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ABSTRACT 
We propose a fast and adjustable sub-optimal path search algorithm for finding minimum error boundaries be-
tween overlapping images. The algorithm may serve as an efficient alternative to traditional slow path search 
algorithms like the dynamical programming. We use the algorithm in combination with novel adaptive blending 
to stitch image regions. The technique is then exploited in a framework for sampling-based texture synthesis 
where the learning phase is clearly separated and the synthesis phase is very simple and fast. The approach ex-
ploits the potential of tile-based texturing and produces good and realistic results for a wide range of textures. 
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1. INTRODUCTION 
Physically correct virtual model visualization can not 
be accomplished without naturally looking color tex-
tures covering virtual or augmented reality scene 
objects. These textures can be either smooth or rough 
(also referred to as BTF, see e.g. [MMu03]). The 
rough textures do not obey the Lambert law and their 
reflectance is illumination- and view-angle-
dependent. Both types of textures occurring in virtual 
scene models can be rendered either through digitali-
zation of natural samples or by synthesis from ap-
propriate mathematical models. Exact sample digi-
talization may become prohibitive due to consider-
able memory requirements, particularly in case of 
BTFs where each texture is represented by a possibly 
high number of illumination and view-angle-
dependent images. Therefore several texture synthe-
sis methods have been defined to reduce the memory 
complexity. The related methods may be divided 
primarily to either intelligent sampling or model-
based- 

 
Figure 1. The picture is made of rectangular tiles. 
Can you guess, what is the tiling grid size and how 
many different tiles have been used ? (see Fig.10) 

analysis and synthesis. The model-based techniques 
(see, e.g., [Bes74], [Kas81], [BK98], [Hai91], 
[PJ00], [GH03], [HH00], [HH02]) describe texture 
data by means of multidimensional mathematical 
models and later use an extremely compact represen-
tation for seamless synthesis of arbitrarily sized tex-
ture images. Intelligent sampling approaches (see, 
e.g., [DB97], [EL99], [Efr01], [Hee95], [XGS00], 
[CS03], [KS03]) rely on sophisticated sampling from 
real texture measurements. Sampling based methods 
currently achieve better visual quality at a cost of less 
effective compression. Particularly the simpler intel-
ligent-sampling methods have been receiving con-
stant attention for their applicability in graphic hard-
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ware.  DeBonet’s method [DB97] constructs the tex-
ture in coarse-to-fine fashion, preserving conditional 
distribution of filter outputs over multiple scales, 
while another multi-scale method [Hee95] uses his-
tograms of filter responses. The “image quilting” 
method [Efr01] by Efros et al. connects rectangular 
pieces of the texture sample together while minimiz-
ing the boundary cut error. Similarly the algorithm 
by Xu et al.[XGS00] uses regular tiling combined 
with a deterministic chaos transformation. Very good 
results can be achieved by employing Wang tiles 
[CS03] or the so-called graphcut textures [KS03]. All 
of these methods implement some sort of source tex-
ture sampling and the best of them often produce 
very realistic synthetic textures. 

However, no texture synthesis method can be con-
sidered ideal for all potential applications. Either the 
performance, universality, visual quality of results or 
applicability in current hardware may become the 
prohibiting factor. 

Our Motivation 
Many of the current sampling methods involve image 
operations that may result in visible seams, typically 
when combining incompatible pieces of texture. A 
good way to improve the visual quality in such cases 
is to find (possibly irregular) boundaries between the 
image pieces to minimize the visual error. In the fol-
lowing we propose a sub-optimal yet highly effective 
alternative to traditional slow path-search algorithms. 
Taking use of the algorithm we show a method of 
developing the texture by visually unrecognizable 
image transfers (to be referred to as patching). We 
also show how to utilize this technique in a simple 
way to obtain groups of mutually connectable tiles 
representing the given texture. However, the main 
part of the paper concentrates on the path search and 
seamless boundary creation problem as we believe 
the solution presented here is generally usable in 
many different contexts and applications. 
The paper is structured as follows: Section 2 dis-
cusses in detail how a virtually invisible transition 
between two texture image regions can be created. 
Section 2.1 shows a novel sub-optimal algorithm for 
path search that can be used instead of slow expo-
nential algorithms like the dynamical programming. 
Section 2.2 shows how to improve the visual transi-
tion quality in cases when minimum error path does 
not suffice to prevent discontinuities. Section 2.3 
extends the stitching technique to enable seamless 
transfer of whole image regions (patching). In Sec-
tion 3 we show a trivial yet well-performing way of 
seamless tile creation. Assuming one tile has been 
created, we show in Section 3.2 how new, visually 
different derivatives can be created based on it while 
all of the tiles remain mutually connectable. Such tile 

sets can then be used to synthesize texture images of 
significantly higher quality than it is possible with 
simple tiling approaches, as shown in the Experi-
ments Section 4. Section 5 summarizes the advan-
tages and discusses the drawbacks and perspectives 
of the proposed methods. 

2. IMAGE STITCHING 
Consider image stitching a process of creating natu-
ral transitions between two image regions. This task 
is simpler for naturally self-similar (e.g. homoge-
nous) textured images. The transition is to be made 
as unnoticeable and indistinguishable from the 
neighboring image areas as possible. We define the 
technique based on the minimum error boundary cut 
idea, as used in the “image quilting” algorithm 
[Efr01]. Let us assume that each stitch between two 
equally sized overlapped image regions R1 and R2 is 
oriented. A right-oriented stitch image will consist 
mostly of pixels from R1 along its left side and 
mostly of pixels from R2 along its right side. Creating 
such stitch can be imagined as attaching a cropped 
part of R1 (source) to R2 (target) as demonstrated in 
Figure 2. The following sections show in detail how 
to crop and how to reduce unwanted visual errors for 
cases when cropping itself is not sufficient. 
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Figure 2. Image stitching (right-oriented case). 

The source image is cropped from the right along 
the minimum error path and placed over the tar-

get background image. 

Minimum Error Path Search 
Let us consider a right-oriented stitch creation prob-
lem, as demonstrated in Figure 2. Suppose the source 
region R1 is to be placed over target region R2 where 
the overlap size is w×h pixels. Width w is considered 
a user parameter that determines how relaxedly the 
transition between R1 and R2 should be constructed 
and thus trades the achievable visible quality for al-
gorithm efficiency. To make the transition as invisi-
ble as possible, R1 is cropped from the right side 
along a minimum error path before attaching to R2. 
The minimum error path is constructed to lead verti-
cally from the top row to the bottom row of error 
map E, which represents the visual difference be-
tween R1 and R2 for each pixel of the overlap region: 

 
where d(., .) is, e.g., the Euclidean distance of two 
RGB pixel color values. Note: Error maps in Figures 
2, 4, 5 and 6 depict higher error by darker grey lev-



els. We adopt a simplified path representation model, 
as shown in Figure 3. Only the pixels lying to the left 
of (and on) the path are to be copied from R1 to the 
underlying R2.  
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Figure 3. Simplified path representation model 
for the right-oriented stitch. Each row contains 
one control point (black dot). Complementary 

points (crossed dots) must be added to make the 
path continuous. 

Each path is represented unambiguously by a se-
quence of control points c, one for each row: 

 
However, the complete path as a vertically oriented, 
continuous sequence of pixels in E must include not 
only the control points, but also complementary 
points (marked by crossed dots in Figure 3). From 
several possible complete path definitions we have 
adopted the one that suits our oriented-stitch ap-
proach, i.e., where each control point becomes visi-
bly the rightmost point in its row: 

 
where 

 
For each path a criterion can be evaluated to asses 
the expected visible transition inconsistency: 

 
Now we can define a sub-optimal minimum path 
search algorithm on error map E of w×h pixels. The 
basic idea is to develop some initial Pathc in stepwise 
manner by conditional shifting of the control points. 
New control point position(s) get fixed only if 
ε(Pathc) would decrease. This ensures the algorithm 
to converge. The algorithm first evaluates single con-
trol point shifts in each step as long as the criterion 
value can be decreased. Next it attempts to bypass 
larger error areas by shifting small groups of con-
secutive control points forming a vertical line at 
once. Whenever such step improves the criterion 
value, fine tuning in form of single control point 
shifts follows. The only user parameter omax (where 1 
≤ omax ≤ h) depicts the maximum number of control 
points processed in one step. Higher omax values lead 
to better or equal solutions at a cost of longer compu-
tation. 

 
We use this algorithm as a fast alternative to slow 
optimal path search procedures like the dynamical 
programming. The main reason is computational 
speed. The oscillating search has polynomial com-
plexity while optimal search is always exponential. 
The oscillating search is a step-wise procedure that 
sequentially improves some actual solution and thus 
can be stopped at any moment to yield a usable re-
sult. The visible differences between optimal and 
suboptimal search results can be considered mar-
ginal, as demonstrated in Figure 4.  

Error map dimensions: 512 x 33

Dynamical programming
(optimal, exponential complexity):

O sub-optimal, polynomial complexity)scillating search ( :

a) b)

 
Figure 4. Sub-optimality vs. optimality of path 

search. 
The suboptimal search as defined here prohibits re-
turning path sections (Figure 4a). Differences, if any, 
occur in areas of evenly distributed error (Figure 4b) 
and thus remain visually unimportant. In the case 
depicted in Figure 4 the sub-optimal search was 
faster than dynamical programming by a factor of 
5000 (depending on error map dimensions) while the 
numerical difference between the sub-optimal and 
optimal criterion values was about 10%. Moreover, 
experiments show that numerical optimality of found 
paths is not crucial for the visual appearance of tran-
sitions. It is more important to ensure that the overlap 
image region itself is positioned and sized not to rule 
out the existence of low error paths (for  example of 
such a difficult error map see Figure 5). 
Remark: In the context of off-line texture analysis to 
be discussed in the following (Section 4) the time 
factor is not crucial. However, it is of key importance 
in many other applications (see, e.g., [Efr01]). 



Adaptive Boundary Blending 
The minimum path based stitching often produces 
good natural appearance of image transition areas. 
However, if no good path exists in the error map, 
visible artifacts can not be avoided (as demonstrated 
in Figure 5–simple stitch).  
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Figure 5. Adaptive blending to improve visual 

consistency of stitched image areas. 
Therefore we have defined the adaptive boundary 
blending as an attempt to reduce the visibility of such 
unwanted and striking high-error artifacts, should 
they emerge during the stitching process. The idea is 
to interpolate between overlapped source region R1 
and target R2 with a locally adjusted intensity while 
utilizing the minimum error path both as a boundary 
and as a coloring guideline. Our experiments show 
that to prevent unnaturally smoothed appearance it is 
better to keep the affected area minimal, just enough 
to mask the high error artifacts. In the following we 
consider a right-oriented stitch again. This is of im-
portance now, because the blending process we adopt 
is targeted to one side (left in this case) of the path 
only what helps to better preserve the original image 
appearance. 
Let us denote S the adaptively blended stitch region 
of w×h pixels to be created from R1 overlapping R2. 
We assume the minimum error path Pathc and error 
map E are known (see the previous Section). The 
blending range (maximum distance from the path 
where pixels get affected) is to be set as parameter ρ. 
The ρ value should be specified with respect to the 
properties of the processed source image. Higher 
image resolution should be reflected on higher ρ. 
However, with ρ being too high the blending effect 
can become visually too apparent. On the contrary, 
too small ρ may not be sufficient to suppress the 
worst visual stitching errors, should they appear. The 
stitch is created row-wise, i.e., for each j = 1, . . . ,h: 

 
where 

 
The adaptive blending process can be visualized us-
ing the blend intensity and blend color maps (see 
Figure 5). The blend intensity map represents the 
weighing information on how R1 contributes to the 
blended result in the area left from the path. In Fig-
ure 5 the darker pixels depict lower contribution. R2 
contributes to the same area indirectly using the 
blend color map that shows how color information is 
extracted from R2 path pixels. As seen on examples 
(Figures 5, 8 and 11), the boundary can be made al-
most unnoticeable in this way, except of cases when 
the transition is made between principally incompati-
ble texture image areas.  
Remark 1: We should note that simpler interpolation 
algorithms have been tested as well but led to worse 
results, usually emphasizing incompatibilities of R1 
and R2 image contents alongside the minimum error 
path. Remark 2: A little better visual quality can be 
achieved if S[i, j] for 1 < i ≤ cj would depend not 
only on the single closest on-path pixel (m,n) in 
Pathc, but on several close neighboring pixels in 
Pathc. 

Image Patching 
The image stitching method described in the previous 
Sections can be extended to transfer general continu-
ous image regions while keeping the transition be-
tween the old and new unnoticeable. 
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Figure 6. Patch creation. The stitching technique 
is used to create sides and corners of the patch; 
the inner area is simply copied. White arrows 

show stitch orientations (requires optimization). 
For the sake of simplicity we define a patch as a part 
of image surrounded by a continuous minimum error 
path that does not extend out of a given surrounding 
rectangle. Our image patching algorithm is illustrated 
in Figure 6. The inner area is simply copied from 
source position to the target. Side stitches are then 
created inside the four side belts of a user-specified 
width with obvious orientation (see the white arrows 
in Figure 6). Finally the corner stitches are added, 



with one additional restriction: the path initial and 
final control points must be fixed to remain con-
nected to those of the side stitches to ensure the patch 
is surrounded by one continuous path. 

3. TEXTURE TILING 
Texture tiling is extensively used for various pur-
poses ranging from simple web page design to realis-
tic 3D display of natural surfaces. Creating a single 
seamless tile out of some source image is thus a tra-
ditional problem for which numerous algorithms 
exist. One of the simplest is probably the “Photoshop 
clone tool” approach. The idea is to half-shift the 
image and then to use the manual clone tool to blot 
out the now apparent horizontal and vertical seams 
that have emerged inside the image. From the auto-
mated methods many take use of extensive blending 
in not very sophisticated manner, what often results 
in too striking visual change of the texture appear-
ance along the tile borders. The image stitching tech-
nique described in previous sections is well suited for 
the purpose of seamless tile creation and can be ex-
pected to give considerably better results than simple 
blending methods. 

Tile Overlap Optimization and Stitching 
First, we search for such rectangular region in the 
source texture image, where the opposite border ar-
eas are the most visually consistent in both the hori-
zontal and vertical direction.  
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Figure 7. Tile template positioning on a source 

image. 
As depicted in Figure 7, the search procedure mini-
mizes the visual difference among image regions RL 
and RR, and among RT and RB, respectively. The 
overlap width is to be decided by the user, the width 
and height of the candidate region is optimized by 
the procedure. The tile (brightened region) is then cut 
out and made seamless by overlapping and stitching 
image region RR over RL, and RB over RT, respec-
tively. The tile sizing and positioning phase is trivial; 
its purpose is mainly to provide for better stitching 
results. We use the average RGB Euclidean distance 
as a criterion of visual consistency. Remark: From 

performance reasons we split the tile positioning and 
sizing process to two sub-optimal independent 
phases, vertical and horizontal. 

Deriving Mutually Connectable Tile Sets 
For many textures a single tile is not sufficient to 
synthesize naturally looking images. Simple tiling 
usually leads to unwanted emphasis of the rectangu-
lar grid, despite the seamlessness of tiles (see the left 
image in Figure 8). Moreover, the character of many 
textures makes it impossible to create a single tile 
that would sufficiently represent all the texture vari-
ability. Our idea is to make tiling more realistic by 
employing more than one tile per texture. The posi-
tive effect of increasing the number of tiles is dem-
onstrated in Figure 8.  
New tiles can be obtained using the patching tech-
nique described in Section 2.3. New tiles can be cre-
ated by making a copy of the template tile and subse-
quently covering its inner area by patches taken from 
different positions in the source texture image. Dif-
ferent algorithms can be defined to accomplish this 
task, both deterministic and non-deterministic, with 
different properties. It is possible to define sophisti-
cated algorithms aiming to build tile sets of specified 
properties, e.g. representing well the variability of 
original texture image contents.  This algorithm defi-
nition problem can be considered outside the scope 
of this paper. Therefore, we suggest here only the 
simplest possibility. Each new tile is can be obtained 
by applying one patch only, sized little less or equal 
to the tile size and taken from a random source posi-
tion. Even if the patch and tile sizes are equal, the 
original tile contents remain usually unaffected 
alongside its borders (and thus the tile remains con-
nectable), because of the expected irregularity of 
minimum error paths. This effect can be seen in 
Figure 6b. Remark: The described tile set derivation 
procedure is obviously independent on the particular 
technique used to obtain the initial template tile. 

4. EXPERIMENTS 
We have tested the presented techniques on a set of 
textures, mostly from VisTex and UTIA databases. 
The benefit of using tile sets instead of single tiles is 
demonstrated in Figure 8. The picture of pink bloom 
over green grass can be considered a difficult texture. 
A single tile is clearly insufficient to obtain a natu-
rally looking synthetic image. Adding two tiles im-
proves the result. However, no less than 5 tiles seem 
sufficient to suppress the striking visibility of the 
regular tiling pattern. 
The examples in Figures 1, 8 and 11 have been ob-
tained as follows: the first tile for each texture has 
been created automatically (see Section 3) with the 
only restriction of some reasonable minimum and 



maximum tile size. The overlap width was set to ca. 
1/10 of the expected tile size. The first tile was then 
used as a template for tile set generation (see Sec-
tion 3.2). 30 patched tiles had been generated per 
texture from which the final tile subsets were se-
lected manually. In cases where the results had been 
found unsatisfactory, the experiment was repeated 
with modified parameters. The stitching region 
width, both in the case of the first tile creation (see 
Section 3.1) and subsequent tile patching 
(see Sections 2.3 and 3.2) has proved to 
be important and is therefore marked in 
Figures 8 and 11 as wT and wP, respec-
tively. Patch source positions were ob-
tained randomly, but optimized subse-
quently on a small neighborhood of size 
n to avoid worst possible visual prob-
lems. For the adaptive blending the parameter ρ had 
been set to 3 in all cases, which has shown to be sat-
isfactory in most cases. Note: The synthesized im-
ages in Figs. 8 and 11 are cropped to fit in the page. 
Time complexity of all computations is low. Each tile 
can be generated typically in seconds on a 2GHz PC. 
Once a good set of tiles has been found, texture syn-
thesis is reduced to assembling different tiles to the 
grid according to some index matrix. This can be 
done directly in the GPU at no additional time cost.  
Expectably good results have been obtained with 
most of the regular textures (Fig. 11c). Very good 
results have been obtained even for some more diffi-
cult textures, where the irregular texture nature 
(chocolate, Fig. 11e) could have caused problems. 
Some of the most difficult textures displaying natural 
objects like tomatoes can be synthesized surprisingly 
well (Figs. 11b, 11d). However, with some textures it 
showed impossible to prevent unnatural artifacts (see 
in detail Fig. 11f, which looks fine at first sight). We 
have also experienced problems with textures where 
good overlapping regions could not be identified to 
create the initial tile, or with textures containing very 
distinct particles or structure that has a negative im-

pact on the tile grid visibility (Figure 9). Neverthe-
less, the technique proved to be well capable of syn-
thesizing broad range of natural textures. Some of 
the possible visual problems follow from principal 
reasons and cannot be avoided; others can be re-
moved or suppressed by repeating the experiments 
with modified parameters, in particular with different 
stitch widths and patching sources. The quality of 
output also depends on the size of the original texture 

sample. Too small a source image would 
result in too homogenous and regular 
results. Small source images usually im-
ply the necessity to create more tiles to 
compensate the effect of denser and thus 
more apparent tile grid. To capture low 
frequency information, larger tiles are 
necessary. To prevent the visibility of the 

tile grid the tiles in a set must have sufficiently varied 
content, i.e., the patching process must affect most of 
the tile image surface. No tiling can overcome certain 
principal problems like, e.g., the problem of source 
texture images containing slightly rotated linear 
structures (Figure 9) from which no smoothly con-
nectable tile can be derived. In general, if the texture 
exhibits some apparent linear structure then it should 
be either vertically or horizontally aligned. Skewed 
and rotated linear structures require sufficiently large 
samples or are not manageable at all. 

tile 1

tile 5

tile 4

tile 8

tile 3

tile 7

tile 2

tile 6  
Figure 10. The front page image is composed of 8 
different tiles in a 4×4 grid according to the index 

matrix: ((7,6,1,5), (3,7,5,8), (5,1,6,2), (4,3,2,3)). 
Finally, the answer to the front page Figure 1 ques-
tion is in Figure 10. 

synthesised using 1 tile synthesised using 3 tiles synthesised using 5 tiles

wT= 25

wP= 7

n = 20

original

tile 1

1 2 3 2 3 2
3 1 2 3 2 1
1 3 1 2 1 3
2 1 3 1 3 1
3 2 1 3 1 2
2 3 2 1 2 3

tile 3

tile 2

+

+

3 2 1 4 5 4
2 3 4 5 4 3
4 1 5 1 5 2
2 5 3 2 1 5
1 3 4 3 4 2
2 5 2 5 3 1

tile 5

tile 4

+

+

Figure 8. Visual improvement of synthesis results by combining an increasing number of tiles. 
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problem structure in 

source texture images.



5. CONCLUSION 
We have presented a novel fast path search algorithm 
and adaptive blending technique that are suitable for 
seamless image transfer, in particular in the context 
of texture synthesis. Using these tools we have dem-
onstrated a relatively simple technique that enables 
synthesis of naturally looking textures by means of 
advanced image tiling. We show how a set of mutu-
ally connectable yet differently looking rectangular 
tiles can be obtained for a broad range of source tex-
ture measurements. We show that even very irregular 
textures can by represented well using such tile sets. 
The main advantage of the presented technique is the 
clear separation of the off-line texture analysis, while 
the synthesis is reduced to trivial combination of pre-
computed tiles. The visual quality of output is close 
or comparable to the best of current techniques as 
shown in Figures 8 and 11. 
The tiling technique is scalable. The trade-off be-
tween the visual quality and computational complex-
ity can be controlled by changing the number of tiles 
in the tile set. For each texture some minimum num-
ber of tiles is usually necessary to ensure sufficient 
quality of results. Regular (possibly rectangular) tex-
tures without much detail can be represented by 
fewer tiles than highly irregular stochastic textures. 
Most of the algorithms presented here are extendable 
or modifiable. We have found the technique to be 
extendable for BTF modeling (bidirectional texture 
fields, see, e.g. [MMu03], [MMe03]) to enable par-
ticularly accurate display of natural surfaces with 
respect to view- and illumination- angles. 
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Figure 11.  Examples of tilings obtained with the proposed method. 
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Figure 12. Image Quilting [Efr01] results for comparison. 

 


