
Multi-mesh caching and hardware sampling

for progressive and interactive rendering

Gabriel Fournier Bernard Péroche

L.I.R.I.S : Lyon Research Center for Images and Intelligent Information Systems

CNRS / INSA de Lyon / Université Lyon 1 / Université Lyon 2 / Ecole Centrale de Lyon
Bâtiment Nautibus, 8 boulevard Niels Bohr

69622 Villeurbanne Cedex, FRANCE

gabriel.fournier@liris.cnrs.fr bernard.peroche@liris.cnrs.fr

ABSTRACT
We present a framework for progressive and interactive rendering with soft shadows and indirect illumination of a

triangulated scene. Our method is a multi-pass algorithm that separates the rendering of each main component of

radiance in order to update the image as fast as new samples are computed. Those radiance samples are computed at

the vertices of multiple recursively subdivided meshes, allowing fast hardware interpolation between the samples.

These radiance samples are computed using irradiance values cached in multiple meshes. These meshes separate

the direct irradiance from each light source and the indirect one. Using multiple meshes gives us the ability to better

reuse samples and to better adapt the sampling density than if a unique mesh was used. We also propose to quickly

compute accurate soft shadows and indirect irradiance using the graphics hardware for visibility determination.

Keywords
global illumination, irradiance caching, progressive rendering, interactive rendering, graphics hardware, area light

source

1 INTRODUCTION

Real time realistic rendering on a standard PC, with

area light sources and indirect illumination, is still a

major challenge in computer graphics. In this paper,

we suggest a framework and a few tricks that should

bring us closer to this goal. Our approach allows pro-

gressive and interactive realistic rendering on a sin-

gle office PC of a triangulated scene lit by area light

sources. We chose to favor interactivity over image

quality, but our progressive rendering algorithm makes

the image tends towards full quality when the user

lingers in the same area. Our method does not need

a long preprocessing. It can provide fair quality im-

ages in a few seconds, hence it can be useful for image

preview while designing a scene.

Our approach is a multi-pass method. We separate the

rendering of the main radiance components: direct dif-

fuse, direct specular and indirect diffuse. These ra-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Conference proceedings ISBN 80-903100-7-9
WSCG’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency - Science Press

diances are computed at the vertices of multiple pro-

gressively refined meshes, using a different mesh for

each part of the radiance. To compute these radiances,

we use an irradiance sample cache. This cache is also

made of multiple progressively refined meshes. We

use different meshes to store the direct irradiance of

each light source, and the indirect irradiance. This new

approach allows us to limit the number of computed

samples by reusing already computed ones. Irradiance

samples are computed using the hardware for visibility

determination.

After a few words on the ideas that led us to our solu-

tion (Section 2), we will give a quick overview of our

method (Section 3). Then we will describe with more

details our multi-mesh caching framework (Section 4),

how we propose to sample irradiance to fill our cache

(Section 5) and how this cache is rendered through

multiple passes (Section 6). We will give some results

(Section 7) that we will discuss (Section 8).

2 PREVIOUS WORK

Our approach rests on well-known techniques: irra-

diance caching, progressive refinement and use of a

triangular mesh for hardware interpolations, uncou-

pling of rendering and lighting computations, storage

of illumination samples in an object-space hardware-

rendered mesh, and hardware irradiance sampling. All



these techniques will be developed in the next subsec-

tions.

Irradiance and radiance caching
Computing high quality indirect irradiance samples

for each pixel of an image is very costly. Fortunately,

indirect irradiance changes very slowly over a surface.

Irradiance caching, introduced by Ward et al. [War88],

takes advantage of this property by interpolating in-

direct irradiance between a few fully computed and

cached samples.

Zaninetti et al. extended this method proposing light

vectors [Zan98]. Instead of caching irradiances, they

took into account the BRDF of the objects and stored

radiances, allowing glossy objects to be rendered.

Noticing that direct, indirect and caustic components

of radiance have different frequencies, they sampled

and cached each one separately. In their method, ren-

dering is a two pass process. First a seed of samples

is generated, then the scene is rendered using those al-

ready computed samples to interpolate radiance in be-

tween. With this technique, samples are cached in a

kd-tree and interpolations are computed using a vari-

ous number of samples. Those interpolations eventu-

ally lead to noisy radiance values. The major problem

of this method when trying to implement an interactive

renderer, is that radiance samples are view dependent,

hence they cannot be re-used from frame to frame.

To overcome this difficulty, Crespin and Péroche

[Cre04] extended the light vectors cache and used a

five dimensional cache where light vectors are com-

puted and cached for many viewing directions. While

rendering, light vectors are interpolated according to

the viewer’s position. However, none of these caching

methods is able to provide interactive rendering, and

they all require a costly first pass.

Progressive rendering
Progressive rendering algorithms make it possible to

bypass a long preprocessing. This comes at a cost:

the first rendered images are only coarse approxima-

tions, but they may provide useful information to the

user who is no more required to wait. The light vec-

tors method caches samples in an object space struc-

ture. Another solution is to work in the image space.

This way, Painter and Sloan [Pai89] proposed to par-

tition the image as a 2D-tree whose leaves are recur-

sively subdivided according to the number of pixels

they cover and the variance of the samples they con-

tain.

The idea of working in the image space was taken up

by Pighin et al.[Pig97]. They create a triangulation of

the image from a set of samples taken around the dis-

continuities so that these discontinuities can correctly

be rendered. The generated triangles are quickly ren-

dered using the graphics hardware that interpolates be-

tween the samples. This technique is not interactive

but it allows a quick preview of a scene.

The Tapestry method proposed by Simmons and

Séquin [Sim00] provides interactivity through the use

of a 2D and a half mesh. This mesh is projected

onto a sphere around the observer: this way, full re-

computation of the image can be avoided when the ob-

server moves only a little. Nevertheless, geometric and

lighting discontinuities remain fuzzy at the beginning

of the rendering process.

Rendering and sampling uncoupling

To reach interactivity, Walter et al. [Wal99] pro-

posed to separate illumination sampling from render-

ing. The sampling process computes light samples

and stores them in a render cache, while the render-

ing process uses those samples to generate the cur-

rent one. The render cache keeps old samples from

the previous frame that are reprojected in the current

frame by the rendering process. Nonetheless, this im-

age based method suffers from artefacts when the user

views some part of the scene that has never been ren-

dered before.

To overcome the render cache artefacts, Tole et al.

[Tol02] proposed to compute and store shading val-

ues in the object space, more precisely at the vertices

of a progressively refined mesh. Their shading cache

is gradually filled while a process renders the image

using the graphics hardware. This method does not

suffer from reprojection artefacts. Even if the illumi-

nation is coarsely computed, the scene geometry and

textures are rendered at full quality providing the user

much more pleasant images than the render cache.

This method uses a unique mesh to approximate ra-

diance from different sources, leading to unnecessary

sampling and limited re-use of already computed sam-

ples. Our method is greatly inspired by this last one,

but as explained in the upcoming sections, we use

more than one mesh to overcome the shading cache

limitations.

Dmitriev et al. [Dmi02] also reach interactivity by

separating the rendering of hardware computed direct

lighting from the rendering of indirect lighting com-

puted by path tracing. Photons are stored at the ver-

tices of a dense mesh of the scene. Photons are packed

around a pilot photon that has a path close to theirs.

When the scene is modified, pilot photons are traced

again through the scene to detect changed areas that

need resampling.



Hardware sampling
Graphics hardware is getting more and more pro-

grammable at each new generation, allowing new us-

ages of GPUs. Purcell et al. [Pur02] showed that it

is possible to interactively ray trace images using the

GPU to compute ray triangles intersections. Global il-

lumination can also be computed with the photon map

algorithm [Jen96] using the GPU as proposed by Pur-

cell et al. [Pur03]. Those methods use fragment pro-

grams and render to texture functionality of current

hardware but are not really faster than the same algo-

rithms implemented on a CPU.

Larsen and Christensen [Lar04] make a more useful

usage of both the CPU and the GPU, giving each one

some work. Their method separates the rendering of

direct and indirect illumination. Direct illumination

is computed by the hardware. Indirect illumination

is computed using a photon map. Photons are traced

on the CPU whereas the final gathering step is made

on the GPU. This method reaches interactivity but ac-

cording to the authors results, indirect illumination is

very sparsely sampled.

3 OVERVIEW OF OUR METHOD
The framework we propose makes use of the irradi-

ance cache idea. Like Zaninetti and al. [Zan98], we

store each irradiance component separately. Like Tole

and al. [Tol02], our sample cache is built on the ge-

ometrical mesh. This irradiance cache is filled with

hardware sampled direct and indirect irradiances. The

cached irradiance values are used to progressively and

adaptively build and refine a radiance mesh. Final im-

ages, displayed to the user, are rendered through mul-

tiples passes, mixing radiances with the object colors.

(Fig. 1) gives an overview of our framework that will

be explained with more details in the next sections.

Figure 1: Overview of our framework

4 MULTI-MESH CACHING
Our strategy to reach interactivity is to compute as few

radiance samples as possible. With this aim in view,

we need to re-use samples from frame to frame and

interpolate between samples in the same frame. More

than that, we want to re-use part of already computed

samples. While computing indirect irradiance, the di-

rect one is needed. Hence, we chose to split direct and

indirect irradiance computations and storage in order

to be able to use the direct irradiance to compute the

indirect one.

Splitting irradiance and radiance
We want to progressively compute and render samples.

A recursively subdivided triangular mesh allows us to

easily refine the sampled radiance field and to quickly

update the image using the graphics hardware. The

traditional object space cache approach is a unique ir-

radiance cache that mixes direct and indirect irradi-

ance, limiting their re-use and leading to unnecessary

sampling. To overcome those limits, we chose to use

more than one cache mesh. Moreover, we want to dis-

tinguish irradiance (energy incoming from any direc-

tions) from radiance (energy emitted in a particular di-

rection). Irradiance is long to compute but can be re-

used as long as the scene does not change, while radi-

ance is fast to compute using cached irradiance values

(see Fig. 2). We currently use:

• one direct irradiance mesh for each light source

• one indirect diffuse irradiance mesh

• one direct diffuse radiance mesh

• one direct specular radiance mesh

All those meshes are built over the same geometrical

mesh. When a triangle is subdivided, it is always split

in four, its edges being split in half.

We store in separate meshes the direct irradiance of

each light source. This allows us to save computations

when the direct irradiances of different light sources

do not have the same discontinuities. In a given area,

only the meshes whose irradiance contains disconti-

nuities are refined. We use another mesh for indirect

irradiance that has far less sharp discontinuities than

the direct ones. The irradiance meshes can be seen

as illumination maps. The direct ones contain direct

shadows, while the indirect one contains color bleed-

ings and indirect shadows. The mesh representation is

more suited to store soft shadows as sharp discontinu-

ities lead to deeper subdivision, but it is nevertheless

able to handle sharp shadows of point light sources.

What we need to render is the radiance emitted by the

seen objects that reaches the eye of the observer. Ra-

diance can be divided in two parts: direct radiance and

indirect one. Using a separable BRDF model, direct

radiance can also be split in two parts: the diffuse one

and the specular one. The diffuse part of direct ra-

diance does not change when the user moves. Thus

it can be computed once, cached in the vertices of a



mesh and re-used for many different frames. We use

a mesh to progressively compute the specular part of

direct radiance for each frame, starting from scratch

when the observer moves. Indirect radiance is very

long and difficult to compute if all kinds of light paths

are taken into account. We currently only take into

account indirect diffuse radiance that can be directly

computed, on the fly while rendering, from indirect

diffuse irradiance, so we don’t use another mesh for

indirect irradiance.

Figure 2: From irradiance to radiance

From irradiance to radiance
We chose the modified Phong BRDF [Laf94] for its

simplicity and its energy conservation property, but

other separable BRDFs could be used. The radiance at

point x incoming from direction
→

ωr we need to com-

pute and display is

Ld(x,
→

ωr) =

∫
Ω

fd(x,
→

ωr,
→

ωi)L(x′,
→

ωi)cosθ dω (1)

Ls(x,
→

ωr) =

∫
Ω

fs(x,
→

ωr,
→

ωi)L(x′,
→

ωi)cosθ dω (2)

where fs and fd are the diffuse and specular compo-

nents of each object BRDF.

In the direct irradiance mesh, we store for each light

source ls of area S the irradiance

Ed(x, ls) =

∫
ls

L(x′,
→

ωi)cosθ cosθ′
dS

r2
(3)

The visibility of the light source is taken into account

in the computation of Ed(x, ls). Using the modified

Phong BRDF, diffuse direct radiance can easily be

computed from the irradiance cached for each light in

the irradiance mesh:

Ldd(x,
→

ωr) =
1

π

∑
lights

Ed(x, ls) (4)

To compute the specular part of the direct radiance we

should integrate:

n+2

2π
cosnα L(x′,

→

ωi)cosθ (5)

over the solid angle sustained by each light source,

where n is the specular exponent and α the angle be-

tween the perfect specular reflection of the light source

center and the outgoing direction
→

ωr. This would be

too costly for interactive rendering. We want to re-use

already computed samples, so we use the irradiance

stored in the irradiance mesh for each light source and

multiply it by the specular part of the BRDF evaluated

at the center of the light source:

Lds(x,
→

ωr) =
∑

lights

(
n+2

2π
cosnα Ed(x, ls)) (6)

This simplification comes down to replacing area light

sources with point light sources for specular radiance

estimation. The resulting errors can be misplaced and

wrong shaped specular highlights.

Sampling all the components of indirect irradiance is

currently too costly, we only sample a part of diffuse

indirect irradiance: light paths that diffusely bounce

only once between the light source and the point of in-

terest. Paths with two bounces could easily be added

using the one-bounce indirect irradiance being com-

puted; longer paths can often be neglected since in a

directly lit scene, their contributions are very small.

This method is biased but provides visually satisfying

images. Diffuse indirect irradiance is approximated

using the diffuse direct radiance:

Ei(x) =

∫
Ω

Ldd(x
′,

→

ωi)cosθ dω (7)

To compute the diffuse indirect radiance, we just com-

pute:

Lid(x) =
1

π
Ei(x) (8)

Mesh subdivision
The first image displayed is rendered using radiance

and irradiance that are only computed at the vertices

of the radiance meshes roots. These roots are in fact

the geometrical mesh elements of the scene. The radi-

ance meshes are then progressively refined to take into

account radiance discontinuities. Each time a radiance

is computed, irradiance values are fetched, for each

light source, in the corresponding irradiance meshes.

When those values are not available or cannot be con-

fidently interpolated, the irradiance meshes are sub-

divided. The radiance meshes refinement guides the

direct irradiance meshes ones. We will explain in the

next subsections how our meshes are subdivided.

4.3.1 Radiance mesh subdivision criteria

Each mesh element is a triangular patch. A radiance

patch may be subdivided only if it lies over more than



one pixel. To decide if a mesh element should be sub-

divided, each of its edges is split into two equals parts.

Two radiances are evaluated at its middle: one is com-

puted and the other is interpolated. If the computation

and the interpolation give a close result, the edge will

not be subdivided any more. When at least one edge

of a triangle has been subdivided because it contains

a discontinuity, the triangle is split into four triangles.

This avoids visible T-vertices, since triangles on both

sides of the subdivided edge will be split. A size crite-

rion is required in order not to miss small radiance dis-

continuities: triangles are subdivided until they cover

a small number of pixels. Once triangles have been

subdivided enough to meat the size criterion without

finding any discontinuities, the unnecessary subdivi-

sions are undone to save memory space.

4.3.2 Noticeable color differences
To compare interpolated and sampled radiances at the

middle of an edge, we need a criterion that takes into

account the user perception. The maximum unnotice-

able difference between the two values depends on the

radiance of the rendered pixel on screen, the user vi-

sual system, the monitor settings and its environment.

Modeling this whole chain is by itself a research area;

we wanted something simple. The problem we ran on

was that a lot of useless mesh subdivisions occurred

in dark areas of the scene. On our monitor, we can-

not distinguish a black (0x000000) patch from a lighter

black (0x0A0A0A) one. Our algorithm has to take this

fact into account. Supposing the user, the environ-

ment and the monitor do not change, we experimen-

tally generate a map that associates a maximum un-

noticeable difference value for a set of radiances. To

compare interpolated and sampled radiance, we first

process these values with the tone mapping algorithm

to get an idea of the color values that will be rendered

on the screen. Then we compute the difference and

compare it with the corresponding value in our map.

A real visual model would give far more accurate val-

ues but at the expense of a high computation cost. Our

solution gives acceptable results at almost no cost.

4.3.3 Priorities
To provide the best quality images in the shortest time,

the radiance mesh elements are given subdivision pri-

orities. These priorities depend on the radiance differ-

ence between the element vertices and on the element

visible size: a high contrast over an element is a good

hint for radiance discontinuities and the bigger an el-

ement is, the more chance it has to contain disconti-

nuities. We use the visible size of the triangle because

we don’t want to subdivide hidden triangles. The mesh

can be seen as a set of quad-trees, each quad-tree be-

ing built over a triangle of the geometrical mesh. The

priorities are computed at the leaves of the quad-trees

and are spread to their root. The priority of a node is

the maximum of its sons priority. This way, given a

geometrical mesh triangle, we can quickly find its ra-

diance element leaf that requires to be subdivided first.

To decide which geometrical triangle will be subdi-

vided, we could sort the elements or use a hit and test

method as in [Tol02]. Sorting is too slow and the hit

and test method requires many tests. Instead, we de-

veloped the following algorithm. We start the subdi-

vision process with a big triangle which has a quite

high priority. Then we randomly pick a triangle; if the

picked triangle has a higher priority than the last subdi-

vided one, we switch to the picked one, otherwise we

keep refining the same triangle until its priority falls

under the priority of the next randomly picked trian-

gle.

4.3.4 Irradiance mesh subdivision
The subdivision of the direct irradiance meshes is

guided by the subdivision of the radiance mesh de-

scribed before. Each time a direct radiance value needs

to be computed, the irradiance of each light source

is fetched in the irradiance mesh. If the direct irra-

diance mesh is not subdivided enough to provide the

requested value, it is subdivided at this time. The irra-

diance mesh subdivision is limited by the subdivision

of the radiance one, thus an element will not be indef-

initely subdivided.

Diffuse indirect radiance and diffuse indirect irradi-

ance are directly linked (equation 8). As the radiance

is computed to be displayed, we use the same view

dependent criteria that was used to subdivide the radi-

ance meshes.

5 SAMPLING
Our mesh-based progressive rendering approach is

very sensitive to noise. Noisy samples may lead to

needless subdivisions of the meshes. To quickly ren-

der high quality images, we need to compute high

quality irradiance values to fill our irradiance caches.

As told earlier, we sample direct irradiance from each

light source and indirect irradiance separately. Tra-

ditionally, ray tracing was used to collect irradiance.

Area light sources were sampled using hundreds of

rays to determine their visibility from the point to

shade. Indirect irradiance was collected by sampling

an hemisphere built over the point to shade. These

methods provide good results but are often too slow

to be useful in interactive rendering on a single CPU.

Furthermore those methods monopolize the CPU and

make no use of the GPU. Using the GPU as a SIMD

coprocessor to compute ray object intersections is fea-

sible but at a high cost: ray packing and asynchronous



results handling. Our idea is to use the GPU in a more

regular way.

Area light sources sampling
We propose to take advantage of the efficient visibil-

ity determination capacity of the graphics hardware to

obtain a high quality estimation of the irradiance of an

area light source at a given point. We render the scene

observed from the point to shade, clipping the viewing

frustum to a small frustum that fully includes the area

light source.

Assuming that the light sources are isotropic, their ra-

diance is the same all over their surface. We need to

compute equation (3). Our method uses a fragment

program to compute accurate values: cosθ and the

solid angle of the pixel are evaluated for each pixel.

To sum the fragment program output values repre-

sented and stored as floats in a pixel buffer, we use two

pixel buffers to progressively reduce the image until all

the values are accumulated in a small enough image

(16x16) that can be quickly read back to the CPU.

When the scene is rendered from the point to shade,

the whole scene does not need to be sent to the GPU,

since only a few triangles in the viewing frustum can

occlude the light source. We use a grid to store the

scene triangles. Computing the exact intersection of

the frustum and the grid could be quite time consum-

ing, so we chose to approximate the frustum with a

carefully chosen bounding cone and each grid cell

with a bounding sphere. To know if the cone inter-

sects a grid cell, only one test is required: does the

grid cell center belongs to the bounding cone? (see

Fig. 3). This method is conservative, a few grid cells

are being falsely detected as crossed by the frustum,

but none are forgotten.

Figure 3: Area light source sampling

Indirect irradiance sampling
Sampling indirect irradiance through an hemisphere

using a ray tracing method is far more time consum-

ing than sampling the direct one. More rays are needed

and those rays are not as coherent as those sent when

sampling direct irradiance over an area light source.

This makes CPU SIMD optimizations like those pro-

posed by Wald et al. [Wal01] less efficient. As for

sampling direct irradiance, we chose to use the graph-

ics card high visibility determination capacity.

As said earlier, we currently only take into account in

our indirect irradiance computations light paths with

one diffuse bounce. To gather this indirect irradiance,

as Larsen and Christensen [Lar04], we chose to ren-

der the scene only once on a plane. Using a field of

view of 160 degrees, we forget only 2% of the in-

coming radiance. Rendering the whole diffuse radi-

ance mesh would be very costly and useless. If the

scene is sampled using a 128x128 image, small trian-

gles in the radiance mesh won’t be visible. We chose

to send an undersampled version of the radiance mesh

to the GPU to increase speed. This coarse version of

the direct diffuse radiance mesh has to be built for the

whole scene before starting to sample indirect radiance

since any part of the scene could indirectly contribute

to the indirect radiance of a visible geometrical mesh

element. The energy is collected in the image by sum-

ming it with two pbuffers as we did for direct irradi-

ance. Again, the value of each pixel has to be weighted

with the solid angle covered by the pixel and with the

cosθ term of the irradiance formula. This time, the

solid angle of field of view is constant so the weight of

each pixel can be precomputed and stored in a texture.

6 MULTI-PASS RENDERING

Generating an image with our method is done through

multiple rendering passes. In a first pass, we only ren-

der the geometrical mesh using an identifier (a 32 bits

address, or an index in an array) for each triangle as

color. The generated image is read back to the CPU.

This is costly, but this allows us to compute the visible

size of each triangle and to build the set of the visible

triangles. The occlusion query extension could have

been used to avoid the read back, but to get the exact

number of visible pixels of each triangle, two render-

ing passes would have been needed: the first one to

initialize the z-buffer, the second one to count visible

pixels.

Using the visible triangles set as input, the second

pass generates two images containing the material re-

flectance properties of each triangle. We split in two

images the diffuse and specular properties. These ma-

terial reflectance properties are the diffuse or specular

colors of each triangle times their diffuse or specular

reflectance coefficient. Those two images can be gen-

erated in a single pass using multiple output buffers or

packing the two images in a single output texture.



With the number of visible pixels computed in the first

pass, we update the priority of each radiance mesh el-

ement. This radiance mesh can be rendered in a third

pass. Actually, two passes are needed to render the dif-

fuse and the specular direct radiance meshes, and one

more pass is needed to render the diffuse indirect irra-

diance one whose irradiances are transformed on the

fly in radiances according to equation (8).

A final pass is needed to merge all the material prop-

erties images and the radiance ones. This last pass is

very fast, it requires to render only a single quad tex-

tured with the five images computed in the preceding

passes. According to the number of texture units avail-

able on the graphics card, more than one pass may be

needed. The fragment program used in this last pass

includes a tone mapping algorithm to convert the radi-

ance of each pixel into a displayable color.

This image decomposition may seem costly, but it al-

lows to progressively update the image almost as fast

as new samples are computed. When the user keeps

looking at the same frame, the mesh subdivision thread

works at full speed. Each time a radiance mesh ele-

ment is subdivided, the four triangles created are ren-

dered on the image corresponding to the subdivided

mesh (direct diffuse, direct specular or indirect dif-

fuse). The final pass that recombines all the radiance

components and the object reflectance is applied at

constant time rate to update the image displayed to the

user.

7 RESULTS
We tested our method on a P4 2.5 GHz - 768MB of

RAM - Nvidia 256MB QuadroFX3000. The following

results are computed on a small scene of 7000 triangles

with one area light source. About fifteen seconds are

required to compute the coarse direct radiance mesh.

During this time a constant indirect radiance value is

used while direct radiance is progressively subdivided.

Then, direct and indirect radiance meshes are simul-

taneously refined and the image is progressively up-

dated.

The first rendering pass that requires a read back to the

CPU of the rendered triangles identifier is the costliest.

Working with a 640x480 image requires 40ms. The

material reflectance property and radiance rendering

passes are faster: about 12ms each. The final pass that

merges the luminance and material reflectance images

is also fast: 10ms. Globally, 100ms are required to

obtain an image using already computed samples.

On our test scene, the coarse direct radiance mesh used

to compute the indirect one contains 9200 samples. To

obtain the image (Fig. 4) 26000 direct and 9000 indi-

rect samples are required. The total number of com-

puted samples is linked to the subdivision criteria.

The direct irradiance sampling requires two phases:

rendering the objects that might be in the point to area

light source frustum and summing the irradiance of

each pixel. The current read back limits make the sec-

ond phase the costliest one (about 70% of the total

time). Using a 64x64 image to sample direct irradi-

ance requires about 0.9ms. Sampling the light source

with a ray tracer with the same density requires 32ms.

With a ray tracer, less rays are needed since non uni-

form sampling (that provides less banding artifacts)

can be used. Ray tracing with 16x16 rays requires

2.6ms, which is the cost of hardware sampling using a

128x128 image. Hardware sampling is a lot faster than

ray tracing and it frees the CPU that can be used for

other tasks, like mesh subdivision, while samples are

computed. Indirect irradiance sampling is a bit longer

as all the scene is sent to the GPU. 9ms are required

for each sample using a 256x256 pixels image.

8 DISCUSSION AND FUTURE WORK

We think our method has interesting advantages over

similar ones. It does not require preprocessing as pho-

ton map based methods do. Sampling radiances at the

vertices of a mesh avoids the costly interpolations of

light vectors methods or the density estimations of the

photon map. Our caching method, splitting irradiances

and radiances, allows more re-use of already computed

values. Our area light source sampling method, that

uses different meshes to progressively compute each

light source shadow, limits the number of computed

samples to a minimum. We chose not to sample direct

radiance using traditional interactive GPU based meth-

ods (shadow maps or shadow volumes) that might be

faster, but would not allow to store the computed radi-

ance in RAM for use in the indirect radiance compu-

tations. Our sampling method is not yet able to pro-

duce real time soft shadows nor real time indirect il-

lumination, but it is a lot faster than ray tracing based

methods. Upcoming GPU extensions might allow us

to keep the direct radiance on the GPU board avoiding

the GPU to CPU transfer bottleneck.

The strong link between the caches and the geometry

can be criticized for its lakes of freedom in the scene

representation, but this is the key for interactive speed.

The major problem of our solution is its memory cost.

Rendering large scene containing very tessellated ob-

jects is a problem since we construct our meshes over

the geometrical one. A solution we are working on

is the construction of the radiance meshes on the ob-

ject bounding boxes, building cubemaps to render the

objects radiances. Other currently missing features

we are working on include specular reflections, caus-

tics and dynamic scene handling. We anticipate that

our use of different meshes should help us to notice



Figure 4: (a) Final image (b) Direct radiance samples (c) Indirect radiance image and samples

changes in dynamic scene irradiance, allowing us to

quickly update our irradiance caches. The use of a vi-

sual model to guide our mesh subdivision is another

research area we want to explore.

9 CONCLUSION
Real time rendering of large scenes with soft shadows,

indirect illumination and caustic is not achieved yet.

We think our multi-mesh method is an interesting step

towards this goal. The fast increase in performance

and functionality of GPUs will offer us new possibil-

ities. In our mind, porting to the GPU existing CPU

algorithms does not take full advantage of the graph-

ics hardware. GPUs are fast for geometry rasterization

and interpolations; its limited programming and mem-

ory model are quickly evolving, we have to foresee

new algorithms to exploit those upcoming capacities

to compute shadows and global illumination.

References
[Cre04] Crespin, R., and Péroche, B. Lights Vectors for

a Moving Observer. In 12-th International Conference
in Central Europe on Computer Graphics, Visualization
and Computer Vision (WSCG), Plzen , Czech Repub-
lic, pages 99–96, Plzen , Czech Republic, 2-9 february
2004. University of West Bohemia.

[Dmi02] Dmitriev, K., Brabec, S., Myszkowski, K., and
Seidel, H.P. Interactive global illumination using se-
lective photon tracing. In Rendering Techniques 2002:
13th Eurographics Workshop on Rendering, pages 25–
36, June 2002.

[Jen96] Jensen,H.W. Global illumination using photon
maps. In Eurographics Rendering Workshop 1996,
pages 21–30, June 1996.

[Laf94] Lafortune, E.P., and Willems, Y.D. Using the Mod-
ified Phong BRDF for Physically Based Rendering.
Technical Report CW197, Leuven, Belgium, 1994.

[Lar04] Larsen, B.D., and Christensen, N. Simulating pho-
ton mapping for real-time applications. In Eurographics
Symposium on Rendering, jun 2004.

[Pai89] Painter, J., and Sloan, K. Antialiased ray tracing by
adaptive progressive refinement. In Computer Graph-
ics (Proceedings of SIGGRAPH 89), volume 23, pages
281–288, July 1989.

[Pig97] Pighin, F.P., Lischinski, D., and Salesin, D.H. Pro-
gressive previewing of ray-traced images using image
plane discontinuity meshing. In Eurographics Render-
ing Workshop 1997, pages 115–126, June 1997.

[Pur02] Purcell, T.J., Buck, I., Mark, W.R., and Hanrahan,
P. Ray tracing on programmable graphics hardware.
ACM Transactions on Graphics, 21(3):703–712, July
2002.

[Pur03] Purcell, T.J., Donner, C., Cammarano, M., Jensen,
H.W., and Hanrahan, P. Photon mapping on pro-
grammable graphics hardware. In Graphics Hardware
2003, pages 41–50, July 2003.

[Sim00] Simmons, M., and Séquin, C.H. Tapestry: A dy-
namic mesh-based display representation for interactive
rendering. In Rendering Techniques 2000: 11th Euro-
graphics Workshop on Rendering, pages 329–340, June
2000.

[Tol02] Tole, P., Pellacini, F., Walter, B., and Greenberg,
D.P. Interactive global illumination in dynamic scenes.
ACM Transactions on Graphics, 21(3):537–546, July
2002.

[Wal01] Ingo Wald, Philipp Slusallek, Carsten Benthin, and
Markus Wagner. Interactive rendering with coherent
ray tracing. Computer Graphics Forum, 20(3):153–164,
2001.

[Wal99] Walter, B., Drettakis, G., and Parker, S.. Interac-
tive rendering using the render cache. In Eurographics
Rendering Workshop 1999, pages 19–30, June 1999.

[War88] Ward, G.J., Rubinstein, F.M., and Clear, R.D. A
ray tracing solution for diffuse interreflection. In Com-
puter Graphics (Proceedings of SIGGRAPH 88), vol-
ume 22, pages 85–92, August 1988.

[Zan98] Zaninetti, J., Serpaggi, X., and Péroche, B. A
vector approach for global illumination in ray tracing.
Computer Graphics Forum, 17(3):149–158, 1998.


