed to be the optimal
trajectory to follow, and the un-symmetric pattern is
the general situation and offers more flexibility for
the control process. In order to achieve a successful
smooth connection at the joints between curve
elements, keeping in mind that each destination state
is also the new initial state for the next move step, the
direction of the motion trajectory at the current
destination location should be the same as at the next
new initial agent location. The curvatures at the both
locations should also be the same for smooth
curvature transition. To meet these requirements, two
transition points are introduced which are determined
by the motion kinematical states of the agent to
produce a smooth transition between curve elements.

As shown in Figure 4, the agent starts at S1. S3 S6 are
the points perceived, and S2 , S4 are the two points
added to control the agent movement to make a
smooth transition between adjacent clothoid curve
elements, which are derived from the agent motion
requirements that satisfy the agent kinematical
conditions and the equations (3) and (4). The first
local curve element ends at the destination point S4,
which is also the new initial position of the next
clothoid curve element. At S4, the curvature is
decreased to zero and the direction is from S3 to S6,
The trajectory generation will keep going as long as
subsequent path points are supplied.

Figure4: An example of the global configuration

x

y

S1

S2

S3

S4

S5

S6

S7
S8

S9
S10

S11

S12
 z

8 GROUP BEHAVIOUR
Our multi-agent path planning algorithm in unknown
environments is developed based on the single agent
path planning environments. In the multi-agent
environments, introducing more than one agent
simply will lead to poor performance if they are just
simply added. Therefore the agent path planning
algorithms must be changed to introduce elements for
joint activities. The observation and prediction about
other agents will be included in order to operate
effectively and in a timely manner. Our method is to
plan actions jointly via coordination and
communication. In a simulation, the agent also acts
as an obstacle or part of the environment, although
they are not static most of the time. The path
planning problem and strategy for joint activities is
best constructed according to the goals specified for
the location and motion states of each agent. The
algorithm is summarised as follows:

Agent A: Init ialise agents A, which including agents’
state location, behaviours etc.
Goals: Assign specific goals to A, including a final
goal and sub-goals
Actions: Move, how to move, perceiving
environment, recognise other agents and the
environment. Predict other’s intention etc.
Approaching other agents
Agent B:
…
Plan and strategy: Coordination, communication,
competition and collaboration etc.

The algorithm has been implemented in our
simulation and a basic exploration test was conducted
at this stage.

9 SIMULATION RESULTS
A number of simulations have been conducted in our
work for evaluating the motion trajectory generation
algorithm. An auto-pilot-aircraft was created as an
intelligent agent and it has the ability to perceive the
visual information about the environment when it is
in a navigation. Sensors have been created and
attached to the aircraft.

Figure 5 show three instances of a path planning
simulation. using the algorithm discussed above.
Figure 5a shows that the moving agent moves to the
entrance of an unknown alley, where there are three
potential paths that have been created and a split
node is created and added to the path tree. Figure 5b
shows the agent moving back to the nearest split
node. Figure 5c shows that the moving agent's
successful navigation through the alley.

a)

b)

c)
Figure 5: A simulation test; a. 1 merge paths and
search optimal path b. exit from blind alley c.

successful navigation through obstacle block

Figures 6 and 7 show two simulation experiments.
The experiments were designed for an autonomous
moving agent to navigate through complex obstacle
environments with different motion characteristics.
The simulations were quite successful and the res ults
are satisfactory. Figure 8 shows a screen capture of
real-time aircraft simulation in a virtual environment,
in which the aircraft acted as an autonomous agent
who used visual information to detect obstacles in
order to find a path to conduct an obstacle-free
navigation.

Figure 6 Navigation Simulation Case 1.

Figure 7 Navigation Simulation Case 2

Figure 9 show two instances of path planning
simulation involving two agents. The final goal for
one agent is market as g and the goal for the other
agent is actually the first agent’s configuration.
Therefore, the two agents perform a chasing
simulation. Each agent is a part of the environment.
Figure 10 shows a 3D path planning simulation
involving two aircrafts in a virtual environment.

Figure.8 A aircraft simulation in a 3D environment

Figure.9 Two agents chasing in a 2D environment

g: final goal

Figure.10 Two aircraft chasing training simulation

The algorithm has been implemented in C++ and
tested on a 1000 MHz Pentium processor PC with
256M memory and Matrox G450 graphics card
(360MHz, 32M memory). The experiments of indoor
scene simulation shown in Figure 7 were using a
500*500 units’ space. The time cost of trajectory
generation, the accurate trajectory length and the
average end position error, using different space
curves, are shown in Tablet 1.

9 CONCLUSIONS
A novel motion constraint path planning approach for
real-time navigation of agents is proposed in this
paper. The algorithm works well in dynamical and
un-configured environments, and is able to produce a
collision-free, time -optimal smooth motion
trajectory. Multi-agents behaviour has been explored
based on the algorithm. A simple physically-based

Tablet.1. Time cost of trajectory generation, trajectory length and average end position error of an indoor scene

 Trajectory Length (unit)
35000 steps

Total Time cost (ms) Average end position error (unit)

Bezier Curve 1131.405 240 0.0
Clothoid curve 1049.296 280 0.0445
Cubic Spline 1033.071 280 0.0768

(b)

g

(a)
g

aircraft model has been developed, which is
addressing the manoeuvring capabilities of the
moving agents, while the moving agents'
accelerations and velocities are always continuous
and bounded. The generated motion path is
constituted smoothly and has continuous curvature in
the whole state space of the motion thus satisfying
the major requirements for the implementation of
such strategies in real-time navigation. The clothoid
curve has been chosen as the basis for the motion
trajectory generation. A 3D aircraft simulation has
been conducted and the result is quite promising. The
simulation result is quite satisfactory. The next step
for our research is to refine the algorithm and look at
path planning with more complex group behaviours
in simulated environments.

11 REFERENCES
[Ari01] Okan Arikan and Stephen Chenney and {D.

A.} Forsyth, "Efficient Multi-Agent Path
Planning", Proceedings of the 2001 Eurographics
Workshop on Animation and Simulation , Sep,
2001

[Bem96] A. Bemporad, A. De Luca, G. Oriolo,
"Local incremental planning for a car-like robot
navigating among obstacles" in Proc. of the 1996
IEEE Int. Conf. on Robotics and Automation,
Minneapolis, USA, 1996

[Ber03] Tomas Berglund, Hakan Jonsson and Inge
Soderkvist, “An Obstacle-Avoiding Minimum
Variation B-Spline Problem,” International
Conference on Geometric Modelling and Graphic
July 16-18, 2003.

[Dub57] L. E. Dubins, “On Curves of Minimal
Length with a Constraint on Average Curvature
and with Prescribed Initial and Terminal Position
and Tangents,” American Journal of mathematics,
vol. 79, pp.497-516, 1957.

[Esv01] C. Esveld, “Modern Railway Track” , Second
Edition, Published by MRT-Productions, a
subsidiary of ECS, ISBN 90-800324-3-3, 2001.

[Fra01] Th. Fraichard and J. M. Ahuactzin, “Smooth
Path Planning for Cars,” IEEE Int. Conf. On
Robotics and Automation May 21-26, 2001.

Hol92] P. D. Holmes and E.R.A. Jungert, “Symbolic
and geometric connectivity graph methods for
route planning in digitized maps”, IEEE
Transactions on Pattern Analysis and Machine
Intelligence, vol, 14, no.5, 1992, pp549-565.

[Jos97] F. M. Josson, “An optimal pathfinder for
vehicles in real-world digital terrain maps”, the
Royal institute of Science, School of Engineering
Physics, Stockholm, Sweden. MSc thesis, 1997.

[Kan86] Y. J. Kanayama and N. Miyake, “Trajectory
Generation for mobile Robots,” Robotic
Research, vol. 3, Cambridge, MA: MIT Press,
1986, pp.333-340.

[Kan89] Kanayama, Y and Hartman, B. I, “Smooth
local path planning for autonomous vehicles,”
Robotics and Automation, 1989, vol. 3, pp. 1265-
1270.

[Lat91] Latombe, J.-C., “Robot Motion Planning”,
Kluwer Academic Publis hers, 1991, ISBN
0792391292.

[Lum90] V. J. Lumelsky, S. Mukhopadhyay, and K.
Sun. Dynamic path planning in sensor-based
terrain acquisition. IEEE Transactions on
Robotics and Automation, Vol 6, No 4, 1990.

 [Mon87] M. Montgomery et al., “Navigation
algorithm for a nested hierarchical system of
robot path planning among polyhedral obstacles”,
Proceedings IEEE International conference on
Robotics and Automation, pp. 1616-1622, 1987.

[Nag01] Bryan Nagy and Alonzo Kelly, “Trajectory
Generation for Car-Like Robots Using Cubic
Curvature Polynomials,” in Field and Service
Robots 2001, Helsinki, Finland June 11, 2001.

[Oom87] B. J. Oommen, S. S. Iyengar, N. S. V. Rao,
and R. L. Kashyap. Robot navigation in unknown
terrain using learned visibility graphs. Part i:The
disjoint convex obstacle case. IEEE Journal of
Robotics and Automation, Vol RA-3 No.6
December, 1987.

[Pad00] D. Padmanabhan, "Optimal 2-D Path
Planning", AME 598C Project Report, Spring
2000.

[Sch96] A. Scheuer and Th. Fraichard, “Planning
Continuous-Curvature Paths for car-Like
Vehicles,” IEEE-RSJ Int. Conf. On Intelligent
Robots and Systems, November 4-8, 1996. vol. 3,
pp. 1304-1311.

[Ste95] Anthony Stentz and martial Hebert, “A
Complete Navigation System for Goal
Acquisition in Unknown Environment”, In
Autonomous Robots, Volume, Number 2, August
1995.

[Tat91] S. R. Tate. ``Arithmetic Circuit Complexity
and Motion Planning'', Ph. D. Dissertation, Duke
University, 1991.

[Woo97] S. M. Woodcock (editor). "Artificial
Intelligence in Games", 1997,

[Yah98] Alex Yahja, Anthony Stentz, Sanjiv Singh,
and Barry L. Brumitt, “Framed-Quadtree Path
Planning for Mobile Robots Operating in Sparse
Environments”, In Proceedings, IEEE Conference
on Robotics and Automation, (ICRA), Leuven,
Belgium, May 1998.

[Yam99] M. Yamamo to, M. Iwamura, and A. Mohri,
“Quasic-Time-Optimal Motion Planning of
Mobile Platforms in the Presence of Obstacles,”
Int. Conf. on Robotics and Automation, pp. 739-
744, 1999.

