
Cached Geometry Manager for
View-dependent LOD Rendering

Roberto Lario
Universidad Complutense

Madrid, Spain
rlario@dacya.ucm.es

Renato Pajarola
University of California Irvine

USA
pajarola@acm.org

Francisco Tirado
Universidad Complutense

Madrid, Spain
ptirado@dacya.ucm.es

ABSTRACT
The new generation of commodity graphics cards with significant on-board video memory has become widely
popular and provides high-performance rendering and flexibility. One of the features to be exploited with this
hardware is the use of the on-board video memory to store geometry information. This strategy significantly
reduces the data transfer overhead from sending geometry data over the (AGP) bus interface from main memory
to the graphics card. However, taking advantage of cached geometry is not a trivial task because the data models
often exceed the memory size of the graphics card. In this paper we present a dynamic Cached Geometry
Manager (CGM) to address this issue. We show how this technique improves the performance of real-time
view-dependent level-of-detail (LOD) selection and rendering algorithms of large data sets. Alternative caching
approaches have been analyzed over two different view-dependent progressive mesh (VDPM) frameworks: one
for rendering of arbitrary manifold 3D meshes, and one for terrain visualization.

1. INTRODUCTION
The functionality and speed of graphics hardware has
increased significantly in last few years, making the
GPU a programmable stream processor with sufficient
power and flexibility to perform intensive
calculations. Despite advances in the graphics
hardware, the data transfer from main memory to the
graphics card remains the major bottleneck [HCH03].
This restriction prevents the full exploitation of the
potential computational horsepower of the GPU and
introduces significant overhead in short data transfers
[THO02].

View-dependent level-of-detail (LOD) algorithms can
significantly reduce the amount of data transfer as the
geometric scene complexity is adaptively minimized
using a view-dependent error metric [LRC03]. The
adaptive nature of such methods introduces constant
but infrequent and small geometric changes between
consecutive frames. Our goal is to take advantage of
this fact using the video memory of modern consumer
graphics hardware as geometry cache. The rendering
performance can greatly be improved if the geometric
data of a given scene is stored in video memory.
However, the limited size of available video memory
restricts the complete caching of big data models. The
use of view-dependent LOD algorithms can provide a

solution to this problem because the geometric
information required for rendering a scene at a certain
LOD is in general only a small fraction of the full
resolution model. This visible portion of geometry
information can be cached on the graphics card using
video memory (see Figure 1) and is updated every
frame when the viewpoint location of the camera or
the resolution is changing. In order to efficiently
handle the constantly occuring video memory updates,
a Cached Geometry Manager (CGM) is needed. The
continuous adaptive LOD changes guarantee that only
a small amount of the cached geometry in the video
memory has to be updated between consecutive
frames.

CPU

Main
Memory

GPU

Video
Memory

AGP Bus

Figure 1: CPU/GPU communication diagram.

In this paper we describe several strategies to
implement an efficient geometry-cache manager. Two
view-dependent progressive mesh (VDPM)
frameworks are used to test the proposed techniques
and to show the speed-up in rendering performance
when applied to a general view-dependent LOD
algorithm. The first framework is FastMesh [Paj01], it
uses an efficient view-dependent and adaptive LOD
method for rendering arbitrary 3D meshes in real-
time. The general concepts of this framework are
common to most similar VDPMs, e.g. such as
[XV96], [Hop97], [LE97], [DMP97] or [KL01]. The
second framework is QuadTIN [PAL02], an efficient
quadtree-based triangulation approach for irregular
terrain height-fields that provides fast quadtree-based
adaptive triangulation, view-dependent LOD-selection
and real-time rendering. Many interactive terrain

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a
fee.

WSCG 2005 conference proceedings, ISBN 80-903100-7-9
WSCG 2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

visualization systems, e.g. such as [SS92], [LKR96],
[DMP96], [Pup96], [Paj98], [BAV98] or [EKT01],
exhibit a similar top-down LOD triangulation and
rendering approach.
The remainder of the paper is organized as follows:
Section 2 presents a very brief overview of related
work. Section 3 describes the Cached Geometry
Manager. In Section 4 the two VDPM frameworks are
presented to test the CGM approach. Experimental
results are presented in Section 5 and Section 6 ends
the paper with some conclusions.

2. RELATED WORK
Despite the extensive work on level-of-detail (LOD)
techniques [LRC03], only very few methods that use
cached geometry have been proposed recently. One
possible reason for this lack is that only recent
generations of graphics cards allow the application
program to manage large amounts of video memory
systematically and dynamically for storing geometry.
In [Lev02] a terrain rendering algorithm is presented
that operates on clusters of cached geometry called
aggregate triangles. The dynamically generated
aggregate triangles are kept in the geometry cache for
several frames to improve rendering performance. A
similar concept is followed in [CGG03a], [CGG03b]
where a LOD hierarchy of simplified height-field
triangle patches is generated in a pre-process. At run-
time the appropriate LOD triangle patches are selected
for rendering and a LRU strategy is used for caching.
In [LPT03] square patches of a quadtree-based
hierarchical terrain triangulation are used for fast
rendering and caching in video memory. A common
limitation of the above methods is that they are
restricted special-purpose solutions for terrain
rendering and not applicable in general to other
VDPM frameworks. In contrast, the concepts
presented in this paper are directly applicable to a
wide range of VDPM frameworks. A remarkable
approach to provide seamless geometric LODs is
provided by GLOD [CLD03]. It allows advanced
users to define discrete LOD objects as well as specify
the use of video memory for patches of the geometry.
In contrast to GLOD, the proposed Cached Geometry
Manager interacts directly with VDPM frameworks
that dynamically generate continuously adaptive LOD
meshes and provides transparent use of video
memory.

3. CACHE GEOMETRY MANAGER
Most view-dependent simplification frameworks
represent the geometry in a hierarchical data structure
called vertex hierarchy (see Figure 2). The nodes
located near the root correspond to low-resolution
vertices while those located farther away represent
high-resolution detail vertices. The vertex hierarchy is
dynamically queried to perform a view-dependent
LOD simplification for each frame. A front of active

nodes divides the current nodes used to generate the
simplified scene from the rest. This frontier can
continuously and incrementally by updated between
rendered frames.

Vertex
Hierarchy Low detail

High detail

active nodes

front of active nodes

Figure 2: Vertex hierarchy diagram.

One can observe that by far most of the vertices of a
scene remain active between consecutive frames and
just a small fraction changes its state. Hence most
vertices can be stored and kept continually in video
memory in order to improve rendering performance.
Each frame only few vertices require a read operation
from main memory, to transfer to video memory,
when they change their state from inactive to active.
Note that a remove operation is needed when the
video memory is full and new vertices have to be
added. Inactive but cached vertices are the prime
candidates to be deleted from video memory in this
case. A video memory manager is required to carry
out these operations.

Vertex Arrays
Indexed vertex buffers or indexed vertex arrays (IVA)
in OpenGL, are the best way to take advantage of
modern graphics accelerator (see section 11.4.5 in
[MH02]). The application puts the data into specific
buffers and gives the pointers to the driver, which
accesses the data directly. Hence vertex arrays need
much fewer OpenGL function calls for rendering than
the classic immediate mode vertex submission (using
glBegin()/...glVertex().../glEnd() blocks). In [Mar00],
several methods to optimize submission of vertex data
in OpenGL are described. Our CGM takes advantage
of vertex arrays in combination with the OpenGL
extension NV_vertex_array_range [Kill99]. The order
and positions of vertices is different in the cached
IVA from the main memory IVA. Thus the vertex
indices of an indexed triangle mesh must be remapped
accordingly for rendering. However, the rendering
speedup will compensate for this extra re-indexing
required by a dynamic CGM.

CGM Strategies
In this and the following section we describe three
basic caching strategies to implement the video
memory manager. These three strategies are going to
be discussed for two variants of VDPM frameworks in
order to cover the range of applications: those which
calculate an explicit front of active nodes by
incremental updates between consecutive frames, and
those which implicitly define the active front by
selecting the active nodes top-down for each frame
(see Figure 2). In this section we first discuss the more

general case of implicit active front VDPM
frameworks. Note that a non-explicit front does not
mean it does not exist, in fact the front always
implicitly exists in any view-dependent LOD
framework. The implicitly-defined refers to the
behavior of the VDPM framework that has no other
information than if a vertex is selected or not for each
rendered frame. From here on we will refer to both
video memory and geometry cache as equivalent
concepts. The basic two tasks of the cache manager
are: (1) to determine that a vertex is already resident
(cached) in the video memory, and (2) to find and use
an open slot in the cache to store a new vertex. Task
(1) can efficiently be determined by a cross indexing:
each vertex in main memory has a field that indicates
the cache index where it was last stored, and each
cache slot has an index field indicating which vertex it
stores. Hence if both indices coherently cross-link the
same vertex then it is already cached and ready for
use. More complicated is task (2) for which we
describe viable strategies below.
First-Available Strategy (FA): This simple strategy
uses the video memory as a linear list of slots with
flags. This list is incrementally traversed from the
beginning to the first non-used slot (First Available)
every time a new vertex must be cached. Then this
slot is marked as used. The process continues while
there are vertices to cache, and a pointer is moved
from the head to the end to search for the next
available open slot. Owing to the fact that the list of
slots is sequentially traversed this strategy can be
implemented using a simple array, as illustrated in
Figure 4a). Each slot is considered used when it stores
a vertex used in the current or last frame. This policy
considers the fact that it is very likely that a vertex
used in frame i will also be required in frame i+1.
Hence each slot flag is an integer counter which stores
the last frame in which that cached vertex was used.
This strategy is simple to implement, but has one
potential drawback: unused slots near the beginning of
the list will immediately be overwritten when a new
vertex has to be cached while unused slots at the end
may cache an unused vertex for a long time. This bias
of reusing cache slots based on their position is not
necessarily the best solution. At the expense of more
complexity, the next strategy addresses this problem.
LRU Strategy: As mentioned above, the FA strategy
considers any empty slot in the cache as equally good.
If a slot has not been used in the current or last frame
it is considered available. However, there is an
intuitive reason that more recently used vertices are
more likely to be used again than vertices that have
not been used for a long time. Hence a more refined
policy is to take into account the age of the unused
slots and use a last-recently-used (LRU) strategy. The
LRU parameter is directly obtained from the frame

counter associated with each slot. One possible data
structure to make use of this strategy is a doubly-
linked-list. Two pointers (head and tail) are needed for
the proposed implementation as shown in Figure 4b).
The head points to the youngest slot, and the tail
points to the oldest slot. New vertices are cached in
the slot pointed to by tail which is then moved to the
head. Reused slots of rendered vertices already in
cache are simply moved from their current position in
the linked list to the head. Consequentially, unused
slots automatically move towards the tail which
always points to the oldest slot entry. Note that these
operations do not imply a displacement of the actual
vertex data in video memory, it is just a mechanism
for the cache manager to maintain access to the last-
recently-used open slot. Each slot in this linked list
corresponds to a fixed memory location in the cache.
LRU + Error-PriorityQueue Strategy: Figure 2
shows clearly that the vertices near the top of the
hierarchy are more significant as they correspond to
coarser LOD information. Consequently, these
vertices are included in the mesh representation before
any vertices of finer LODs. Therefore, for a new
vertex it is more suitable to choose among the empty
slots the one that corresponds to an old vertex which
represents a fine level-of-detail. In order to add this
new feature to the CGM we propose to categorize the
age of the unused slots and introduce a priority-queue
for the oldest-category vertices. The oldest category
vertices are naturally and compactly stored at the end
of the LRU list as described above. Hence as shown in
Figure 4c) we only manage this last section of the
LRU list in a priority-queue with the LOD error-
metric parameter as key. Note that it is not advisable
to choose a big priority queue size since this data
structure is more costly than the doubly-linked-list of
the simple LRU approach.
As with the LRU approach, reused slots are moved
from the current location to the head and unused slots
slowly sink towards the tail. The tail marker also
indicates the bounds of the oldest-category. Thus
elements at the tail are moved to the priority-queue as
soon as their age has reached a certain limit and the
priority-queue is not at maximal capacity. When a
new vertex has to be inserted into the cache, the top
slot of the priority-queue is used and moved to the
head.

head

a) FA b) LRU c) LRU + errorPQ

head head

tail

tail
error
Priority
Queue

low detail

high detail

young

old

relevance

young

old

relevance

ptr_FA

Figure 3: Data structures for the CGM strategies.

CGM Strategies for Front-Frameworks
The strategies described in the previous section can be
refined if the VDPM framework has explicit
knowledge of which vertices have been removed from
and which vertices have been added to the current
LOD triangle mesh. Thus if the change from active to
inactive, and vice-versa in Figure 2, is explicitly
observable by the application. This feature is typical
in LOD systems that maintain an explicit active front
for the current frame and update this front
incrementally as illustrated in Figure 5. For a new
frame, the newly activated vertices are called added
(+) vertices, and those deactivated are called removed
vertices (-). For each frame the added vertices have to
be inserted into video memory, if not already cached
from previous frames, while the removed vertices
(may) remain cached but change their slot flag to be
unused. Note that the removed vertices have always
just been active in the previous frame.

Vertex
Hierarchy

Low detail

High detail

active nodes

-

front of active
nodes at
frame n+1

front of active
nodes at
frame n

- removed nodes at frame n+1
+ added nodes at frame n+1

+

Vertex
Hierarchy

Low detail

High detail

active nodes

-

front of active
nodes at
frame n+1

front of active
nodes at
frame n

- removed nodes at frame n+1
+ added nodes at frame n+1

+

Figure 4: Vertex hierarchy of a front-framework.

FA Strategy for front-framework: This strategy,
while obviously suboptimal when information about
both added and removed vertices is explicitly
provided by the LOD system, applies without changes
to explicit-front frameworks.
LRU Strategy for front-framework: The LRU
policy described previously can be improved using a
third pointer, called frontier in Figure 6 that divides
the active slots from the inactive ones.

head

tail

error
Priority
Queue

low detail

high detail

young

old

relevancefrontier

(-) slots

(+) slots

new vertices
(from main memory)

head

tail

young

old

relevance

frontier

(-) slots
(+) slots

a) b)
Figure 5: a) LRU for Front-Frameworks. b) LRU +
errorPQ for Front-Frameworks. (-) slots of removed
vertices. (+) slots of added vertices.
The slots of removed vertices are moved to just below
the frontier while slots of added vertices change their
position from the tail to the head. Advantage can be
taken for vertices that were already active and cached
in the previous frame because their corresponding slot

in the LRU list is not affected by any move operation
in the linked list. Note that these reused vertices are by
far the largest fraction of active vertices. Therefore,
compared to the basic LRU cache algorithm, linked-
list operations are limited to the few removed and
added vertices in front-frameworks.
LRU + Error-PriorityQueue Strategy for front-
framework: Following the same idea expressed
above, a priority queue may consider the LOD error-
metric to choose the least relevant available slot. As
with the LRU strategy also the LRU + priority-queue
strategy can be refined if the sets of removed and
added vertices are explicitly known and a fontier
pointer separates the active from the inactive slots. As
illustrated in Figure 7, the slots of removed (-) vertices
are moved to behind the frontier pointer, while the
slots of added (+) vertices are moved from the priority
queue to the head. The slots between the frontier and
the tail pointer are candidates to be transferred to the
priority-queue if it is not at maximum capacity. Again,
advantage is taken by not touching any of the slots of
vertices that remain active between consecutive
frames.
4. TARGET FRAMEWORKS
Two different view-dependent LOD frameworks have
been analyzed for testing the proposed Cached
Geometry Manager: FastMesh [Paj01] and QuadTIN
[PAL02]. As mentioned in the introduction, the
former is a VDPM system for rendering arbitrary
manifold 3D meshes, and the latter is for rendering
terrain height-fields. Both frameworks are briefly
explained in the following sections before we provide
experimental results.

Arbitrary Mesh Render System: FastMesh
FastMesh [Paj01] is an efficient hierarchical
multiresolution triangulation framework based on a
half-edge triangle mesh data structure and edge-
collapse operations. Optimized computation of view-
dependent error metrics within the framework provide
conservative LOD error bounds. FastMesh is efficient
both in space and time cost, and it spends only a
fraction of the time required for rendering to perform
the view-dependent LOD error calculations and
dynamic triangle mesh updates. Conceptually it
follows exactly the diagram shown in Figure 5 as
many other similar approaches such as [XV96],
[Hop97], [LE97], [DMP97], [KL01] do.

One of the main features of FastMesh is the explicit
calculation of the front of active nodes, which is
obtained for any frame by incremental changes to the
previous frame. Hence FastMesh directly provides
information about vertices added or removed from the
front for every frame and falls into the category of
front-frameworks described above in Section 3.3. The
initial implementation of FastMesh rendered the mesh

as a list of active triangles in immediate mode vertex
submission which has been changed for this project to
an indexed vertex array (IVA) rendering mode.
Experimental results using the front-framework CGM
strategies described in Section 3.3 are given for this
VDPM framework in Section 5.1.

Terrain Rendering System: QuadTIN
QuadTIN [PAL02] is an efficient quadtree-based
terrain triangulation approach. It provides fast
quadtree-based adaptive triangulation, view-
dependent LOD-selection and real-time rendering. Its
fundamental quadtree-based triangulation method and
top-down vertex selection and rendering approach is
similar to many other terrain visualization systems
such as [SS92], [LKR96], [Paj98], [BAV98],
[EKT01]. In contrast to other approaches, however,
QuadTIN presents an efficient quadtree-based
triangulation approach over irregular input point sets
with feature adaptive sampling resolution while
preserving a regular quadtree multiresolution
hierarchy over the irregular input data set. Although
the resulting quadtree hierarchy is not balanced, it
conforms to the restricted quadtree constraints [SS92].
Additional information such as geometric
approximation error, bounding spheres and normal
cones are used for view-dependent LOD-triangulation
and rendering. Like most other terrain visualization
systems, QuadTIN selects the active vertices for a
LOD of a particular viewpoint in a recursive top-
down traversal for each frame. Hence QuadTIN
belongs to the category of VDPMs with implicitly
defined active front and does not provide explicitly
the removed or added vertices between two
consecutive frames. Experimental results using the
basic CGM strategies given in Section 3.2 are
reported in Section 5.2 for this VDPM framework.

5. EXPERIMENTAL RESULTS
Experimental results were performed on a 3.0 GHz
Pentium 4 with 1GB RAM using an NVIDIA
GeForceFX 5200 graphics card. For all scenes a 45º
vertical field-of-view camera followed several test
trajectories as described below.

FastMesh Results
The models used with the FastMesh rendering system
are given in Table 1. The rendering experiments were
averaged over 1000 frames in a window of 800 x 800
pixels using an error tolerance equal to one and a half
pixels (projective tolerance of geometric error
projected on screen).

model hand dragon happy
vertices 327323 437645 543652
faces 654666 871414 1087716

Table 1: 3D models used with FastMesh.

Three different camera trajectories have been
analyzed to examine the impact of the Cached
Geometry Manager within the FastMesh framework
as illustrated in Figure 8:

• Circular camera trajectory.
• Small camera rotations.
• Straight line camera trajectory.

These camera movements are very common as they
are typical movements observers normally execute to
explore a 3D object. The camera is pointing to the
center of the model in all the trajectories.

a) b) c)
Figure 6: 3D object rendering camera trajectories: a)
circular trajectory. b) small rotations. c) straight line
trajectory (zoom in/out).
The chosen CGM size (slot-list length) was 216 =
65536 because all models required at least 215 =
35768 vertices to render from every tested viewpoint.
Of course, in this context no LOD mesh can have
more vertices than available in the geometry cache,
and the application program must make sure that the
best LOD for a limited number of vertices is selected.
If this mesh exceeds the cache size then the
application should disable the CGM and render the
mesh in normal mode, or possibly render the mesh
using the CGM in multiple passes. We are only
studying the effect of the CGM in this paper and do
not address the latter issues in this work. In the
experiments, the size of each vertex element is 36
bytes, consisting of: 3 floats (position) + 3 floats
(normal) + 3 floats (color).

We have focused the numerical results on the biggest
model (happy) to avoid excessive and repeated
information. Statistical data for the other models is
given in Table 3. Figure 9 shows the per-frame timing
results (in miliseconds) of happy model for the three
different camera trajectories. The total time per frame
has been divided into three parts: the rendering time,
the time needed to construct the vertex array (build
IVA), and the time required to perform the error
metrics and updating the LOD mesh (others). Note
that a brute-force rendering of this model using a
standard immediate mode vertex submission achieved
less than 4 frames per second, or equivalently required
more than 250ms per frame. Our CGM techniques
only affect the vertex array construction and rendering
time but not any other tasks of the VDPM framework.
In particular, the LOD-computation and vertex
selection is not affected by the CGM and thus limits
the overall speed-up with respect to the observable
frame-rate. Hence we focus on the speed-up achieved
only within the rendering part of a VDPM framework
which is the sole target of the CGM.

0

50

100

150

200

250

render modes for HAPPY model (trajectory A)

ti
m

e
 p

e
r

fr
a
m

e
 (

m
il

is
e
c
o

n
d

s
)

rendering build IVA others

others 102.2 102.1 105 105 105

build IVA 0 20.5 44.8 31.2 31.8

rendering 103.6 76.1 3.7 3.7 3.7

glBegin()/.../glEnd() glDrawElements CGM: First
Available

CGM: LRU CGM:LRU+PQ10%

0

50

100

150

200

250

render modes for HAPPY model (trajectory B)

ti
m

e
 p

e
r

fr
a
m

e
 (

m
il

is
e
c
o

n
d

s
)

rendering build IVA others

others 99.2 98.6 101.2 101.2 101.2

build IVA 0 19.6 39.5 29.4 29.5

rendering 94.3 68.9 3.2 3.2 3.2

glBegin()/.../glEnd() glDrawElements CGM: First
Available

CGM: LRU CGM:LRU+PQ10%

0

50

100

150

200

250

render modes for HAPPY model (trajectory C)

ti
m

e
 p

e
r

fr
a
m

e
 (

m
il

is
e
c
o

n
d

s
)

rendering build IVA others

others 106.1 105.3 108.2 108.2 108.2

build IVA 0 21.2 43 31.7 31.8

rendering 102.8 75.2 5.2 5.2 5.2

glBegin()/.../glEnd() glDrawElements CGM: First
Available

CGM: LRU CGM:LRU+PQ10%

Figure 7: Per frame timing results (in miliseconds) for the Happy model for: a) circular camera trajectory, b)
small camera rotations and c) straight line camera trajectory. The build IVA time contains the time consumed
by the cache memory manager in modes where the CGM is enabled.

0

50000

100000

150000

200000

250000

300000

350000

0 125 250 375 500 625 750 875

number of frames (trajectory A)

ve
rti

ce
s

in
se

rte
d

in
 v

id
eo

 m
em

or
y

First Available LRU LRU + PQ10%

0

50000

100000

150000

200000

250000

300000

350000

0 125 250 375 500 625 750 875

number of frames (trajectory B)

ve
rti

ce
s

in
se

rte
d

in
 v

id
eo

 m
em

or
y

First Available LRU LRU + PQ10%

0

20000

40000

60000

80000

100000

120000

0 125 250 375 500 625 750 875

number of frames (trajectory C)

ve
rt

ic
es

 in
se

rt
ed

 in
 v

id
eo

 m
em

or
y

First Available LRU LRU + PQ10%

Figure 8: Vertices inserted into video memory for the Happy model for: a) circular camera trajectory, b) small
camera rotations and c) straight line camera trajectory.
As we mentioned in section 4.1, the initial version of
FashMesh traverses a linked-list of triangles to render
the model in immediate mode vertex submission. The
standard IVA mode is still faster than the previous
despite the transformation from a linked-list of
triangles to an indexed triangle array. The
LRU+errorPQ%10 strategy employs an error priority
queue size equal to 10 percent of the total cache size.
As expected, the rendering improvement is
significant. The build-IVA time for these modes
increases the workload of the CGM. However, the
global speedup obtained for the three strategies easily
compensates the extra CGM cost. In fact, the actual
rendering cost, which is the only cost affected by the
CGM, is improved by a factor of up to 3 (including
the IVA build time) as shown in Table 3.

Despite three different camera trajectories, all show
almost the same behavior. More information may be
obtained taking into account the number of vertices
inserted in video memory. It allows to undestand
which strategy makes better use of the cached
geometry since more inserted vertices involves more
data transfer from main to video memory. This
information is given in Table 2.

CGM TYPE Trajectory A Trajectory B Trajectory C
First Available 171873 302288 290747
LRU 169928 286331 66453
LRU+PQ10% 169972 281707 66436

Table 2: Vertices inserted into video memory for the
three CGM modes over 1000 frames (Happy model).
The First Available strategy clearly makes the worst
use of cached geometry, especially for small camera

rotations. In contrary to our initial expectations, in
most cases the simple LRU strategy outperforms the
LRU + Error-PriorityQueue strategy. The latter gives
the best result only for the circular camera trajectory,
and even in this case, the lower data transfer rate does
not compensate for the more expensive priority queue
operations. Figure 10 b) and c) show the inefficiency
of the First Available strategy for the last two camera
trajectories, where the insertion of new vertices is
unnecessary after a certain number of frames. Recall
the most expensive frame is always the first because
the cache stores no vertices at that time.

Table 3 lists the rendering speed-ups achieved by the
different CGM strategies with respect to the original
immediate mode vertex submission FastMesh version.
The first column corresponds to the variant with a
standard main-memory IVA but no CGM. The last
three columns indicate the speedup factors for the
three implemented CGM strategies. The individual
speed-ups for the rendering stage reach factors up to 3
which shows the real impact of the Cached Geometry
Manager on the rendering phase of a VDPM
framework.

Model camera CGM render modes
trajectory std IVA First Available LRU LRU + PQ10%

A 1.07 2.14 2.97 2.92
happy B 1.07 2.21 2.89 2.88

C 1.07 2.13 2.79 2.78
A 1.06 1.97 2.69 2.66

dragon B 1.05 2.12 2.83 2.8
C 1.05 2.12 2.76 2.76
A 1.07 2.25 3.07 3.06

hand B 1.05 2.29 2.92 2.91
C 1.05 2.31 2.95 2.95

Table 3: FastMesh speed-ups (just rendering stage)
for different CGM strategies.

QuadTIN Results
The height-field model used for the QuadTIN
rendering experiment is the well known Puget Sound
data set (2563548 vertices, after QuadTIN-preprocess
error tolerance = 6 meters, [PAL02]). The results were
averaged over 3000 frames in a window of 1024 x
768 pixels using an error tolerance equal to one pixel
(projective tolerance of geometric error projected on
screen).

The chosen CGM size was 216 = 65536 following the
same criteria applied as for the experiments with
FastMesh. The size of each vertex element in this case
is 32 bytes: 3 floats (position) + 3 floats (normal) + 2
floats (texture coordinate). The camera trajectories
tested to perform the CGM analysis with the QuadTIN
rendering system are the following (see Figure 11):

• Circular camera trajectory.
• Camera rotation with fixed eye.
• Straight line camera trajectory.

a) b) c)
Figure 9: Terrain rendering camera trajectories: a)
circular trajectory. b) camera rotation with fixed eye.
c) straight line trajectory.
The CGM strategies applied to QuadTIN are the ones
described in detail in Section 3.2. The QuadTIN
system constructs an indexed triangle strip as required
for a standard IVA approach. Note that due to the
implicit definition of the active front, no information
about incrementally added or removed vertices

between consecutive frames is provided. QuadTIN
only reports which vertices are selected for a
particular frame and LOD. Note again that the CGM
extension only affects the rendering time but not the
LOD-selection and meshing parts of the VDPM
framework, and hence we focus on the achievable
rendering speed-up which is the sole target of the
CGM.

Figure 12 shows four columns, one for each rendering
strategy, for each camera trajectory: the first column
for the standard IVA mode, and the three others for
the different CGM strategies. In this case, the best
result is achieved by the First Available (FA) strategy.
Despite the fact that the FA strategy still makes the
worst use of the geometry cache (see Table 4), its
simple and fast data structures are still advantageous
over the doubly-linked list of slots in the two different
LRU CGM strategies. This result is not completely
surprising as the minor data transfer overhead of FA is
amortized by the simple and fast array data structure
for slots.
The straight line camera trajectory deserves a special
discussion (see Figure 13c)) since the FA strategy
remains the fastest despite its bad reuse of cached
geometry. The LRU and LRU+PQ10% strategies
require more computation time but much less data
transfer. Depending on the CPU speed in relation to
the AGP bus bandwidth this result may slightly
change, and the LRU strategies may win over the FA
strategy for certain configurations. The relation
between CPU speed and AGP bus bandwith of the
system will decide which is the best strategy.

0

2
4

6
8

10

12
14

16
18

20

render modes for Puget Sound model (trajectory A)

tim
e

pe
r

fr
am

e
(m

ili
se

co
nd

s)

rendering CGM others

others 11.3 11.8 11.8 11.8

CGM 0 1.4 2.7 4.4

rendering 5.9 0.8 0.8 0.8

glDrawElements CGM: First
Available

CGM: LRU CGM:LRU+PQ10%
0

5

10

15

20

25

30

render modes for Puget Sound model (trajectory B)

tim
er

 p
er

 fr
am

e
(m

ili
se

co
nd

s)

rendering CGM others

others 17.6 18.1 18.1 18.2

CGM 0 2.2 4.3 7.3

rendering 8.9 1.1 1.1 1.1

glDrawElements CGM: First
Available

CGM: LRU CGM:LRU+PQ10%
0

2

4

6

8

10

12

14

render modes for Puget Sound model (trajectory C)

tim
er

 p
er

 fr
am

e
(m

ili
se

co
nd

s)

rendering CGM others

others 7.8 8.1 8.1 8.1

CGM 0 0.9 1.2 1.5

rendering 3.8 0.5 0.5 0.5

glDrawElements CGM: First
Available

CGM: LRU CGM:LRU+PQ10%

Figure 10: Per frame timing results (in miliseconds) for the Puget Sound data set for: a) circular camera
trajectory, b) camera rotation with fixed eye and c) straight line camera trajectory.

30000

50000

70000

90000

110000

130000

150000

170000

190000

0 500 1000 1500 2000 2500

number of frames (trajectory A)

ve
rt

ic
es

 in
se

rt
ed

 in
 v

id
eo

 m
em

or
y

First Available LRU LRU + PQ10%

30000

80000

130000

180000

230000

280000

0 500 1000 1500 2000 2500

number of frames (trajectory B)

ve
rt

ic
es

 in
se

rt
ed

 in
 v

id
eo

 m
em

or
y

First Available LRU LRU + PQ10%

0

50000

100000

150000

200000

250000

300000

0 500 1000 1500 2000 2500

number of frames (trajectory C)

ve
rt

ic
es

 in
se

rt
ed

 in
 v

id
eo

 m
em

or
y

First Available LRU LRU + PQ10%

Figure 11: Vertices inserted into video memory for the Puget Sound data set for: a) circular camera trajectory,
b) camera rotation with fixed eye and c) straight line camera trajectory.

CGM TYPE Trajectory A Trajectory B Trajectory C
First Available 322353 329214 102097
LRU 228694 63465 64688
LRU+PQ10% 200126 63465 64690

Table 4: Vertices inserted in video memory for the
CGM modes over 3000 frames (Puget Sound model).
The QuadTIN rendering speed-up factors are shown
in Table 5. The speedup of the rendering stage itself,
which is the only stage affected by the CGM, reaches
factors up to 2.7. This dramatically shows the
potential of using a CGM in a view-dependent LOD
rendering system.

camera CGM render modes
trajectory First Available LRU LRU + PQ10%

A 2.68 1.69 1.13
B 2.7 1.65 1.06
C 2.71 2.24 1.9

Table 5: QuadTIN speedups (just rendering stage)
for different CGM modes.

6. CONCLUSION
This paper presents several strategies to implement an
efficient Cached Geometry Manager that takes
advantage of on-board video card memory for caching
vertex data. It provides effective solutions to manage
the video memory as a geometry cache in order to
dramatically reduce the vertex data transfer rate from
main to video memory for each rendered frame. The
proposed techniques can be applied to a wide range of
view-dependent LOD rendering frameworks, and
allow the efficient reuse of cached geometry
information stored on the video graphics card.

The presented approaches significantly improve the
rendering performance of view-dependent LOD
rendering applications with little extra implementation
effort. Experimental results on two different VDPM
frameworks have confirmed the suitability and the
effectiveness of our approach to dramatically
accelerate the rendering stage. Overall performance
speed-up of observable frame rates heavily depends
on the application-side view-dependent LOD-
selection and meshing frameword. More recent and
improved VDPM frameworks – compared to the
tested FastMesh and QuadTIN systems – with
significantly lower LOD-selection and meshing cost
will exhibit significanly higher overall frame rate
performance if combined with a dynamic CGM as
demonstrated in this paper.

7. ACKNOWLEDGMENTS
This research was supported by the Spanish research
grant TIC 2002-750 and the New Del Amo award
UCDM-33657.

8. REFERENCES
[BAV98] BALMELLI L., AYER S., VETTERLI M.: Efficient

algorithms for embedded rendering of terrain models. IEEE Inter.
Conference on Image Processing ICIP 98 (1998), pp. 914-918.

[CGG03a] CIGNONI P., GANOVELLI F., GOBBETTI E.,
MARTON F., PONCHIO F., SCOPIGNO R.: BDAM - Batched

Dynamic Adaptive Meshes for High Performance Terrain
Visualization. EG/IEEE TCVG Symp. on Visualization 2003.

[CGG03b] CIGNONI P., GANOVELLI F., GOBBETTI E.,
MARTON F., PONCHIO F., SCOPIGNO R.: Planet-Sized
Batched Dynamic Adaptive Meshes (P-BDAM). IEEE
Visualization 2003, pp. 147–154.

[CLD03] COHEN J., LUBKE D., DUCA N., SCHUBERT B.:
GLOD: Level of Detail for the Masses (2003). URL
http://www.cs.jhu.edu/~graphics/ TR/TR03-4.pdf.

[DMP96] DE FLORIANI L., MARZANO P., PUPPP E.:
Multiresolution models for topographic surface description. The
Visual Computer (Aug. 96), pp. 317-345.

[DMP97] DE FLORIANI L., MAGILLO P., PUPPO E.: Building
and traversing a surface at variable resolution. IEEE Visualization
97 (1997), pp. 103-110.

[EKT01] EVANS W., KIRKPATRICK D., TOWNSEND G.:
Right-triangulated irregular networks. Algorithmica (March
2001), pp. 264-286.

[HCH03] HALL J. D., CARR N. A., HART J. C.: Cache and
Bandwidth Aware Matrix Multiplication on the GPU. Technical
Report UIUCDCS-R-2003-2328. University of Illinois at Urbana-
Champaign Computer Science Department. April 2003.

[Hop97] HOPPE H.: View-dependent refinement of progressive
meshes. SIGGRAPH 97 (1997), pp. 189-198.

[Kil99] KILGARD M. J.: NVIDIA OpenGL Extension
NV_vertex_array_range. URL: http://www.nvidia.com
/dev_content/nvopenglspecs/GL_NV_vertex_array_range.txt.

[KL01] KIM J., LEE S.: Truly selective refinement of progressive
meshes. Graphics Interface 2001, pp. 101-110.

[LE97] LUEBKE D., ERIKSON C.: View-dependent simplification
of arbitrary polygonal environments. SIGGRAPH 97 (1997) pp.
199-208.

[Lev02] LEVENBERG J.: Fast view-dependent LOD rendering
using cached memory. IEEE Visualization 2002, pp. 259–265.

[LKR96] LINDSTROM P., KOLLER D., RIBARSKY W.,
HODGES L. F., FAUST N., TURNER G. A.: Real-time,
continuous level of detail rendering of height fields. SIGGRAPH
96 (1996), pp. 109-118.

[LPT03] LARIO R., PAJAROLA R., TIRADO F.: Hyperblock-
QuadTIN: Hyper-block quadtree based triangulated irregular
networks. IASTED International Conference on Visualization,
Imaging and Image Processing (VIIP 2003), pp. 733-738.

[LRC03] LUEBKE D., REDDY M., COHEN J., VARSHNEY A,
WATSON B., HUEBNER R.: Level of detail for 3D graphics.
Morgan Kaufman. 2003.

[Mar00] MARSELAS H.: Optimizing Vertex Submission for
OpenGL. Game Programming Gems, pp. 353-360. Charles River
Media. 2000.

[MH02] MÖLER T., HAINES E,: Real-time rendering. 2nd edition.
A K Peters. 2002.

[Paj98] PAJAROLA R.: Large scale terrain visualization using the
restricted quadtree triangulation. IEEE Visualization 98 (1998),
pp. 19-26 and 515.

[Paj01] PAJAROLA R.: FastMesh: Efficient View-dependent
Meshing. Pacific Graphics 2001, pp. 22-30.

[PAL02] PAJAROLA R., ANTONIJUAN M, LARIO R.: QuadTIN:
quadtree based triangulated irregular networks. IEEE
Visualization 2002, pp. 395–402.

[Pup96] PUPPO E.: Variable resolution terrain surfaces. 8th
Canadian Conference on Comput. Geometry (1996), pp. 202-210.

[SS92] SIVAN R, SAMET H.: Algorithms for constructing quadtree
surface maps. 5th International Symposium on Spatial Data
Handling (August 1992), pp. 361-370.

[THO02] THOMPSON C. J., HAHN S., OSKIN M.: Using modern
graphics architectures for general-purpose computing: a
framework and analysis. 35th annual ACM/IEEE international
symposium on Microarchitecture (2002), pp. 306-317.

[XV96] XIA J. C., VARSHNEY A.: Dynamic view-dependent
simplification for polygonal models. IEEE Visualization 96
(1996), pp. 327-3.

