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ABSTRACT 

By carefully exploiting the resources of today's computer hardware, interactive ray tracing recently became 
reality even on a single commodity PC. In most of these implementations triangles are used as the only 
geometric primitive. However, direct rendering of free-form surfaces would be advantageous for a large number 
of applications, since robust tessellation of complex scenes into triangles is a very time-consuming process. 
Additionally, scenes consisting of free-form surfaces require less memory and provide a much higher precision 
resulting in less rendering artifacts. 

In this paper, we present our implementation of an efficient and robust algorithm for rapidly finding 
intersections between rays and trimmed bicubic Bézier surfaces. Using SIMD instructions provided by many of 
today's CPUs, we perform the intersection test of a packet of four rays with a single Bézier surface in parallel. 
An optimized bounding volume hierarchy provides good initial guesses needed for fast convergence of the 
Newton iteration, which forms the core of our intersection algorithm. As a result, we demonstrate that it is 
feasible to render complex scenes of several thousand Bézier surfaces at video resolution with interactive frame 
rates on a single PC. 
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1. INTRODUCTION 
Free-form surface representations such as splines, 
NURBS, or subdivision surfaces provide a simple 
but still powerful way of describing three-
dimensional geometrical objects for use in computer 
graphics applications. Unlike triangle meshes, which 
are the second commonly used way of defining 3D 
shapes, they are able to describe curved surfaces 
exactly. Therefore, free-form surfaces form the 
foundation of most CAD systems used in the 
industry today. 

If the models should be displayed in an interactive 
setting, however, free-form surfaces are currently 
tessellated into triangles as well, since this is the only 
primitive that can be handled by today’s rasterization 
hardware. For this kind of applications it would 
therefore be desirable to render free-form surfaces 
directly. 

Direct rendering of free-form surfaces instead of 
triangle meshes has a number of advantages. 
Obviously, the time-consuming overhead of 
triangulating the surfaces can be avoided. Secondly, 
due to the smaller number of primitives the costs for 
additional preprocessing needed for most rendering 
algorithms, e.g. building up acceleration data 
structures, are also reduced. Moreover, representing 
objects as free-form surfaces requires less memory, 
which can be a limiting factor for complex scenes. In 
addition, rendering free-form surfaces directly 
provides a much higher precision resulting in less 
rendering artifacts. For example, cracks between 
adjacent surfaces due to different tessellation 
parameters can be completely avoided. 
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Figure 1. The Chessboard from different view 
points. Note that due to the direct rendering of 
free-form surfaces, the objects remain curved, 
even from the shortest viewing distance. 
Finally, free-form surfaces are often used in 
conjunction with trimming curves that cut out parts 
of the surface in the parametric domain. Robust 
tessellation of free-form surfaces with trimming 
curves is a non-trivial task with a high computational 
cost. 

In contrast to current rasterization hardware, ray 
tracing is capable of rendering every primitive for 
which the intersection between a ray and the surface 
can be calculated [Whi80a]. Nevertheless, it has the 
reputation of being a very time-consuming rendering 
algorithm. However, recently it has been shown that 
it is possible to achieve interactive frame rates even 
on a single commodity PC by carefully exploiting the 
resources of today’s CPUs [Wal01a]. 

In this paper, we present the details of our 
implementation of the intersection test between a ray 
and a trimmed bicubic Bézier surface in the context 
of an interactive ray tracing system. While we do not 
introduce any new intersection algorithm, we rather 
show that a significant speed-up can be achieved by 
carefully optimizing a well-known intersection 
technique. As a result, we demonstrate that it is 
feasible to render complex scenes of several 
thousand Bézier surfaces at video resolution with 
interactive frame rates on a single PC. 

Although we currently restrict ourselves to bicubic 
Bézier surfaces, our approach may be extended to 
support other parametric surfaces as well. In 
addition, more general spline surfaces such as 
NURBS can be converted into Bézier patches 
[Roc89a]. 

2. PREVIOUS WORK 
Ray tracing at interactive frame rates has been first 
presented by [Muu95a]. Later, [Par99a] described a 
full-featured interactive ray tracing system running 
on a shared-memory supercomputer that is able to 
handle arbitrary geometry, including parametric 
surfaces (e.g. NURBS). However, they had to use 
expensive high-end hardware to achieve this goal. 
By contrast, [Wal01a, Wal01b] presented a highly 
optimized ray tracer running on a cluster of 

commodity PCs, paying careful attention to data 
layout, coherence, and caching issues. In addition, 
their system extensively uses SIMD instructions 
provided by most of today’s CPUs to trace packets of 
rays in parallel, thereby achieving a speed-up of 
more than an order of magnitude compared to other 
well-known ray tracers. Meanwhile, the employed 
algorithms have been further improved [Wal04a]. 
However, this ray tracer is restricted to triangles as 
the only geometric primitive. 
In the last 25 years, a variety of algorithms has been 
proposed to calculate the intersections between a ray 
and parametric surfaces of different kinds. One 
common approach is to use a multivariate Newton 
iteration. This method has the advantage of being 
general enough to handle any parametric surface, but 
requires a good initial value to ensure correctness 
and fast convergence. 
For example, [Swe86a] refine the control meshes of 
B-spline surfaces until they closely approximate 
them. Then, the intersection of the ray and the 
control mesh is used as the initial value of the 
following Newton iteration. By contrast, [Mar00a] 
employ a hierarchy of bounding volumes enclosing 
disjoint regions of NURBS surfaces to yield a 
suitable initial value. 
Another numerical approach for Bézier surfaces is 
called Bézier Clipping [Nis90a]. This algorithm tries 
to iteratively identify regions of the patch that are 
known not to be intersected by the ray, thereby 
restricting the parameter domain where intersections 
can occur. This approach is also used by [Wan01a], 
who combine Bézier Clipping with Newton iteration. 
Additionally, they exploited the coherence of 
neighboring rays to speed up the calculation. Never-
theless, all approaches mentioned above were far 
from interactive. 
Recently, [Ben04a] presented their implementation 
of a subdivision method, which refines the control 
meshes of the surfaces on-the-fly and calculates an 
approximate intersection point using a triangle mesh 
generated from the control points. Depending on the 
model and the number of refinement steps, they 
achieve up to 5.5 fps at video resolution on a single 
PC. Nevertheless, the number of refinement steps has 
to be the same for all surfaces to avoid cracks 
between adjacent patches. 

3. SYSTEM OVERVIEW 
Before going into the details of our implementation 
of the intersection test between a ray and a bicubic 
Bézier surface, we present a brief overview of the 
underlying interactive ray tracing system. 
Similar to [Wal01a], we use SIMD instructions 
found in many of today’s CPUs to trace packets of 



four rays in parallel. This applies to both the traversal 
of an acceleration data structure as well as the actual 
intersection calculations. However, instead of 
targeting only at a single CPU architecture, we have 
implemented our ray tracing system on top of a 
SIMD abstraction layer that allows us to write 
platform-independent SIMD code (see [Gei03a] for 
details). Currently, Intel’s SSE [Int04a] and 
Motorola’s AltiVec [Mot99a] instruction sets are 
supported, as well as a special mode that uses the 
FPU to emulate the specified functionality. 
In order to achieve a good rendering performance, it 
is crucial to reduce the total number of intersection 
calculations to a minimum. Therefore, we employ a 
hierarchy of axis-aligned bounding boxes that is 
iteratively traversed in depth-first order [Smi98a]. 
Although other acceleration data structures are 
usually considered to be faster in the context of ray 
tracing, we have found that this approach is well 
suited for a SIMD implementation and also adapts 
well to our intersection algorithm presented below. 
Currently, our ray tracing system is restricted to 
static scenes, allowing only interactive walk-
throughs. However, it could be easily extended to 
support dynamic scenes with hierarchical movements 
as well using the ideas presented in [Lex01a] and 
[Wal03a]. 
Because ray tracing naturally lends itself to a parallel 
implementation, our system is no exception. At 
present, we support rendering with multiple threads, 
which allows us to take advantage of multiprocessor 
PCs as well as Intel’s HyperThreading technology 
[Int04b]. 

4. OUR APPROACH 
Instead of using complex algorithms, we rather take a 
“brute force” approach. While this doesn’t seem to 
be very clever at first sight, it has been shown that a 
carefully optimized implementation can easily out-
perform more complex algorithms on current CPU 
architectures (e.g. [Wal01a] or [Ben04a]). 
Our intersection algorithm combines many known 
techniques to achieve a fast computation of the 
intersection point of a ray and bicubic Bézier patches 
as well as the corresponding surface normals. Similar 
to [Mar00a], we employ a hierarchy of axis-aligned 
bounding boxes to find a suitable initial guess needed 
for the Newton iteration that is used to calculate the 
intersection point. In the following subsections, we 
will describe the core components of our approach. 

Preprocessing 
As a first step, the scene description file is read 
(currently, the IGES format is partially supported) 
and converted into a binary data file that can then be 
processed by the actual rendering application. 

During this preprocessing, we convert the trimming 
curves originally represented as B-splines into 
piecewise cubic Bézier curves for use with our 
trimming algorithm and build up the bounding 
volume hierarchy that is used to speed up the 
intersection calculation. 
Compared to other bounding volume hierarchies, on 
the lowest level our bounding boxes do not surround 
entire scene objects (i.e. Bézier surfaces) or even lists 
of objects. Instead, we create them for small, disjoint 
regions of the individual surfaces. On the one hand, 
this leads to tighter bounds, thereby reducing the 
number of unnecessary intersection calculations. On 
the other hand, we are able to get better initial 
guesses for the Newton iteration used to calculate the 
actual intersection point. 
Therefore, we recursively subdivide each Bézier 
surface into a larger number of subpatches and 
calculate their corresponding control points using 
de Casteljau’s algorithm. Due to the convex hull 
property of Bézier surfaces, we can use these control 
points to determine an axis-aligned bounding box for 
each subpatch. 
At present, we alternately subdivide the surfaces 
resp. subpatches at the mean of the parameter domain 
in u  and v  direction, until the generated patches are 
reasonably flat or a predefined maximum subdivision 
depth has been reached. These two parameters can be 
easily controlled by the user. Unfortunately, they are 
scene dependent and must be chosen with care.  For 
our test scenes, we have found that a maximum 
subdivision depth of 4-6 is already sufficient. 
Since our Bézier surfaces are subdivided into small, 
disjoint regions by the bounding volume hierarchy, 
the individual subpatches can be classified during 
preprocessing to improve the rendering performance 
of trimmed surfaces. For each region that is known to 
be enclosed by a trimming curve (i.e. considered not 
to be part of the patch), we can immediately discard 
the corresponding subpatch as well as its associated 
bounding box, thereby avoiding any intersection 
calculation. By contrast, for regions that are known 
to lie completely inside the patch, the trimming test 
can be skipped during rendering. Otherwise, at least 
one trimming curve cuts out a part of the region and 
we have to perform the entire trimming calculation.  
As we use the original Bézier surface for the actual 
intersection test, the control points of the subpatches 
are only needed for creating the bounding boxes and 
the aforementioned classification, so they can be 
discarded immediately afterwards.  
Finally, the bounding volume hierarchy is created 
from the bounding boxes of the remaining 
subpatches using the top-down approach presented 
by [Gol87a]. 



Patch Representation and Data Layout 
A bicubic Bézier surface is given by its 16 control 
points and can be represented in matrix form through  

TVNCPNUvuS ]][][][][[),( = . 

Here, the 4x4 matrix ][CP  stores the control points, 
[N] contains the Bernstein polynomial coefficients, 
and ]1[][ 23 uuuU =  resp. ]1[][ 23 vvvV = . 
Obviously, the inner product ]][][[][ NCPNP =  
can be computed in advance. 
We store the 16 vector components of [P] as SIMD 
data in an array (see Figure 2). The first three 
elements of each SIMD variable store the X, Y, and 
Z component of the corresponding matrix element, 
whereas the last component remains unused. With 
this approach, each Bézier surface can be represented 
by exactly 16 * 4 * sizeof(float) = 256 bytes. 
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Figure 2. Patch representation: The matrix ][P  
computed from the control points CPij is stored 
column-major in an array of SIMD variables, 

leaving one component of each element unused. 
Storing the patch data as a structure-of-arrays, i.e. 
storing the same components of four control points 
together in a single SIMD variable, would reduce the 
memory requirements by 64 bytes per surface, but 
during our experiments we have found that this data 
layout results in a significantly slower evaluation 
algorithm due to the necessary shuffling of data. 
Moreover, the fourth component of each element in 
our SIMD data array can be used to store additional 
patch information, e.g. a pointer to the associated list 
of trimming curves. 
As already mentioned before, the subpatch data 
structure does not contain any control point 
information. Here we only store the parameter 
domain of the patch, the classification flag indicating 
whether it has to be trimmed or not, and the pointer 
to the original Bézier surface. For alignment reasons, 
we pad this data structure to a total size of 32 bytes. 
For each bounding box, we store the minimum and 
maximum coordinate value along each axis, a pointer 
to the associated geometry (i.e. a subpatch), and the 
skip pointer used during the traversal of the 
hierarchy. This data structure also occupies 32 bytes. 

2

4 5

P1

6 7 8 9

P2

3

1

B-Boxes 1 2 34 5 6 7 8 9

Subpatches

P1 P2Surfaces  
Figure 3. Data layout: During preprocessing, the 
example hierarchy shown at the top is converted 
into the internal representation (a set of arrays) 

shown at the bottom. 

Rendering Core 
As already stated in section 3, our rendering core 
traces packets of four rays in parallel using SIMD 
instructions. First, each ray packet generated by the 
camera iteratively traverses the bounding volume 
hierarchy to restrict the number of intersection 
candidates. Here, if any ray of the packet hits a 
bounding box, the entire packet has to continue the 
traversal of its children. 
Since the leaf nodes of our hierarchy correspond to 
small surface regions and not to an entire Bézier 
patch, this approach does not only restrict the number 
of intersection candidates, but also the parametric 
domain where intersections may occur. Provided that 
a proper hierarchy has been created, the center of the 
enclosed parametric domain can then be used as an 
initial guess for a Newton iteration that calculates the 
actual intersection point between the ray and the 
surface. Of course, this can also be done for four rays 
in parallel using SIMD instructions. 

4.3.1 Intersection Test 
The core of the intersection test is similar to the 
approach presented by [Mar00a] who solved the 
problem for NURBS surfaces but without targeting 
interactivity. 
We represent each ray by two orthogonal planes 
P1 = (N1,d1)  and P2 = (N2,d2)  where the iN  are 
orthogonal vectors of unit length, perpendicular to 
the ray direction D . The id  are given by 

ONd ii o−= . Here, O  denotes the origin of the 
ray. To find the intersection point between the ray 



and a parametric surface S(u,v) , we have to solve 
for the roots of 
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Several numerical methods exist that could be used 
to target this problem. We have chosen the classical 
approach of Newton iteration for several reasons: 
First, it converges quadratically if the initial guess is 
close to the actual root, which can be assured by our 
bounding volume hierarchy. Secondly, the surface 
derivatives exist and are very easy to compute. And 
last but not least, this algorithm is well suited for an 
implementation using SIMD instructions. 
Basically, Newton’s method is a Taylor series which 
is truncated after the first derivative. As we are 
solving a two-dimensional problem, the Newton step 
is defined as 
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where J  is the Jacobian matrix of R which is given 
by  
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Here, Su  and Sv  denote the partial derivative in the 
corresponding parametric direction. The inverse of 
the Jacobian can be efficiently computed using the 
submatrices ijJ  of J  that remain when the i th row 

and the j th column are removed: 
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We continue the iteration until one of three criteria is 
met: An intersection between the ray and the surface 
is found, if and only if we are closer to the root than 
some user defined threshold ε  

ε<),( nn vuR . 

Otherwise, the iteration continues until either this 
threshold criterion is met, the next iteration takes us 
further away from the root, i.e.  

),(),( 11 vnvn vuRvuR >++ , 

or a maximum number of iterations has been 
performed. 
Unfortunately, since we employ SIMD instructions 
to calculate four intersections at once, the iteration 
can be stopped only if all rays of a packet meet any 

of these criteria. However, this is still more than 
three times faster than computing the intersections 
sequentially. 

4.3.2 Evaluation 
The Newton iteration often needs to evaluate surface 
points as well as partial derivatives for given 
parameter values (u,v) . In this section we present a 
way how these can be computed efficiently. 
Basically, we have to compute the product of three 
matrices. That is  

TvvvPuuuvuS ]1][][1[),( 2323= . 

A naive implementation would simply compute the 
two matrix products, which consists of 60 
multiplications and 45 additions ( ][P contains three-
dimensional vectors!), ignoring the operations 
needed to compute of ][U and ][V . However, as the 
surface evaluation is used very often, it is necessary 
to optimize it as much as possible. 
First of all, the equation above can be rewritten as 

∑
=

=
4

1
]][][[),(

i
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where [Pi] denotes the i th column of [P] and [Vi] 
the i th row of ][V . Note that [Vi] represents only a 
single floating-point. 

Given the parameters ),( vu , we can then evaluate a 
point ),( vuS  on the surface using the following C-
like pseudo code fragment: 

u2 = u * u 
u3 = u * u2 
f  = 1 
s  = 0 
i  = 15 
while (i >= 0) { 
   t = p[i--] 
   t = t + u  * p[i--] 
   t = t + u2 * p[i--] 
   t = t + u3 * p[i--] 
   s = s + t  * f 
   f = f * v 
} 
return s 

This code is pretty straightforward to implement 
using SIMD instructions, thereby calculating four 
surface evaluations in parallel. Moreover, we can 
easily take advantage of the combined multiply-add 
instructions provided by some CPU architectures 
(e.g. PowerPC). Furthermore, by performing loop-
unrolling, additional unnecessary operations can be 
eliminated (for example the last two statements in the 
loop for the first iteration). 



Scene # Patches # Trims #B-Boxes Memory 
consumption 

Preprocessing 
time (min) 

Average 
Framerate 

Teapot 32 - 2736 150 kB 0:01 6.4 fps 

Cessna 1555 - 53216 3.2 MB 0:03 4.2 fps 

Chessboard 16182 - 227794 15.6 MB 0:13 6.7 fps 

VW Polo 11576 38556 448500 28.3 MB 5:26 5.1 / 3.4 fps* 

Table 1. Statistics for our test scenes    (*=trimming disabled/enabled)
The computation of both partial derivatives can be 
executed even faster. For example, the derivative in 
u  direction is 

T
u VPuuvuS ]][][0123[),( 2= . 

If we apply the same optimizations as presented 
above, the calculation of both partial derivatives 
simplifies to 33 multiplications and 33 additions 
each. 

4.3.3 Trimming 
For surface areas that have been classified to need 
trimming during the preprocessing step, an 
additional 2D point-in-curve test is performed after 
an intersection has been found. Currently, this is 
done sequentially for the (up to) four intersection 
points, as we do not employ any SIMD instructions 
for trimming yet.  
In addition, we currently perform this point-in-
curve test for all trimming curves associated to the 
original Bézier surface and not only for those parts 
that are relevant for the examined region (i.e. the 
subpatch containing the intersection point). 
In our implementation, we use the point 
classification approach presented by [Nis90a]. 
However, instead of using Bézier Clipping to 
subdivide the trimming curves into three segments 
if they cannot be clearly classified, we again take a 
brute force approach by splitting the curves at 

5.0=t and recursively test both segments. 

4.3.4 Shading 
Finally, all valid intersection points are shaded for 
display. At present, we support the simple Phong 
shading model [Bui75a]. This is also done using 
SIMD instructions, calculating the color of up to 
four intersection points in parallel. Here, additional 
rays for calculating shadows, reflections or 
refraction may be generated. 

5. RESULTS 
In this section we present some timings of our ray 
tracing system for a couple of test scenes of varying 
complexity (see Table 1 for the numbers and Figure 
4 for renderings), measured on a dual processor 

PowerMac G5 running at 2 GHz using only a single 
rendering thread. All images are generated at a 
fixed screen resolution of 512x512 pixels using 
simple Phong shading. Note that all scenes are lit 
by a single point light source, except for the 
Chessboard which is lit by three point lights. 
Our ray tracing system based on the algorithms 
presented above is able to render the Utah Teapot 
consisting of 32 Bézier patches at an average frame 
rate of 6.4 fps, whereas the more complex Cessna 
and Chessboard scenes can be rendered at 4.2 
frames/s and 6.7 frames/s respectively. 
To compare our results to the approach presented 
by [Ben04a], we additionally rendered the Teapot 
model at a screen resolution of 640x480. Here, the 
frame rate drops to 5.5 fps due to the larger number 
of pixels. This frame rate is comparable to their 
result for a subdivision depth of 0 (i.e. directly 
rendering the control mesh), already taking into 
account that we use a different test platform that is 
approx. 35 percent faster. Nevertheless, as the 
number of refinement steps usually has to be higher 
in order to obtain a good rendering quality, our 
method easily outperforms the subdivision 
approach for this model. For example, when using 
only four refinement steps, our implementation is 
already twice as fast. 

In contrast to the other test scenes, the VW Polo is 
the only model that contains trimming curves. Here, 
the large number of trims comes from the 
conversion of the original B-splines into piecewise 
cubic Bézier curves. It should also be noted that 
most of the preprocessing time is spent for reading 
the IGES file (~15%) and for the classification of 
the generated subpatches (~78%). However, the 
preprocessing code is fairly unoptimized at the 
moment. 

As can be seen from Table 2, the classification of 
the patches works quite well for the Polo model. 
Trimming calculations need to be performed only 
for a small fraction of the generated patches during 
rendering, as most subpatches can be categorized in 
advance.



 
Figure 4. Renderings of our test scenes: Utah Teapot, Cessna, Chessboard, and VW Polo (with trimming).
With trimming disabled, the Polo can be displayed 
at an average frame rate of 5.1 frames per second. 
After trimming is enabled, the average frame rate 
drops to 3.4 fps. On the one hand, this can be 
explained by the fact that trimming is currently 
performed sequentially for the intersections found. 
On the other hand, we still perform a lot of unnec-
essary trimming calculations, as the point-in-curve 
test is executed for all trimming curves associated 
to the original Bézier patch and not only for those 
parts that are relevant to the examined subpatch. 

# Subpatches (total) 496827 100.0% 

Without trims 
With trims 
        Totally in 
        Need trimming 
        Discarded 

70523 

426304 
241480 

33987 
150837 

14.2% 

85.8%
48.6%

6.8%
30.4% 

Table 2. Number of subpatches and their 
classification for the VW Polo model. 

For comparison, we also rendered a tessellated 
model of the VW Polo consisting of 326159 
triangles using a modified version of our ray tracing 
system, achieving an average frame rate of 4.8 fps. 
Although this is still faster than ray tracing the 
Bézier-based model, one should keep in mind that 
comparable models used for design reviews in the 
industry today usually consist of several million 
triangles that easily occupy gigabytes of memory. 
As memory access has been shown to be a limiting 
factor for ray tracing [Wal01a], direct rendering of 
bicubic Bézier surfaces can already be a valuable 
alternative to triangle-based approaches, especially 
for large models. 

6. FUTURE WORK 
Since our interactive ray tracing system for 
trimmed bicubic Bézier surfaces is still at an early 
stage of development, there is much room for 
improvements left, both in terms of rendering 
performance and image quality. 
Currently, we are working on a distributed version 
of our rendering system, running on a cluster of 

heterogeneous PCs. First results indicate that the 
performance scales almost linearly with the number 
of processors, as could be expected. 
In addition, the trimming code can be improved in 
different ways. As already stated before, the 
trimming curves can be split up in such a way that 
for each subpatch only the relevant parts have to be 
tested. Secondly, it would be interesting to examine 
if the usage of SIMD calculations can also speed up 
the trimming calculations. And finally, efficient 
handling of the special case of line segments may 
further improve performance. 
Moreover, the creation of our bounding volume 
hierarchy could be improved by using a more 
sophisticated heuristic to guide the subdivision of 
the Bézier patches (e.g. taking the curvature of the 
surface into account) instead of using the simple 
flatness criterion. 
As already stated in the introduction, our system is 
currently restricted to bicubic Bézier surfaces. 
Extending the presented approach to Bézier patches 
of arbitrary degree is relatively easy to implement. 
Thinking even further, it would be interesting to 
investigate more complex surface descriptions such 
as B-splines or NURBS. 
Finally, the next step in terms of image quality will 
be to add support for the typical ray tracing effects 
like shadows, reflections, and refractions. 

7. CONCLUSION 
Recently, it has been shown that it is possible to ray 
trace complex scenes at interactive frame rates even 
on a single commodity PC. Currently, however, 
almost all of these implementations use triangles as 
the only geometric primitive. 
In this paper, we have presented the details of our 
ray tracing system that is capable of directly 
rendering trimmed bicubic Bézier surfaces. We 
have shown that by carefully optimizing the 
implementation of a well-known intersection 
technique using SIMD instructions provided by 
many of today’s CPUs, it is feasible to render this 
kind of free-form surfaces at interactive frame rates 
as well. 



Our results indicate that direct ray tracing of Bézier 
surfaces is already a valuable alternative to triangle-
based approaches, especially for complex models. 
Moreover, we also suggested a number of possible 
improvements to further increase the achievable 
frame rate, which will make this method even more 
competitive. 
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