
Interactive Ray Tracing of Trimmed Bicubic Bézier
Surfaces without Triangulation

Markus Geimer Oliver Abert

Institute for Computational Visualistics
University of Koblenz-Landau

Universitätsstraße 1
 D-56070 Koblenz, Germany

mgm@uni-koblenz.de abert@uni-koblenz.de

ABSTRACT

By carefully exploiting the resources of today's computer hardware, interactive ray tracing recently became
reality even on a single commodity PC. In most of these implementations triangles are used as the only
geometric primitive. However, direct rendering of free-form surfaces would be advantageous for a large number
of applications, since robust tessellation of complex scenes into triangles is a very time-consuming process.
Additionally, scenes consisting of free-form surfaces require less memory and provide a much higher precision
resulting in less rendering artifacts.

In this paper, we present our implementation of an efficient and robust algorithm for rapidly finding
intersections between rays and trimmed bicubic Bézier surfaces. Using SIMD instructions provided by many of
today's CPUs, we perform the intersection test of a packet of four rays with a single Bézier surface in parallel.
An optimized bounding volume hierarchy provides good initial guesses needed for fast convergence of the
Newton iteration, which forms the core of our intersection algorithm. As a result, we demonstrate that it is
feasible to render complex scenes of several thousand Bézier surfaces at video resolution with interactive frame
rates on a single PC.

Keywords
Interactive Ray Tracing, Bézier Surfaces, Trimming

1. INTRODUCTION
Free-form surface representations such as splines,
NURBS, or subdivision surfaces provide a simple
but still powerful way of describing three-
dimensional geometrical objects for use in computer
graphics applications. Unlike triangle meshes, which
are the second commonly used way of defining 3D
shapes, they are able to describe curved surfaces
exactly. Therefore, free-form surfaces form the
foundation of most CAD systems used in the
industry today.

If the models should be displayed in an interactive
setting, however, free-form surfaces are currently
tessellated into triangles as well, since this is the only
primitive that can be handled by today’s rasterization
hardware. For this kind of applications it would
therefore be desirable to render free-form surfaces
directly.

Direct rendering of free-form surfaces instead of
triangle meshes has a number of advantages.
Obviously, the time-consuming overhead of
triangulating the surfaces can be avoided. Secondly,
due to the smaller number of primitives the costs for
additional preprocessing needed for most rendering
algorithms, e.g. building up acceleration data
structures, are also reduced. Moreover, representing
objects as free-form surfaces requires less memory,
which can be a limiting factor for complex scenes. In
addition, rendering free-form surfaces directly
provides a much higher precision resulting in less
rendering artifacts. For example, cracks between
adjacent surfaces due to different tessellation
parameters can be completely avoided.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WSCG 2005 conference proceedings ISBN 80-903100-7-9
WSCG’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

Figure 1. The Chessboard from different view
points. Note that due to the direct rendering of
free-form surfaces, the objects remain curved,
even from the shortest viewing distance.
Finally, free-form surfaces are often used in
conjunction with trimming curves that cut out parts
of the surface in the parametric domain. Robust
tessellation of free-form surfaces with trimming
curves is a non-trivial task with a high computational
cost.

In contrast to current rasterization hardware, ray
tracing is capable of rendering every primitive for
which the intersection between a ray and the surface
can be calculated [Whi80a]. Nevertheless, it has the
reputation of being a very time-consuming rendering
algorithm. However, recently it has been shown that
it is possible to achieve interactive frame rates even
on a single commodity PC by carefully exploiting the
resources of today’s CPUs [Wal01a].

In this paper, we present the details of our
implementation of the intersection test between a ray
and a trimmed bicubic Bézier surface in the context
of an interactive ray tracing system. While we do not
introduce any new intersection algorithm, we rather
show that a significant speed-up can be achieved by
carefully optimizing a well-known intersection
technique. As a result, we demonstrate that it is
feasible to render complex scenes of several
thousand Bézier surfaces at video resolution with
interactive frame rates on a single PC.

Although we currently restrict ourselves to bicubic
Bézier surfaces, our approach may be extended to
support other parametric surfaces as well. In
addition, more general spline surfaces such as
NURBS can be converted into Bézier patches
[Roc89a].

2. PREVIOUS WORK
Ray tracing at interactive frame rates has been first
presented by [Muu95a]. Later, [Par99a] described a
full-featured interactive ray tracing system running
on a shared-memory supercomputer that is able to
handle arbitrary geometry, including parametric
surfaces (e.g. NURBS). However, they had to use
expensive high-end hardware to achieve this goal.
By contrast, [Wal01a, Wal01b] presented a highly
optimized ray tracer running on a cluster of

commodity PCs, paying careful attention to data
layout, coherence, and caching issues. In addition,
their system extensively uses SIMD instructions
provided by most of today’s CPUs to trace packets of
rays in parallel, thereby achieving a speed-up of
more than an order of magnitude compared to other
well-known ray tracers. Meanwhile, the employed
algorithms have been further improved [Wal04a].
However, this ray tracer is restricted to triangles as
the only geometric primitive.
In the last 25 years, a variety of algorithms has been
proposed to calculate the intersections between a ray
and parametric surfaces of different kinds. One
common approach is to use a multivariate Newton
iteration. This method has the advantage of being
general enough to handle any parametric surface, but
requires a good initial value to ensure correctness
and fast convergence.
For example, [Swe86a] refine the control meshes of
B-spline surfaces until they closely approximate
them. Then, the intersection of the ray and the
control mesh is used as the initial value of the
following Newton iteration. By contrast, [Mar00a]
employ a hierarchy of bounding volumes enclosing
disjoint regions of NURBS surfaces to yield a
suitable initial value.
Another numerical approach for Bézier surfaces is
called Bézier Clipping [Nis90a]. This algorithm tries
to iteratively identify regions of the patch that are
known not to be intersected by the ray, thereby
restricting the parameter domain where intersections
can occur. This approach is also used by [Wan01a],
who combine Bézier Clipping with Newton iteration.
Additionally, they exploited the coherence of
neighboring rays to speed up the calculation. Never-
theless, all approaches mentioned above were far
from interactive.
Recently, [Ben04a] presented their implementation
of a subdivision method, which refines the control
meshes of the surfaces on-the-fly and calculates an
approximate intersection point using a triangle mesh
generated from the control points. Depending on the
model and the number of refinement steps, they
achieve up to 5.5 fps at video resolution on a single
PC. Nevertheless, the number of refinement steps has
to be the same for all surfaces to avoid cracks
between adjacent patches.

3. SYSTEM OVERVIEW
Before going into the details of our implementation
of the intersection test between a ray and a bicubic
Bézier surface, we present a brief overview of the
underlying interactive ray tracing system.
Similar to [Wal01a], we use SIMD instructions
found in many of today’s CPUs to trace packets of

four rays in parallel. This applies to both the traversal
of an acceleration data structure as well as the actual
intersection calculations. However, instead of
targeting only at a single CPU architecture, we have
implemented our ray tracing system on top of a
SIMD abstraction layer that allows us to write
platform-independent SIMD code (see [Gei03a] for
details). Currently, Intel’s SSE [Int04a] and
Motorola’s AltiVec [Mot99a] instruction sets are
supported, as well as a special mode that uses the
FPU to emulate the specified functionality.
In order to achieve a good rendering performance, it
is crucial to reduce the total number of intersection
calculations to a minimum. Therefore, we employ a
hierarchy of axis-aligned bounding boxes that is
iteratively traversed in depth-first order [Smi98a].
Although other acceleration data structures are
usually considered to be faster in the context of ray
tracing, we have found that this approach is well
suited for a SIMD implementation and also adapts
well to our intersection algorithm presented below.
Currently, our ray tracing system is restricted to
static scenes, allowing only interactive walk-
throughs. However, it could be easily extended to
support dynamic scenes with hierarchical movements
as well using the ideas presented in [Lex01a] and
[Wal03a].
Because ray tracing naturally lends itself to a parallel
implementation, our system is no exception. At
present, we support rendering with multiple threads,
which allows us to take advantage of multiprocessor
PCs as well as Intel’s HyperThreading technology
[Int04b].

4. OUR APPROACH
Instead of using complex algorithms, we rather take a
“brute force” approach. While this doesn’t seem to
be very clever at first sight, it has been shown that a
carefully optimized implementation can easily out-
perform more complex algorithms on current CPU
architectures (e.g. [Wal01a] or [Ben04a]).
Our intersection algorithm combines many known
techniques to achieve a fast computation of the
intersection point of a ray and bicubic Bézier patches
as well as the corresponding surface normals. Similar
to [Mar00a], we employ a hierarchy of axis-aligned
bounding boxes to find a suitable initial guess needed
for the Newton iteration that is used to calculate the
intersection point. In the following subsections, we
will describe the core components of our approach.

Preprocessing
As a first step, the scene description file is read
(currently, the IGES format is partially supported)
and converted into a binary data file that can then be
processed by the actual rendering application.

During this preprocessing, we convert the trimming
curves originally represented as B-splines into
piecewise cubic Bézier curves for use with our
trimming algorithm and build up the bounding
volume hierarchy that is used to speed up the
intersection calculation.
Compared to other bounding volume hierarchies, on
the lowest level our bounding boxes do not surround
entire scene objects (i.e. Bézier surfaces) or even lists
of objects. Instead, we create them for small, disjoint
regions of the individual surfaces. On the one hand,
this leads to tighter bounds, thereby reducing the
number of unnecessary intersection calculations. On
the other hand, we are able to get better initial
guesses for the Newton iteration used to calculate the
actual intersection point.
Therefore, we recursively subdivide each Bézier
surface into a larger number of subpatches and
calculate their corresponding control points using
de Casteljau’s algorithm. Due to the convex hull
property of Bézier surfaces, we can use these control
points to determine an axis-aligned bounding box for
each subpatch.
At present, we alternately subdivide the surfaces
resp. subpatches at the mean of the parameter domain
in u and v direction, until the generated patches are
reasonably flat or a predefined maximum subdivision
depth has been reached. These two parameters can be
easily controlled by the user. Unfortunately, they are
scene dependent and must be chosen with care. For
our test scenes, we have found that a maximum
subdivision depth of 4-6 is already sufficient.
Since our Bézier surfaces are subdivided into small,
disjoint regions by the bounding volume hierarchy,
the individual subpatches can be classified during
preprocessing to improve the rendering performance
of trimmed surfaces. For each region that is known to
be enclosed by a trimming curve (i.e. considered not
to be part of the patch), we can immediately discard
the corresponding subpatch as well as its associated
bounding box, thereby avoiding any intersection
calculation. By contrast, for regions that are known
to lie completely inside the patch, the trimming test
can be skipped during rendering. Otherwise, at least
one trimming curve cuts out a part of the region and
we have to perform the entire trimming calculation.
As we use the original Bézier surface for the actual
intersection test, the control points of the subpatches
are only needed for creating the bounding boxes and
the aforementioned classification, so they can be
discarded immediately afterwards.
Finally, the bounding volume hierarchy is created
from the bounding boxes of the remaining
subpatches using the top-down approach presented
by [Gol87a].

Patch Representation and Data Layout
A bicubic Bézier surface is given by its 16 control
points and can be represented in matrix form through

TVNCPNUvuS]][][][][[),(= .

Here, the 4x4 matrix][CP stores the control points,
[N] contains the Bernstein polynomial coefficients,
and]1[][23 uuuU = resp.]1[][23 vvvV = .
Obviously, the inner product]][][[][NCPNP =
can be computed in advance.
We store the 16 vector components of [P] as SIMD
data in an array (see Figure 2). The first three
elements of each SIMD variable store the X, Y, and
Z component of the corresponding matrix element,
whereas the last component remains unused. With
this approach, each Bézier surface can be represented
by exactly 16 * 4 * sizeof(float) = 256 bytes.

X 21 0Z21Y21

X 31 0Z31Y31

X 44 0Z44Y44

X 34 0Z34Y34

P11

P21

P31

P34

P44

Z11Y11X 11 0 CP00

CP01 CP02 CP03

CP10
CP11 CP12

CP13

CP20 CP21
CP22 CP23

CP30
CP31 CP32

CP33

Figure 2. Patch representation: The matrix][P
computed from the control points CPij is stored
column-major in an array of SIMD variables,

leaving one component of each element unused.
Storing the patch data as a structure-of-arrays, i.e.
storing the same components of four control points
together in a single SIMD variable, would reduce the
memory requirements by 64 bytes per surface, but
during our experiments we have found that this data
layout results in a significantly slower evaluation
algorithm due to the necessary shuffling of data.
Moreover, the fourth component of each element in
our SIMD data array can be used to store additional
patch information, e.g. a pointer to the associated list
of trimming curves.
As already mentioned before, the subpatch data
structure does not contain any control point
information. Here we only store the parameter
domain of the patch, the classification flag indicating
whether it has to be trimmed or not, and the pointer
to the original Bézier surface. For alignment reasons,
we pad this data structure to a total size of 32 bytes.
For each bounding box, we store the minimum and
maximum coordinate value along each axis, a pointer
to the associated geometry (i.e. a subpatch), and the
skip pointer used during the traversal of the
hierarchy. This data structure also occupies 32 bytes.

2

4 5

P1

6 7 8 9

P2

3

1

B-Boxes 1 2 34 5 6 7 8 9

Subpatches

P1 P2Surfaces
Figure 3. Data layout: During preprocessing, the
example hierarchy shown at the top is converted
into the internal representation (a set of arrays)

shown at the bottom.

Rendering Core
As already stated in section 3, our rendering core
traces packets of four rays in parallel using SIMD
instructions. First, each ray packet generated by the
camera iteratively traverses the bounding volume
hierarchy to restrict the number of intersection
candidates. Here, if any ray of the packet hits a
bounding box, the entire packet has to continue the
traversal of its children.
Since the leaf nodes of our hierarchy correspond to
small surface regions and not to an entire Bézier
patch, this approach does not only restrict the number
of intersection candidates, but also the parametric
domain where intersections may occur. Provided that
a proper hierarchy has been created, the center of the
enclosed parametric domain can then be used as an
initial guess for a Newton iteration that calculates the
actual intersection point between the ray and the
surface. Of course, this can also be done for four rays
in parallel using SIMD instructions.

4.3.1 Intersection Test
The core of the intersection test is similar to the
approach presented by [Mar00a] who solved the
problem for NURBS surfaces but without targeting
interactivity.
We represent each ray by two orthogonal planes
P1 = (N1,d1) and P2 = (N2,d2) where the iN are
orthogonal vectors of unit length, perpendicular to
the ray direction D . The id are given by

ONd ii o−= . Here, O denotes the origin of the
ray. To find the intersection point between the ray

and a parametric surface S(u,v) , we have to solve
for the roots of

+⋅
+⋅

=
22

11

),(
),(

),(
dvuSN
dvuSN

vuR .

Several numerical methods exist that could be used
to target this problem. We have chosen the classical
approach of Newton iteration for several reasons:
First, it converges quadratically if the initial guess is
close to the actual root, which can be assured by our
bounding volume hierarchy. Secondly, the surface
derivatives exist and are very easy to compute. And
last but not least, this algorithm is well suited for an
implementation using SIMD instructions.
Basically, Newton’s method is a Taylor series which
is truncated after the first derivative. As we are
solving a two-dimensional problem, the Newton step
is defined as

),(1

1

1
nn

n

n

n

n vuRJ
v
u

v
u

⋅−

=

 −

+

+ ,

where J is the Jacobian matrix of R which is given
by

⋅⋅
⋅⋅

=
),(),(
),(),(

22

11

vuSNvuSN
vuSNvuSN

J
vu

vu .

Here, Su and Sv denote the partial derivative in the
corresponding parametric direction. The inverse of
the Jacobian can be efficiently computed using the
submatrices ijJ of J that remain when the i th row

and the j th column are removed:

−

−
⋅=−

1121

12221

)det(
1

JJ
JJ

J
J .

We continue the iteration until one of three criteria is
met: An intersection between the ray and the surface
is found, if and only if we are closer to the root than
some user defined threshold ε

ε<),(nn vuR .

Otherwise, the iteration continues until either this
threshold criterion is met, the next iteration takes us
further away from the root, i.e.

),(),(11 vnvn vuRvuR >++ ,

or a maximum number of iterations has been
performed.
Unfortunately, since we employ SIMD instructions
to calculate four intersections at once, the iteration
can be stopped only if all rays of a packet meet any

of these criteria. However, this is still more than
three times faster than computing the intersections
sequentially.

4.3.2 Evaluation
The Newton iteration often needs to evaluate surface
points as well as partial derivatives for given
parameter values (u,v) . In this section we present a
way how these can be computed efficiently.
Basically, we have to compute the product of three
matrices. That is

TvvvPuuuvuS]1][][1[),(2323= .

A naive implementation would simply compute the
two matrix products, which consists of 60
multiplications and 45 additions (][P contains three-
dimensional vectors!), ignoring the operations
needed to compute of][U and][V . However, as the
surface evaluation is used very often, it is necessary
to optimize it as much as possible.
First of all, the equation above can be rewritten as

∑
=

=
4

1
]][][[),(

i
ii VPUvuS ,

where [Pi] denotes the i th column of [P] and [Vi]
the i th row of][V . Note that [Vi] represents only a
single floating-point.

Given the parameters),(vu , we can then evaluate a
point),(vuS on the surface using the following C-
like pseudo code fragment:

u2 = u * u
u3 = u * u2
f = 1
s = 0
i = 15
while (i >= 0) {
 t = p[i--]
 t = t + u * p[i--]
 t = t + u2 * p[i--]
 t = t + u3 * p[i--]
 s = s + t * f
 f = f * v
}
return s

This code is pretty straightforward to implement
using SIMD instructions, thereby calculating four
surface evaluations in parallel. Moreover, we can
easily take advantage of the combined multiply-add
instructions provided by some CPU architectures
(e.g. PowerPC). Furthermore, by performing loop-
unrolling, additional unnecessary operations can be
eliminated (for example the last two statements in the
loop for the first iteration).

Scene # Patches # Trims #B-Boxes Memory
consumption

Preprocessing
time (min)

Average
Framerate

Teapot 32 - 2736 150 kB 0:01 6.4 fps

Cessna 1555 - 53216 3.2 MB 0:03 4.2 fps

Chessboard 16182 - 227794 15.6 MB 0:13 6.7 fps

VW Polo 11576 38556 448500 28.3 MB 5:26 5.1 / 3.4 fps*

Table 1. Statistics for our test scenes (*=trimming disabled/enabled)
The computation of both partial derivatives can be
executed even faster. For example, the derivative in
u direction is

T
u VPuuvuS]][][0123[),(2= .

If we apply the same optimizations as presented
above, the calculation of both partial derivatives
simplifies to 33 multiplications and 33 additions
each.

4.3.3 Trimming
For surface areas that have been classified to need
trimming during the preprocessing step, an
additional 2D point-in-curve test is performed after
an intersection has been found. Currently, this is
done sequentially for the (up to) four intersection
points, as we do not employ any SIMD instructions
for trimming yet.
In addition, we currently perform this point-in-
curve test for all trimming curves associated to the
original Bézier surface and not only for those parts
that are relevant for the examined region (i.e. the
subpatch containing the intersection point).
In our implementation, we use the point
classification approach presented by [Nis90a].
However, instead of using Bézier Clipping to
subdivide the trimming curves into three segments
if they cannot be clearly classified, we again take a
brute force approach by splitting the curves at

5.0=t and recursively test both segments.

4.3.4 Shading
Finally, all valid intersection points are shaded for
display. At present, we support the simple Phong
shading model [Bui75a]. This is also done using
SIMD instructions, calculating the color of up to
four intersection points in parallel. Here, additional
rays for calculating shadows, reflections or
refraction may be generated.

5. RESULTS
In this section we present some timings of our ray
tracing system for a couple of test scenes of varying
complexity (see Table 1 for the numbers and Figure
4 for renderings), measured on a dual processor

PowerMac G5 running at 2 GHz using only a single
rendering thread. All images are generated at a
fixed screen resolution of 512x512 pixels using
simple Phong shading. Note that all scenes are lit
by a single point light source, except for the
Chessboard which is lit by three point lights.
Our ray tracing system based on the algorithms
presented above is able to render the Utah Teapot
consisting of 32 Bézier patches at an average frame
rate of 6.4 fps, whereas the more complex Cessna
and Chessboard scenes can be rendered at 4.2
frames/s and 6.7 frames/s respectively.
To compare our results to the approach presented
by [Ben04a], we additionally rendered the Teapot
model at a screen resolution of 640x480. Here, the
frame rate drops to 5.5 fps due to the larger number
of pixels. This frame rate is comparable to their
result for a subdivision depth of 0 (i.e. directly
rendering the control mesh), already taking into
account that we use a different test platform that is
approx. 35 percent faster. Nevertheless, as the
number of refinement steps usually has to be higher
in order to obtain a good rendering quality, our
method easily outperforms the subdivision
approach for this model. For example, when using
only four refinement steps, our implementation is
already twice as fast.

In contrast to the other test scenes, the VW Polo is
the only model that contains trimming curves. Here,
the large number of trims comes from the
conversion of the original B-splines into piecewise
cubic Bézier curves. It should also be noted that
most of the preprocessing time is spent for reading
the IGES file (~15%) and for the classification of
the generated subpatches (~78%). However, the
preprocessing code is fairly unoptimized at the
moment.

As can be seen from Table 2, the classification of
the patches works quite well for the Polo model.
Trimming calculations need to be performed only
for a small fraction of the generated patches during
rendering, as most subpatches can be categorized in
advance.

Figure 4. Renderings of our test scenes: Utah Teapot, Cessna, Chessboard, and VW Polo (with trimming).
With trimming disabled, the Polo can be displayed
at an average frame rate of 5.1 frames per second.
After trimming is enabled, the average frame rate
drops to 3.4 fps. On the one hand, this can be
explained by the fact that trimming is currently
performed sequentially for the intersections found.
On the other hand, we still perform a lot of unnec-
essary trimming calculations, as the point-in-curve
test is executed for all trimming curves associated
to the original Bézier patch and not only for those
parts that are relevant to the examined subpatch.

Subpatches (total) 496827 100.0%

Without trims
With trims
 Totally in
 Need trimming
 Discarded

70523

426304
241480

33987
150837

14.2%

85.8%
48.6%

6.8%
30.4%

Table 2. Number of subpatches and their
classification for the VW Polo model.

For comparison, we also rendered a tessellated
model of the VW Polo consisting of 326159
triangles using a modified version of our ray tracing
system, achieving an average frame rate of 4.8 fps.
Although this is still faster than ray tracing the
Bézier-based model, one should keep in mind that
comparable models used for design reviews in the
industry today usually consist of several million
triangles that easily occupy gigabytes of memory.
As memory access has been shown to be a limiting
factor for ray tracing [Wal01a], direct rendering of
bicubic Bézier surfaces can already be a valuable
alternative to triangle-based approaches, especially
for large models.

6. FUTURE WORK
Since our interactive ray tracing system for
trimmed bicubic Bézier surfaces is still at an early
stage of development, there is much room for
improvements left, both in terms of rendering
performance and image quality.
Currently, we are working on a distributed version
of our rendering system, running on a cluster of

heterogeneous PCs. First results indicate that the
performance scales almost linearly with the number
of processors, as could be expected.
In addition, the trimming code can be improved in
different ways. As already stated before, the
trimming curves can be split up in such a way that
for each subpatch only the relevant parts have to be
tested. Secondly, it would be interesting to examine
if the usage of SIMD calculations can also speed up
the trimming calculations. And finally, efficient
handling of the special case of line segments may
further improve performance.
Moreover, the creation of our bounding volume
hierarchy could be improved by using a more
sophisticated heuristic to guide the subdivision of
the Bézier patches (e.g. taking the curvature of the
surface into account) instead of using the simple
flatness criterion.
As already stated in the introduction, our system is
currently restricted to bicubic Bézier surfaces.
Extending the presented approach to Bézier patches
of arbitrary degree is relatively easy to implement.
Thinking even further, it would be interesting to
investigate more complex surface descriptions such
as B-splines or NURBS.
Finally, the next step in terms of image quality will
be to add support for the typical ray tracing effects
like shadows, reflections, and refractions.

7. CONCLUSION
Recently, it has been shown that it is possible to ray
trace complex scenes at interactive frame rates even
on a single commodity PC. Currently, however,
almost all of these implementations use triangles as
the only geometric primitive.
In this paper, we have presented the details of our
ray tracing system that is capable of directly
rendering trimmed bicubic Bézier surfaces. We
have shown that by carefully optimizing the
implementation of a well-known intersection
technique using SIMD instructions provided by
many of today’s CPUs, it is feasible to render this
kind of free-form surfaces at interactive frame rates
as well.

Our results indicate that direct ray tracing of Bézier
surfaces is already a valuable alternative to triangle-
based approaches, especially for complex models.
Moreover, we also suggested a number of possible
improvements to further increase the achievable
frame rate, which will make this method even more
competitive.

8. ACKNOWLEDGEMENTS
We would like to thank all the people that have
contributed to this paper, in particular Matthias
Biedermann and Thorsten Grosch for many helpful
discussions and their comments on preliminary
versions, as well as Arne Claus for modeling the
Cessna and Chessboard scenes. In addition, we
would like to thank the reviewers for their
suggestions to improve this paper. Special thanks
also go to the Volkswagen AG for providing the
data of the Polo model and granting permission to
use it in this publication.

9. REFERENCES
[Ben04a] Benthin, C., Wald, I., and Slusallek, P.

Interactive Ray Tracing of Free-Form Surfaces.
ACM Afrigraph, pp.99-106, 2004.

[Bui75a] Bui-Tuong, P. Illumination for Computer
Generated Pictures. Com. of ACM 18, No.6,
pp.311-317, 1975.

[Gei03a] Geimer, M., and Müller, S. A Cross-
Platform Framework for Interactive Ray
Tracing, Proc. of GI Graphiktag, pp.25-34,
2003.

[Gol87a] Goldsmith, J., and Salmon, J. Automatic
Creation of Object Hierarchies for Ray Tracing.
IEEE CG&A 7, No.5, pp.14-20, 1987.

[Int04a] Intel Corp. IA-32 Architecture Software
Developer’s Manual. 2004.

[Int04b] Intel Corp. Hyper-Threading Technology.
http://www.intel.com/technology/hyperthread/

[Lex01a] Lext, J., and Akenine-Möller, T. Towards
Rapid Reconstruction for Animated Ray
Tracing. EUROGRAPHICS Short
Presentations, pp.311-318, 2001.

[Mar00a] Martin, W., Cohen, E., Fish, R., and
Shirley, P. Practical Ray Tracing of Trimmed
NURBS Surfaces. JGT 5, No.1, pp.27-52, 2000.

[Mot99a] Motorola, Inc. AltiVec Technology
Programming Interface Manual. 1999

[Muu95a] Muuss, M. J. Towards Real-Time Ray-
Tracing of Combinatorial Solid Geometric
Models. Proc. BRL-CAD Symposium, 1995.

[Nis90a] Nishita, T., Sederberg, T.W., and
Kakimoto,M. Ray Tracing Trimmed Rational
Surface Patches. Computer Graphics 24, No.4,
pp.337-345, 1990.

[Par99a] Parker, S., Martin, W., Sloan, P.-P. J.,
Shirley, P., Smits, B., and Hansen, C.
Interactive Ray Tracing. Sym. Interactive 3D
Graphics, pp.119-126, 1999.

[Roc89a] Rockwood, A., Heaton, K., and Davis, T.
Real-Time Rendering of Trimmed Surfaces.
Computer Graphics 23, No.3, pp.107-116,
1989.

[Smi98a] Smits, B. Efficiency Issues for Ray
Tracing. JGT 3, No. 2, pp.1-14, 1998.

[Swe86a] Sweeney, M., and Bartels, R. Ray
Tracing Free-Form B-Spline Surfaces. IEEE
CG&A 6, No.3, pp.41-49, 1986.

[Wal01a] Wald, I., Slusallek, P., Benthin, C., and
Wagner, M. Interactive Rendering with
Coherent Ray Tracing. Computer Graphics
Forum 20, No. 3, pp.153-164, 2001.

[Wal01b] Wald, I., Slusallek, P., and Benthin, C.
Interactive Distributed Ray Tracing of Highly
Complex Models. Rendering Techniques 2001,
pp. 274-285, Springer, 2001.

[Wal03a] Wald, I., Benthin, C., and Slusallek, P.
Distributed Interactive Ray Tracing of Dynamic
Scenes. IEEE Sym. on Parallel and Large-Data
Visualization and Graphics, pp.77-86, 2003.

[Wal04a] Wald, I. Realtime Ray Tracing and
Interactive Global Illumination. PhD thesis,
Saarland University, Saarbrücken, Germany,
2004.

[Wan01a] Wang, S., Shih, Z, and Chang, R. An
Efficient and Stable Ray Tracing Algorithm for
Parametric Surfaces. Journal of Information
Science and Engineering 18, pp.541-561, 2001.

[Whi80a] Whitted, T. An Improved Illumination
Model for Shaded Display. Com.of ACM 23,
No.6, pp.343-349, 1980

