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ABSTRACT 
The new generation of commodity graphics cards with significant on-board video memory has become widely 
popular and provides high-performance rendering and flexibility. One of the features to be exploited with this 
hardware is the use of the on-board video memory to store geometry information. This strategy significantly 
reduces the data transfer overhead from sending geometry data over the (AGP) bus interface from main memory 
to the graphics card. However, taking advantage of cached geometry is not a trivial task because the data models 
often exceed the memory size of the graphics card. In this paper we present a dynamic Cached Geometry 
Manager (CGM) to address this issue. We show how this technique improves the performance of real-time 
view-dependent level-of-detail (LOD) selection and rendering algorithms of large data sets. Alternative caching 
approaches have been analyzed over two different view-dependent progressive mesh (VDPM) frameworks: one 
for rendering of arbitrary manifold 3D meshes, and one for terrain visualization. 

1. INTRODUCTION 
The functionality and speed of graphics hardware has 
increased significantly in last few years, making the 
GPU a programmable stream processor with sufficient 
power and flexibility to perform intensive 
calculations. Despite advances in the graphics 
hardware, the data transfer from main memory to the 
graphics card remains the major bottleneck [HCH03]. 
This restriction prevents the full exploitation of the 
potential computational horsepower of the GPU and 
introduces significant overhead in short data transfers 
[THO02]. 

View-dependent level-of-detail (LOD) algorithms can 
significantly reduce the amount of data transfer as the 
geometric scene complexity is adaptively minimized 
using a view-dependent error metric [LRC03]. The 
adaptive nature of such methods introduces constant 
but infrequent and small geometric changes between 
consecutive frames. Our goal is to take advantage of 
this fact using the video memory of modern consumer 
graphics hardware as geometry cache. The rendering 
performance can greatly be improved if the geometric 
data of a given scene is stored in video memory. 
However, the limited size of available video memory 
restricts the complete caching of big data models. The 
use of view-dependent LOD algorithms can provide a 

solution to this problem because the geometric 
information required for rendering a scene at a certain 
LOD is in general only a small fraction of the full 
resolution model. This visible portion of geometry 
information can be cached on the graphics card using 
video memory (see Figure 1) and is updated every 
frame when the viewpoint location of the camera or 
the resolution is changing. In order to efficiently 
handle the constantly occuring video memory updates, 
a Cached Geometry Manager (CGM) is needed. The 
continuous adaptive LOD changes guarantee that only 
a small amount of the cached geometry in the video 
memory has to be updated between consecutive 
frames. 
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Figure 1: CPU/GPU communication diagram. 

In this paper we describe several strategies to 
implement an efficient geometry-cache manager. Two 
view-dependent progressive mesh (VDPM) 
frameworks are used to test the proposed techniques 
and to show the speed-up in rendering performance 
when applied to a general view-dependent LOD 
algorithm. The first framework is FastMesh [Paj01], it 
uses an efficient view-dependent and adaptive LOD 
method for rendering arbitrary 3D meshes in real-
time. The general concepts of this framework are 
common to most similar VDPMs, e.g. such as  
[XV96], [Hop97], [LE97], [DMP97] or [KL01]. The 
second framework is QuadTIN [PAL02], an efficient 
quadtree-based triangulation approach for irregular 
terrain height-fields that provides fast quadtree-based 
adaptive triangulation, view-dependent LOD-selection 
and real-time rendering. Many interactive terrain 
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visualization systems, e.g. such as [SS92], [LKR96], 
[DMP96], [Pup96], [Paj98], [BAV98] or [EKT01], 
exhibit a similar top-down LOD triangulation and 
rendering approach. 
The remainder of the paper is organized as follows: 
Section 2 presents a very brief overview of related 
work. Section 3 describes the Cached Geometry 
Manager. In Section 4 the two VDPM frameworks are 
presented to test the CGM approach. Experimental 
results are presented in Section 5 and Section 6 ends 
the paper with some conclusions. 

2. RELATED WORK 
Despite the extensive work on level-of-detail (LOD) 
techniques [LRC03], only very few methods that use 
cached geometry have been proposed recently. One 
possible reason for this lack is that only recent 
generations of graphics cards allow the application 
program to manage large amounts of video memory 
systematically and dynamically for storing geometry. 
In [Lev02] a terrain rendering algorithm is presented 
that operates on clusters of cached geometry called 
aggregate triangles. The dynamically generated 
aggregate triangles are kept in the geometry cache for 
several frames to improve rendering performance. A 
similar concept is followed in [CGG03a], [CGG03b] 
where a LOD hierarchy of simplified height-field 
triangle patches is generated in a pre-process. At run-
time the appropriate LOD triangle patches are selected 
for rendering and a LRU strategy is used for caching. 
In [LPT03] square patches of a quadtree-based 
hierarchical terrain triangulation are used for fast 
rendering and caching in video memory. A common 
limitation of the above methods is that they are 
restricted special-purpose solutions for terrain 
rendering and not applicable in general to other 
VDPM frameworks. In contrast, the concepts 
presented in this paper are directly applicable to a 
wide range of VDPM frameworks. A remarkable 
approach to provide seamless geometric LODs is 
provided by GLOD [CLD03]. It allows advanced 
users to define discrete LOD objects as well as specify 
the use of video memory for patches of the geometry. 
In contrast to GLOD, the proposed Cached Geometry 
Manager interacts directly with VDPM frameworks 
that dynamically generate continuously adaptive LOD 
meshes and provides transparent use of video 
memory. 

3. CACHE GEOMETRY  MANAGER 
Most view-dependent simplification frameworks 
represent the geometry in a hierarchical data structure 
called vertex hierarchy (see Figure 2). The nodes 
located near the root correspond to low-resolution 
vertices while those located farther away represent 
high-resolution detail vertices. The vertex hierarchy is 
dynamically queried to perform a view-dependent 
LOD simplification for each frame. A front of active 

nodes divides the current nodes used to generate the 
simplified scene from the rest. This frontier can 
continuously and incrementally by updated between 
rendered frames. 
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Figure 2: Vertex hierarchy diagram. 

One can observe that by far most of the vertices of a 
scene remain active between consecutive frames and 
just a small fraction changes its state. Hence most 
vertices can be stored and kept continually in video 
memory in order to improve rendering performance. 
Each frame only few vertices require a read operation 
from main memory, to transfer to video memory, 
when they change their state from inactive to active. 
Note that a remove operation is needed when the 
video memory is full and new vertices have to be 
added. Inactive but cached vertices are the prime 
candidates to be deleted from video memory in this 
case. A video memory manager is required to carry 
out these operations. 

Vertex Arrays 
Indexed vertex buffers or indexed vertex arrays (IVA) 
in OpenGL, are the best way to take advantage of 
modern graphics accelerator (see section 11.4.5 in 
[MH02]). The application puts the data into specific 
buffers and gives the pointers to the driver, which 
accesses the data directly. Hence vertex arrays need 
much fewer OpenGL function calls for rendering than 
the classic immediate mode vertex submission (using 
glBegin()/...glVertex().../glEnd() blocks). In [Mar00], 
several methods to optimize submission of vertex data 
in OpenGL are described. Our CGM takes advantage 
of vertex arrays in combination with the OpenGL 
extension NV_vertex_array_range [Kill99]. The order 
and positions of vertices is different in the cached 
IVA from the main memory IVA. Thus the vertex 
indices of an indexed triangle mesh must be remapped 
accordingly for rendering. However, the rendering 
speedup will compensate for this extra re-indexing 
required by a dynamic CGM. 

CGM Strategies 
In this and the following section we describe three 
basic caching strategies to implement the video 
memory manager. These three strategies are going to 
be discussed for two variants of VDPM frameworks in 
order to cover the range of applications: those which 
calculate an explicit front of active nodes by 
incremental updates between consecutive frames, and 
those which implicitly define the active front by 
selecting the active nodes top-down for each frame 
(see Figure 2). In this section we first discuss the more 



general case of implicit active front VDPM 
frameworks. Note that a non-explicit front does not 
mean it does not exist, in fact the front always 
implicitly exists in any view-dependent LOD 
framework. The implicitly-defined refers to the 
behavior of the VDPM framework that has no other 
information than if a vertex is selected or not for each 
rendered frame. From here on we will refer to both 
video memory and geometry cache as equivalent 
concepts. The basic two tasks of the cache manager 
are: (1) to determine that a vertex is already resident 
(cached) in the video memory, and (2) to find and use 
an open slot in the cache to store a new vertex. Task 
(1) can efficiently be determined by a cross indexing: 
each vertex in main memory has a field that indicates 
the cache index where it was last stored, and each 
cache slot has an index field indicating which vertex it 
stores. Hence if both indices coherently cross-link the 
same vertex then it is already cached and ready for 
use. More complicated is task (2) for which we 
describe viable strategies below. 
First-Available Strategy (FA): This simple strategy 
uses the video memory as a linear list of slots with 
flags. This list is incrementally traversed from the 
beginning to the first non-used slot (First Available) 
every time a new vertex must be cached. Then this 
slot is marked as used. The process continues while 
there are vertices to cache, and a pointer is moved 
from the head to the end to search for the next 
available open slot. Owing to the fact that the list of 
slots is sequentially traversed this strategy can be 
implemented using a simple array, as illustrated in 
Figure 4a). Each slot is considered used when it stores 
a vertex used in the current or last frame. This policy 
considers the fact that it is very likely that a vertex 
used in frame i will also be required in frame i+1. 
Hence each slot flag is an integer counter which stores 
the last frame in which that cached vertex was used. 
This strategy is simple to implement, but has one 
potential drawback: unused slots near the beginning of 
the list will immediately be overwritten when a new 
vertex has to be cached while unused slots at the end 
may cache an unused vertex for a long time. This bias 
of reusing cache slots based on their position is not 
necessarily the best solution. At the expense of more 
complexity, the next strategy addresses this problem. 
LRU Strategy: As mentioned above, the FA strategy 
considers any empty slot in the cache as equally good. 
If a slot has not been used in the current or last frame 
it is considered available. However, there is an 
intuitive reason that more recently used vertices are 
more likely to be used again than vertices that have 
not been used for a long time. Hence a more refined 
policy is to take into account the age of the unused 
slots and use a last-recently-used (LRU) strategy. The 
LRU parameter is directly obtained from the frame 

counter associated with each slot. One possible data 
structure to make use of this strategy is a doubly-
linked-list. Two pointers (head and tail) are needed for 
the proposed implementation as shown in Figure 4b). 
The head points to the youngest slot, and the tail 
points to the oldest slot. New vertices are cached in 
the slot pointed to by tail which is then moved to the 
head. Reused slots of rendered vertices already in 
cache are simply moved from their current position in 
the linked list to the head. Consequentially, unused 
slots  automatically move towards the tail which 
always points to the oldest slot entry. Note that these 
operations do not imply a displacement of the actual 
vertex data in video memory, it is just a mechanism 
for the cache manager to maintain access to the last-
recently-used open slot. Each slot in this linked list 
corresponds to a fixed memory location in the cache. 
LRU + Error-PriorityQueue Strategy: Figure 2 
shows clearly that the vertices near the top of the 
hierarchy are more significant as they correspond to 
coarser LOD information. Consequently, these 
vertices are included in the mesh representation before 
any vertices of finer LODs. Therefore, for a new 
vertex it is more suitable to choose among the empty 
slots the one that corresponds to an old vertex which 
represents a fine level-of-detail. In order to add this 
new feature to the CGM we propose to categorize the 
age of the unused slots and introduce a priority-queue 
for the oldest-category vertices. The oldest category 
vertices are naturally and compactly stored at the end 
of the LRU list as described above. Hence as shown in 
Figure 4c) we only manage this last section of the 
LRU list in a priority-queue with the LOD error-
metric parameter as key. Note that it is not advisable 
to choose a big priority queue size since this data 
structure is more costly than the doubly-linked-list of 
the simple LRU approach.  
As with the LRU approach, reused slots are moved 
from the current location to the head and unused slots 
slowly sink towards the tail. The tail marker also 
indicates the bounds of the oldest-category. Thus 
elements at the tail are moved to the priority-queue as 
soon as their age has reached a certain limit and the 
priority-queue is not at maximal capacity. When a 
new vertex has to be inserted into the cache, the top 
slot of the priority-queue is used and moved to the 
head. 
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Figure 3: Data structures for the CGM strategies. 



CGM Strategies for Front-Frameworks 
The strategies described in the previous section can be 
refined if the VDPM framework has explicit 
knowledge of which vertices have been removed from 
and which vertices have been added to the current 
LOD triangle mesh. Thus if the change from active to 
inactive, and vice-versa in Figure 2, is explicitly 
observable by the application. This feature is typical 
in LOD systems that maintain an explicit active front 
for the current frame and update this front 
incrementally as illustrated in  Figure 5. For a new 
frame, the newly activated vertices are called added 
(+) vertices, and those deactivated are called removed 
vertices (-). For each frame the added vertices have to 
be inserted into video memory, if not already cached 
from previous frames, while the removed vertices 
(may) remain cached but change their slot flag to be 
unused. Note that the removed vertices have always 
just been active in the previous frame. 
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Figure 4: Vertex hierarchy of a front-framework. 

FA Strategy for front-framework: This strategy, 
while obviously suboptimal when information about 
both added and removed vertices is explicitly 
provided by the LOD system, applies without changes 
to explicit-front frameworks. 
LRU Strategy for front-framework: The LRU 
policy described previously can be improved using a 
third pointer, called frontier in Figure 6 that divides 
the active slots from the inactive ones.  

head
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error 
Priority
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young

old

relevancefrontier

(-) slots

(+) slots

new vertices 
(from main memory)

head

tail

young
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frontier

(-) slots
(+) slots

a) b)  
Figure 5: a) LRU for Front-Frameworks. b) LRU + 
errorPQ for Front-Frameworks. (-) slots of removed 
vertices. (+) slots of added vertices. 
The slots of removed vertices are moved to just below 
the frontier while slots of added vertices change their 
position from the tail to the head. Advantage can be 
taken for vertices that were already active and cached 
in the previous frame because their corresponding slot 

in the LRU list is not affected by any move operation 
in the linked list. Note that these reused vertices are by 
far the largest fraction of active vertices. Therefore, 
compared to the basic LRU cache algorithm, linked-
list operations are limited to the few removed and 
added vertices in front-frameworks. 
LRU + Error-PriorityQueue Strategy for front-
framework: Following the same idea expressed 
above, a priority queue may consider the LOD error-
metric to choose the least relevant available slot. As 
with the LRU strategy also the LRU + priority-queue 
strategy can be refined if the sets of removed and 
added vertices are explicitly known and a fontier 
pointer separates the active from the inactive slots. As 
illustrated in Figure 7, the slots of removed (-) vertices 
are moved to behind the frontier pointer, while the 
slots of added (+) vertices are moved from the priority 
queue to the head. The slots between the frontier and 
the tail pointer are candidates to be transferred to the 
priority-queue if it is not at maximum capacity. Again, 
advantage is taken by not touching any of the slots of 
vertices that remain active between consecutive 
frames. 
4. TARGET FRAMEWORKS 
Two different view-dependent LOD frameworks have 
been analyzed for testing the proposed Cached 
Geometry Manager: FastMesh [Paj01] and QuadTIN 
[PAL02]. As mentioned in the introduction, the 
former is a VDPM system for rendering arbitrary 
manifold 3D meshes, and the latter is for rendering 
terrain height-fields. Both frameworks are briefly 
explained in the following sections before we provide 
experimental results. 

Arbitrary Mesh Render System: FastMesh 
FastMesh [Paj01] is an efficient hierarchical 
multiresolution triangulation framework based on a 
half-edge triangle mesh data structure and edge-
collapse operations. Optimized computation of view-
dependent error metrics within the framework provide 
conservative LOD error bounds. FastMesh is efficient 
both in space and time cost, and it spends only a 
fraction of the time required for rendering to perform 
the view-dependent LOD error calculations and 
dynamic triangle mesh updates. Conceptually it 
follows exactly the diagram shown in Figure 5 as 
many other similar approaches such as  [XV96], 
[Hop97], [LE97], [DMP97], [KL01] do. 

One of the main features of FastMesh is the explicit 
calculation of the front of active nodes, which is 
obtained for any frame by incremental changes to the 
previous frame. Hence FastMesh directly provides 
information about vertices added or removed from the 
front for every frame and falls into the category of 
front-frameworks described above in Section 3.3. The 
initial implementation of FastMesh rendered the mesh 



as a list of active triangles in immediate mode vertex 
submission which has been changed for this project to 
an indexed vertex array (IVA) rendering mode. 
Experimental results using the front-framework CGM 
strategies described in Section 3.3 are given for this 
VDPM framework in Section 5.1. 

Terrain Rendering System: QuadTIN 
QuadTIN [PAL02] is an efficient quadtree-based 
terrain triangulation approach. It provides fast 
quadtree-based adaptive triangulation, view-
dependent LOD-selection and real-time rendering. Its 
fundamental quadtree-based triangulation method and 
top-down vertex selection and rendering approach is 
similar to many other terrain visualization systems 
such as [SS92], [LKR96], [Paj98], [BAV98], 
[EKT01]. In contrast to other approaches, however, 
QuadTIN presents an efficient quadtree-based 
triangulation approach over irregular input point sets 
with feature adaptive sampling resolution while 
preserving a regular quadtree multiresolution 
hierarchy over the irregular input data set. Although 
the resulting quadtree hierarchy is not balanced, it 
conforms to the restricted quadtree constraints [SS92]. 
Additional information such as geometric 
approximation error, bounding spheres and normal 
cones are used for view-dependent LOD-triangulation 
and rendering. Like most other terrain visualization 
systems, QuadTIN selects the active vertices for a 
LOD of a particular viewpoint in a recursive top-
down traversal for each frame. Hence QuadTIN  
belongs to the category of VDPMs with implicitly 
defined active front and does not provide explicitly 
the removed or added vertices between two 
consecutive frames. Experimental results using the 
basic CGM strategies given in Section 3.2 are 
reported in Section 5.2 for this VDPM framework. 

5. EXPERIMENTAL RESULTS 
Experimental results were performed on a 3.0 GHz 
Pentium 4 with 1GB RAM using an NVIDIA 
GeForceFX 5200 graphics card. For all scenes a 45º 
vertical field-of-view camera followed several test 
trajectories as described below. 

FastMesh Results 
The models used with the FastMesh rendering system 
are given in Table 1. The rendering experiments were 
averaged over 1000 frames in a window of 800 x 800 
pixels using an error tolerance equal to one and a half 
pixels (projective tolerance of geometric error 
projected on screen). 

model hand dragon happy
vertices 327323 437645 543652
faces 654666 871414 1087716  

Table 1: 3D models used with FastMesh. 

Three different camera trajectories have been 
analyzed to examine the impact of the Cached 
Geometry Manager within the FastMesh framework 
as illustrated in Figure 8: 

• Circular camera trajectory. 
• Small camera rotations. 
• Straight line camera trajectory. 

These camera movements are very common as they 
are typical movements observers normally execute to 
explore a 3D object. The camera is pointing to the 
center of the model in all the trajectories. 

a) b) c)  
Figure 6: 3D object rendering camera trajectories: a) 
circular trajectory. b) small rotations. c) straight line 
trajectory (zoom in/out). 
The chosen CGM size (slot-list length) was 216 = 
65536 because all models required at least 215 = 
35768 vertices to render from every tested viewpoint. 
Of course, in this context no LOD mesh can have 
more vertices than available in the geometry cache, 
and the application program must make sure that the 
best LOD for a limited number of vertices is selected. 
If this mesh exceeds the cache size then the 
application should disable the CGM and render the 
mesh in normal mode, or possibly render the mesh 
using the CGM in multiple passes. We are only 
studying the effect of the CGM in this paper and do 
not address the latter issues in this work. In the 
experiments, the size of each vertex element is 36 
bytes, consisting of: 3 floats (position) + 3 floats 
(normal) + 3 floats (color). 

We have focused the numerical results on the biggest 
model (happy) to avoid excessive and repeated 
information. Statistical data for the other models is 
given in Table 3. Figure 9 shows the per-frame timing 
results (in miliseconds) of happy model for the three 
different camera trajectories. The total time per frame 
has been divided into three parts: the rendering time, 
the time needed to construct the vertex array (build 
IVA), and the time required to perform the error 
metrics and updating the LOD mesh (others). Note 
that a brute-force rendering of this model using a 
standard immediate mode vertex submission achieved 
less than 4 frames per second, or equivalently required 
more than 250ms per frame. Our CGM techniques 
only affect the vertex array construction and rendering 
time but not any other tasks of the VDPM framework. 
In particular, the LOD-computation and vertex 
selection is not affected by the CGM and thus limits 
the overall speed-up with respect to the observable 
frame-rate. Hence we focus on the speed-up achieved 
only within the rendering part of a VDPM framework 
which is the sole target of the CGM. 
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Figure 7: Per frame timing results (in miliseconds) for the Happy model for: a) circular camera trajectory, b) 
small  camera rotations and c) straight line camera trajectory. The build IVA time contains the time consumed 
by the cache memory manager in modes where the CGM is enabled. 
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Figure 8: Vertices inserted into video memory for the Happy model for: a) circular camera trajectory, b) small  
camera rotations and c) straight line camera trajectory. 
As we mentioned in section 4.1, the initial version of 
FashMesh traverses a linked-list of triangles to render 
the model in immediate mode vertex submission. The 
standard IVA mode is still faster than the previous 
despite the transformation from a linked-list of 
triangles to an indexed triangle array. The 
LRU+errorPQ%10 strategy employs an error priority 
queue size equal to 10 percent of the total cache size. 
As expected, the rendering improvement is 
significant. The build-IVA time for these modes 
increases the workload of the CGM. However, the 
global speedup obtained for the three strategies easily 
compensates the extra CGM cost. In fact, the actual 
rendering cost, which is the only cost affected by the 
CGM, is improved by a factor of up to 3 (including 
the IVA build time) as shown in Table 3. 

Despite three different camera trajectories, all show 
almost the same behavior. More information may be 
obtained taking into account the number of vertices 
inserted in video memory. It allows to undestand 
which strategy makes better use of the cached 
geometry since more inserted vertices involves more 
data transfer from main to video memory. This 
information is given in Table 2. 

CGM TYPE Trajectory A Trajectory B Trajectory C
First Available 171873 302288 290747
LRU 169928 286331 66453
LRU+PQ10% 169972 281707 66436  

Table 2: Vertices inserted into video memory for the 
three CGM modes over 1000 frames (Happy  model). 
The First Available strategy clearly makes the worst 
use of cached geometry, especially for small camera 

rotations. In contrary to our initial expectations, in 
most cases the simple LRU strategy outperforms the 
LRU + Error-PriorityQueue strategy. The latter gives 
the best result only for the circular camera trajectory, 
and even in this case, the lower data transfer rate does 
not compensate for the more expensive priority queue 
operations. Figure 10 b) and c) show the inefficiency 
of the First Available strategy for the last two camera 
trajectories, where the insertion of new vertices is 
unnecessary after a certain number of frames. Recall 
the most expensive frame is always the first because 
the cache stores no vertices at that time. 

Table 3 lists the rendering speed-ups achieved by the 
different CGM strategies with respect to the original 
immediate mode vertex submission FastMesh version. 
The first column corresponds to the variant with a 
standard main-memory IVA but no CGM. The last 
three columns indicate the speedup factors for the 
three implemented CGM strategies. The individual 
speed-ups for the rendering stage reach factors up to 3 
which shows the real impact of the Cached Geometry 
Manager on the rendering phase of a VDPM 
framework. 

Model camera      CGM render modes
trajectory std IVA First Available LRU LRU + PQ10%

A 1.07 2.14 2.97 2.92
happy B 1.07 2.21 2.89 2.88

C 1.07 2.13 2.79 2.78
A 1.06 1.97 2.69 2.66

dragon B 1.05 2.12 2.83 2.8
C 1.05 2.12 2.76 2.76
A 1.07 2.25 3.07 3.06

hand B 1.05 2.29 2.92 2.91
C 1.05 2.31 2.95 2.95  

Table 3: FastMesh speed-ups (just rendering stage) 
for different CGM  strategies. 



QuadTIN Results 
The height-field model used for the QuadTIN 
rendering experiment is the well known Puget Sound 
data set (2563548 vertices, after QuadTIN-preprocess 
error tolerance = 6 meters, [PAL02]). The results were 
averaged over 3000 frames in a window of 1024 x 
768 pixels using an error tolerance equal to one pixel 
(projective tolerance of geometric error projected on 
screen). 

The chosen CGM size was 216 = 65536 following the 
same criteria applied as for the experiments with 
FastMesh. The size of each vertex element in this case 
is 32 bytes: 3 floats (position) + 3 floats (normal) + 2 
floats (texture coordinate). The camera trajectories 
tested to perform the CGM analysis with the QuadTIN 
rendering system are the following (see Figure 11): 

• Circular camera trajectory. 
• Camera rotation with fixed eye. 
• Straight line camera trajectory.  

a) b) c)  
Figure 9: Terrain rendering camera trajectories: a) 
circular trajectory. b) camera rotation with fixed eye. 
c) straight line trajectory. 
The CGM strategies applied to QuadTIN are the ones 
described in detail in Section 3.2. The QuadTIN 
system constructs an indexed triangle strip as required 
for a standard IVA approach. Note that due to the 
implicit definition of the active front, no information 
about incrementally added or removed vertices 

between consecutive frames is provided. QuadTIN 
only reports which vertices are selected for a 
particular frame and LOD. Note again that the CGM 
extension only affects the rendering time but not the 
LOD-selection and meshing parts of the VDPM 
framework, and hence we focus on the achievable 
rendering speed-up which is the sole target of the 
CGM. 

Figure 12 shows four columns, one for each rendering 
strategy, for each camera trajectory: the first column 
for the standard IVA mode, and the three others for 
the different CGM strategies. In this case, the best 
result is achieved by the First Available (FA) strategy. 
Despite the fact that the FA strategy still makes the 
worst use of the geometry cache (see Table 4), its 
simple and fast data structures are still advantageous 
over the doubly-linked list of slots in the two different 
LRU CGM strategies. This result is not completely 
surprising as the minor data transfer overhead of FA is 
amortized by the simple and fast array data structure 
for slots. 
The straight line camera trajectory deserves a special 
discussion (see Figure 13c)) since the FA strategy 
remains the fastest despite its bad reuse of cached 
geometry. The LRU and LRU+PQ10% strategies 
require more computation time but much less data 
transfer. Depending on the CPU speed in relation to 
the AGP bus bandwidth this result may slightly 
change, and the LRU strategies may win over the FA 
strategy  for certain configurations. The relation 
between CPU speed and AGP bus bandwith of the 
system will decide which is the best strategy. 
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Figure 10: Per frame timing results (in miliseconds) for the Puget Sound data set for: a) circular camera 
trajectory, b) camera rotation with fixed eye and c) straight line camera trajectory. 
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Figure 11: Vertices inserted into video memory for the Puget Sound data set for: a) circular camera trajectory, 
b) camera rotation with fixed eye and c) straight line camera trajectory. 



CGM TYPE Trajectory A Trajectory B Trajectory C
First Available 322353 329214 102097
LRU 228694 63465 64688
LRU+PQ10% 200126 63465 64690  

Table 4: Vertices inserted in video memory for the 
CGM modes over 3000 frames (Puget Sound model). 
The QuadTIN rendering speed-up factors are shown 
in Table 5. The speedup of the rendering stage itself, 
which is the only stage affected by the CGM, reaches 
factors up to 2.7. This dramatically shows the 
potential of using a CGM in a view-dependent LOD 
rendering system. 

camera CGM render modes
trajectory First Available LRU LRU + PQ10%

A 2.68 1.69 1.13
B 2.7 1.65 1.06
C 2.71 2.24 1.9  

Table 5: QuadTIN speedups (just rendering stage)  
for different CGM  modes. 

6. CONCLUSION 
This paper presents several strategies to implement an 
efficient Cached Geometry Manager that takes 
advantage of on-board video card memory for caching 
vertex data. It provides effective solutions to manage 
the video memory as a geometry cache in order to 
dramatically reduce the vertex data transfer rate from 
main to video memory for each rendered frame. The 
proposed techniques can be applied to a wide range of 
view-dependent LOD rendering frameworks, and 
allow the efficient reuse of cached geometry 
information stored on the video graphics card. 

The presented approaches significantly improve the 
rendering performance of view-dependent LOD 
rendering applications with little extra implementation 
effort. Experimental results on two different VDPM 
frameworks have confirmed the suitability and the 
effectiveness of our approach to dramatically 
accelerate the rendering stage. Overall performance 
speed-up of observable frame rates heavily depends 
on the application-side view-dependent LOD-
selection and meshing frameword. More recent and 
improved VDPM frameworks – compared to the 
tested FastMesh and QuadTIN systems – with 
significantly lower LOD-selection and meshing cost 
will exhibit significanly higher overall frame rate 
performance if combined with a dynamic CGM as 
demonstrated in this paper. 
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