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ABSTRACT 
In this paper, we introduce a novel subdivision method able to generate smooth surfaces which locally tend to 
minimize variations in curvature. The method is based on a tensor product of a subdivision scheme for circle 
splines, which is then generalized to arbitrary quadrilateral meshes.  
Although they involve a geometric construction, our rules are applied in a uniform way, without the need for 
applying different rules for different vertices or for different stages in the subdivision process. This results in a 
more general and natural way to obtain circular curvatures, unlike other approaches involving subdivision 
curves able to generate circles. Surfaces of revolution are just a basic example, as circular features can be 
distributed freely over the surfaces generated via our methods.  
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1. INTRODUCTION 
Subdivision surfaces are widely used in the graphics 
community. A major advantage is their ability to 
generate surfaces with arbitrary topology in a 
uniform representation based on a freely editable 
coarse polygonal mesh. Due to their close 
relationship with multiresolution and wavelet 
analysis, their practical applications further benefit 
from a vast amount of theoretical knowledge. We 
refer the interested reader to the Siggraph 2000 
course by Zorin et al. [Zor00] and to the book by 
Warren and Weimar [War02] for excellent 
introductions to subdivision techniques, with many 
pointers to the continuously developing literature. 
In this paper, our attention goes to surfaces which 
locally resemble sphere regions. Conventional 
subdivision methods seem to be inadequate as 

although the control points in a certain region are all 
located on the same sphere, the resulting surface 
usually exhibits a highly varying curvature. This 
variation results especially problematic for the 
schemes which directly interpolate the control points 
provided by the user instead of only approximating 
them. 
Our study of the related literature started with curve 
representations based on circle blending. Compared 
to global optimization techniques, such as the 
Minimized Variation Curve [Seq92], local blending 
is much cheaper to compute. Furthermore, such 
global techniques have the additional disadvantage 
that a local change in the input may have a global 
impact on the resulting curve, something highly 
undesirable during interactive modeling. 
Circular spline schemes usually employ 4 
consecutive vertices P0, P1, P2, P3 to generate a curve 
segment with minimal curvature variation between 
P0 and P1. An interpolation scheme combines the 
segments resulting from the circle C1 through P0, P1, 
P2 and the circle C2 through P1, P2, P3 (see Figure 1). 
Various interpolation schemes have been proposed. 
Wenz blends the two circles using simple linear 
interpolation of 2 point positions on the base arcs 
[Wen96]. To improve the tangent continuity at the 
joints of segments, Szilvasi-Nagi and Vendel 
propose trigonomically weighted interpolation, 
which guarantees G2 continuity [Szi00]. To further 
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improve the curve quality, Séquin et al. constructed a 
C2 circular curve blending scheme [Seq05]. Instead 
of interpolating point positions, they suggest a 
trigonometrical interpolation between tangent angles. 
As Séquin et al. argue, this approach remedies the 
cusps and sharp loops which can appear in the 
previous schemes, in particular when the control 
polygon features sharp corners. 
In a theoretical work, Chris Doran shows how 
Clifford algebras help to define a circle blending 
with an arbitrary level of G continuity [Dor03]. His 
employment of conformal transformations leads to 
curves which are – in the G2 case – identical to the 
curves presented by Séquin et al. [Seq05]. For us this 
forms an extra argument to also adopt angle based 
interpolation. Doran furthermore extended his 
approach to sphere blending, but unfortunately this 
did not yet lead to practical methods for surface 
construction. 
Circle blending techniques are interesting to generate 
curves, but for our subdivision surfaces, we also 
need a subdivision approach for the underlying 
curves. In 1987, Dyn et al. introduced the first 
interpolating subdivision scheme for curves, known 
in the literature as the four-point scheme or also as 
the DLG scheme [Dyn87]. Starting from a coarse 
control polygon, new points are recursively 
introduced between each pair of old points. The new 
point positions are defined as the central point of a 
spline which interpolates the four immediate 
neighbors. 
As the four-point scheme generates curves with 
highly varying curvature, Séquin and Yen 
constructed a circular subdivision scheme. Their new 
point positions are now calculated to lie at the centre 
of an angle-based interpolated arc [Seq01].  
Sabin and Dodgson provided yet another solution to 
create subdivision curves with more continuous 
curvature [Sab04]. With a particular definition of 
curvature as a kind of normalized cross product, they 
ensure that the new point’s curvature averages the 
curvature of its immediate neighbors. Additionally, 
to obtain a more even spacing of vertices after 
subdivision, they position new vertices closer to the 
shortest edge adjacent to the current edge. The 
resulting scheme is C2 in practical situations, just as 
the four-point scheme. 
In the literature, also some subdivision surface 
schemes incorporating circular arcs are described. 
Nasri et al. started from an interpolating subdivision 
algorithm for piecewise C1 circular spline curves, 
based on biarcs [Nas01]. This is used to create a 
modified version of the Doo-Sabin scheme for 
surfaces, where the standard rules are combined with 
the circular rules on user-defined edges. This way 

surfaces with piecewise circular boundaries can be 
created as well as seamless connections between 
different surfaces along a common circular boundary. 
A disadvantage of their technique is that the 
curvature changes abrupt at the control vertices. 
Also, to create circular or spherical regions, extra 
vertices have to be added to the control polygon, 
while it is not always clear how to add these.  
In a similar approach, Morin et al. describe a non-
stationary subdivision scheme for surfaces of 
revolution [Mor01]. With their technique, the user 
has to mark the desired sections of the curve as 
circular. Between circular arcs, standard Catmull-
Clark subdivision rules are applied. Both Morin et 
al.’s and Nasri et al.’s schemes are approximating, 
while we want to create a scheme that interpolates all 
of its control vertices. Also, we intend to have a more 
continuously varying curvature everywhere, more 
than only at certain indicated circular regions. 
Our subdivision surface scheme is inspired by 
Kobbelt’s interpolating scheme for quadrilateral 
meshes [Kob96]. Kobbelt first created a tensor 
product of the four-point scheme for curves and then 
extended this to meshes with arbitrary topology. 
The rest of this paper is organized as follows: In 
section 2 we describe a subdivision scheme for 
curves, which minimizes local variations in 
curvature. Afterwards we employ the same idea to 
construct a subdivision scheme for surfaces, and 
explain how it is constructed. Next, we propose some 
applications for which the spherelike scheme is very 
well suited. Finally we present some results which 
we compare to results of well-known subdivision 
schemes, and we formulate our conclusion. 

2. THE CURVE SCHEME 
The subdivision scheme for curves works as follows: 
For every couple of adjacent vertices P1 and P2, we 
consider the 4 consecutive vertices (P0, P1, P2, P3). 
Since every circle can be determined by three 
vertices, one can fit exactly one circle C1 going 
through (P0, P1, P2), and also one circle C2 through 
(P1, P2, P3). This situation is illustrated in Figure 1. 
Between P1 and P2, both circles have an arc arc1 and 
arc2, which is parameterized to have parameter u=0 
at P1, and u=1 at P2. 
The scheme blends both arcs between P1 and P2, 
creating a curve segment minimizing curvature 
changes. First we calculate the tangent vectors t1 and 
t2 in P1, and their average t. The arc arcavg which has 
a tangent vector equal to t in P1 is created. On this 
arc we take the central vertex to be S, and insert it 
into the new curve. 
After several iterations of the recursive subdivision 
scheme, we obtain a smooth segment, which is 



shown as a fat dashed line between P1 and P2 in 
Figure 1. 

 
Figure 1: Blending two circle segments between P1 
and P2. Every iteration, the tangents t1 and t2 to 
the circles C1 and C2 are calculated in P1. Then the 
arc passing through P1 and P2, and having the 
average tangent t is calculated.  The vertex S, 
lying in the middle of this arcavg is added to the 
curve. 
The algorithm we use is based on Séquin’s circular 
subdivision scheme for curves [Seq01]. Séquin 
rotates a vertex P with distance f(u) = b* sin(u*t(u)) / 
sin(t(u)) from P1 lying on P1P2 an angle φ(u) = (1-
u)t(u) around the axis rot_axis = P0P1 X P1P2, where 
b = |P1P2|. The resulting vertex S lies on the average 
arc arcavg. For u=0.5, this is shown in Figure 2. 
 

 
Figure 2: Obtaining S using matrix rotation 

We instead suggest not rotating this point P using 
matrix rotation, but instead we propose to use a 
geometric construction to obtain S, using vector 
calculation. Let P12 = (P2 – P1) / |P2 – P1|.We 
calculate the cross product N = rot_axis X P12, which 
is a unity vector, because both rot_axis and P12 are 
unity vectors and are perpendicular to each other.  
Then we obtain: 

S = P1 + cos(φ) * f * P12 + sin(φ) * f * N 
Advantages for using this method instead of matrix 
rotations are faster calculations of the new points, 
and higher accuracy. 

3. THE SURFACE SCHEME 
In this paragraph we describe how we extend the 
techniques presented in the previous section to 
surfaces, generating smooth and interpolating 
surfaces of arbitrary topology. Starting from a coarse 
control mesh, the algorithm recursively refines the 
mesh. At each iteration, the number of faces is 
multiplied by four. The algorithm works as follows: 
First, all edges are split into two, while all original 
vertices are retained. Then, new face vertices are 
placed inside every face. Finally, the new mesh is 
reconnected, replacing every old n-sided face with n 
new quadrangles. In the next paragraphs we describe 
the algorithm in more detail. 
First, all edges are split into two, using the rule for 
curves. For every edge which is not part of a 
boundary, we take the two end vertices V1 and V2, 
and locate V0 and V3 (see Figure 3).  
Figure 3a illustrates the situation in the regular case.  
We apply the curve algorithm to these four vertices, 
and split the original edge in two by inserting a 
vertex E. If, however, the valence of a vertex 
belonging to the curve is different from 4, we use 
other rules. 
Suppose we have a vertex v with valence different 
from four. There are two different cases: If v has an 
even valence, we take the most central edge to obtain 
the other vertices used for calculating the edge split . 
This is illustrated in Figure 3b. If v has an odd 
valence, we choose V0 or V3 as the vertex which is 
the furthest away from V1, and belonging to the 
central face. This is illustrated in Figure 3c. 

  
 

(a) 
Regular case 

(b) 
Even valence, 

different 
from 4 

(c)  
Odd valence 

Figure 3: Different situations around an edge with 
vertices V1 and V2. In subfigure a, the situation 
with a regular vertex V1 is shown. Subfigure b 



shows a vertex V1 with an even valence different 
from 4, while subfigure c displays a vertex V1 with 
an odd valence. In each situation, the vertices V0 
and V3 are located. 
When all vertices V1, V2, V3 and V4 are found, a new 
vertex E is inserted between V1 and V2. This is 
illustrated in Figure 4. 

 
Figure 4: The mask for splitting edges using 
spherelike interpolating subdivision for surfaces. 
Vertex E is inserted in every edge, using the 
algorithm for curves. This algorithm is applied to 
the vertices (V1, V2, V3, V4). 
Secondly, a face vertex F is created inside every 
face. The creation of a face point in the regular case 
is illustrated in Figure 5. We apply the scheme for 
curves to the vertices (V1, V2, V3, V4) and to the 
vertices (V5, V6, V7, V8). Note that both will not give 
the same result. Thus we add a new face vertex with 
the average coordinates. Since the scheme is 
interpolating, existing vertices are left unchanged. 
Finally, the old faces are discarded, and new faces 
are created by connecting every old vertex with its 
two adjacent edge splits, and with a face vertex of an 
adjacent old face. 

 
Figure 5: Creation of a new face vertex F inside 
the gray quadrangle, in the regular case. The 
points Vi are used for calculating F. F becomes 
the average of the curve subdivision applied to 
(V1, V2, V3, V4) and (V5, V6, V7, V8) respectively. 

In the extraordinary case, we employ a different rule 
for generating new face vertices. In this case, we can 
not simply select 2 paths of edges passing through 
the centre of the face, since the number of edge splits 
in the face will be different from 4. So there is a 
problem picking the second edge vertex. We discern 
two different cases here: If the number of vertices n 
is even, we calculate the n/2 curve subdivisions using 
the new edge vertices. Then we take the average of 
these results. This is shown in Figure 6 (left). If the 
face has an odd number of vertices, say n, we take 
the new face vertex to be the average of n 
calculations of the curve scheme, using the vertices 
of the face. This is illustrated in Figure 6 (right).  

 
Figure 6: Calculating face points in the 
extraordinary case: a face with an even number of 
vertices (left), and a face with an odd number of 
vertices (right). 

4. MODELING APPLICATIONS 
There are many applications which may benefit from 
using the interpolating spherelike subdivision 
scheme. We enumerate some examples.  
A first application would be the smoothing of 
polygonal objects, since the scheme does not shrink 
the object. Selective smoothing of edges is also 
possible. 
Another application is the efficient generation of 
cylinder-like objects and tubes.  Starting from a 
random curve in 3D, one can sweep a circle over this 
curve, with the curve going through the centre of the 
circle. Throughout this path, the diameter of the 
circle may change, or the circle may change shape. 
At the end points, one may use a sphere to produce a 
round end point, or a flat plane. An example object 
generated using this technique is shown in Figure 7. 

 



 
 

 
(a) 

Control mesh 

 
(b) 

Subdivided surface 
Figure 7: An example tubular object generated 
using the interpolating spherelike scheme. 
Also, objects like surfaces of revolution can be 
represented easily using the spherelike scheme.  An 
example chess pawn is shown in Figure 8b, along 
with the control mesh in Figure 8a. 
Finally the scheme can be used to support boolean 
operations. An example would be to create a smooth 
spherelike blending between two cylinders, where 
one cylinder cuts another cylinder under an angle. 

5. RESULTS 
Figure 8 shows a visual comparison of a chess pawn, 
subdivided using different subdivision schemes. Our 
spherelike scheme combines the advantages of both 
interpolating and approximating subdivision: it 
generates the smooth surface of approximating 
schemes like Catmull-Clark, while still interpolating 
the control points. This interpolation is an important 

feature for application of subdivision surfaces in 
engineering applications. The interpolating 
spherelike scheme generates a round pawn while 
preserving the features well. The surface generated 
by Kobbelt’s scheme is not round enough, while the 
Catmull-Clark surface lacks the necessary features. 
Clearly these schemes need a different – and more 
complex – control mesh to generate a realistic pawn. 

6. CONCLUSION 
We presented a new subdivision scheme for surfaces, 
which is interpolating, and which minimizes local 
variations in curvature. It is well suited to efficiently 
produce surfaces with spherelike regions. 
For general use, subdivision surfaces are not suitable 
yet. Gonsor and Neamtu present a list of problems 
with subdivision in engineering applications 
[Gon01]. Several problematic properties of 
subdivision surfaces are mentioned which may be 
alleviated by our scheme: The scheme is 
interpolating, while still generating good quality 
surfaces, in contrast to existing interpolating 
schemes.  Secondly, our scheme creates surfaces 
with good curvature. Finally, our scheme is locally 
refinable, while still maintaining exactly the same 
shape, unlike most other schemes. 
Future work includes a thorough analysis of the 
behavior of the scheme, and adding support for 
adaptive subdivision. 
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Kobbelt’s scheme 
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Figure 8: A visual comparison of an object of revolution, subdivided with various subdivision schemes. 

 


