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ABSTRACT

A scale space approach is taken for building Bounding Volume Hierarchies (BVHs) for collision detection. A
spherical bounding volume is generated at each node of the BVH using estimates of the mass distribution.
Traditional top-down methods approximates the surface of an object in a coarse to fine manner, by recursively
increasing resolution by some factor, e.g. 2. The method presented in this article analyzes the mass distribution
of a solid object using a well founded scale-space based on the Diffusion Equation: the Gaussian Scale-Space. In
the Gaussian scale-space, the deep structure of extremal mass points is naturally binary, and the linking process is
therefore simple.
The main contribution of this article is a novel approach for constructing BVHs using Multi-Scale Singularity
Trees (MSSTs) for collision detection. The BVH-building algorithm extends the field with a new method based on
volumetric shape rather than statistics of the surface geometry or geometrical constructs such as medial surfaces.
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1 INTRODUCTION
In physics-based animation, collision detection often
becomes the bottleneck, since a collision query needs
to be performed in every simulation step in order to
determine contacting and colliding objects. Anima-
tions can have many objects, all of which may have a
complex geometry, such as polygonal soups of several
thousands facets, and it is therefore a computationally
heavy burden to perform collision detection especially
for real-time interaction.
Bounding Volume Hierarchies (BVHs) are widely
used in computer graphics, e.g. for ray tracing [GS87],
and they are quite popular in animation (e.g. [BMF03]
uses them for cloth animation), since they are applica-
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ble of handling more general shapes than most feature-
based and simplex-based algorithms, they tend to gen-
erate smaller hierarchies than spatial subdivision algo-
rithms, and they offer a graceful degradation of ob-
jects, which is highly useful when accuracy is to be
traded for performance. New performance improve-
ments of BVHs is therefore of great practical and theo-
retical interest to the computer graphics and animation
community.
The main contribution of this paper is a novel algo-
rithm for bottom-up construction of spherical approx-
imating BVHs. We prefer our hierarchies, firstly be-
cause they save memory, and therefore increases sim-
ulation performance, when compared to traditional
BVH, and secondly because they are a direct imple-
mentation of the mass of objects rather than their
boundary representation.
In this article we will restrain ourselves from the n-
body problem and only consider narrow phase [Hub93]
collision detection of solid non-deformable objects.

1.1 PREVIOUS WORK

There is a wealth of literature on collision detec-
tion, and many different approaches have been in-
vestigated. Spatial subdivision algorithms like Bi-



nary Space-Partitioning (BSP) tree [Mel01], octree
[TC96, GDO00, ES03], k-d trees and grids [GDO00,
ES03], feature-based algorithms like polygonal inter-
section [MW88], Lin-Can [PML97], VClip [Mir98],
SWIFT [EL01], recursive search methods [SL00],
simplex-based such as GJK [GJK88, vdB01], gener-
alized Voronoi diagrams [HKL

�
99], and signed dis-

tance maps [GBF03, BMF03, Hir02]. Finally there are
algorithms based on BVHs such as ours.
BVHs have been around for a long time. Consequently
there is a huge wealth of literature about BVHs. Most
of the literature addresses homogeneous BVHs and
top-down construction methods. A great variety of
different types of bounding volumes have been re-
ported: Spheres [Hub96, Pal95, DO00], axed aligned
bounding boxes (AABBs) [Ber97, LAM01], oriented
bounding boxes (OBBs) [GLM96, Got00], discrete
orientation polytypes (k-DOPs) [KHM

�
98, Zac98],

Quantized Orientation Slabs with Primary Orienta-
tions (QuOSPOs) [He99], Spherical shell [KPLM98],
and swept sphere volumes (SSVs) [LGLM99]. In gen-
eral, it has been discovered that there is a trade-off be-
tween the complexity of the geometry of a bounding
volume and the speed of its overlap test and the num-
ber of overlap tests in a query.
In contrast to bounding volumes types, there has only
been written little on approximating BVHs. To our
knowledge [Hub93] pioneered the field, where octrees
combined with simulated annealing were used to con-
struct a sphere tree, followed by [PG95, Pal95], cumu-
lating with a superior bottom-up construction method
based on medial surface (M-reps) [Hub96]. More
recently [OD99, DO00] used approximating sphere-
trees built in a top down fashion based on an octree for
time critical collision detection, and [BO04] used an
adaptive m-rep approximation-based top-down con-
struction algorithm.
There have been written even less about heteroge-
neous bounding volume hierarchies, although object
hierarchies of different primitive volume types are
a widely used concept in most of todays simulators
[Ode, Vor, Kar]. The SSVs [LGLM99] are one of the
most recent publications. The general belief is, how-
ever, that heterogeneous bounding volumes does not
change the fundamental algorithms, but merely intro-
duces a raft of other problems. It is also believed that
heterogeneous bounding volumes could provide better
and more tightly fitting bounding volumes resulting in
higher convergence towards the true shape volume of
the objects. This could mean an increase in the prun-
ing capabilities and a corresponding increase in per-
formance.
Most of the work with BVHs has addressed objects
that are represented by polygonal models. Many ex-
periments also indicate that OBBs (and other rectangu-
lar volumes) provide the best convergence for polygo-

nal models [GLM96, Got00, Zac98, LGLM99], while
spherical volumes are believed to converge best to-
wards the volume. The underlying query algorithms
for penetration detection, separation distance and con-
tact determination of BVHs have not changed much.
In its basic form, these algorithms are nothing more
than simple traversals.
To our knowledge, the trees based on the deep struc-
ture of Gaussian Scale-Space has not been used pre-
viously for generating BVHs in collision detection.
An alternative to Gaussian scale-space is curvature
scale-spaces, from which M-reps are derived. M-
reps based methods are state of the art for bottom-
up construction method [Hub96] and top-down con-
struction [BO04]. For deformable objects such as
cloth, bottom-up construction based on mesh topology
[VM95, VMT00, BFA02] are the preferred choice. In
[Ber97] a median based top-down method was pro-
posed for building an AABB tree. [LAM01] suggested
using a mesh connectivity-tree in a top-down construc-
tion method.

2 GAUSSIAN SCALE-SPACE
The

�����
dimensional Gaussian scale-space, ���	�
 ���� 	

, of an
�

dimensional image, ��� 	�
 �	
, is an ordered stack of images, where each image is

a blurred version of the former [Iij62, Wit83, Koe84].
The blurring is performed according to the diffusion
equation, ��� ����������� (1)

where
� � � is the first partial-derivative of the image in

the scale direction � , and � � is the Laplacian operator,
which in 3 dimensions reads

� � � � �! � � �" .
An example of the scale-space of a three-dimensional
solid cow is shown in Fig. 1. The continuous scale pa-
rameter enables smooth degradation of the object de-
tail.
The Gaussian kernel is the Green’s function of the heat
diffusion equation, i.e.

�$#&%(')�&*+�,�-#.%/*10324#&%(')�&*5� (2)
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�
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where �$#&%(�)�&* is the image at scale � , �-#.%/* is the origi-
nal image, 0 is the convolution operator, 24#&%(')�&* is the
Gaussian kernel at scale � , � is the dimensionality of
the problem, and �G�IH �AJLK , using H as the standard
deviation of the Gaussian kernel. The Gaussian scale-
space is henceforth called the scale-space in this arti-
cle. The information in scale-space is logarithmically
degraded, the scale-parameter is therefore often sam-
pled exponentially using HM�IHON >�P . Since differen-
tiation commutes with convolution and the Gaussian



Figure 1: An example of the scale-space of a solid cow [Bra]. From left to right, the images show the zero iso-
surfaces of the solid cow at scales H � � � K �������	� ��� . The small red, green, and blue spheres denote maxima,
minima, and saddles, respectively

kernel is infinitely differentiable, differentiation of im-
ages in scale-spaces is conveniently computed,�  �
 � #.% '&�&*+� �  �
 #7�-#.%/*10324#&%(')�&*&* �,�-#.%/* 0 �  �
 24#&%(')�&*�

(4)
Alternative implementations of the scale-space are
multiplication in the Fourier Domain, finite differenc-
ing schemes for solving the heat diffusion equation,
additive operator splitting, and recursive implementa-
tion [Der92]. We prefer the spatial convolution, since
it is guaranteed not to introduce new extrema in homo-
geneous regions. Typical border conditions are Dirich-
let, Cyclic repetition, and Neumann boundaries. We
use Dirichlet boundaries, where the image is extended
with zero values in all directions.
Although the dimensionality of the constructed scale-
space is one higher than the dimensionality of the orig-
inal image, critical points, in the image at each scale
are always points. A critical point is e.g. an extremum,�  � � � ! � � � " � � �

. Critical points are classified
by the eigenvalues of the Hessian matrix, the matrix of
all second derivatives, computed at that point. As we
increase the scale parameter, the critical points move
smoothly forming critical paths. Along scale, critical
points meet and annihilate or are created. Such events
are called catastrophe events, and the points where
they occur are called catastrophe points. The collec-
tion of events is called the deep structure of the image.
The notion of genericity is used to disregard events
that are not likely to occur for typical images, i.e.
generic events are stable under slight perturbation of
the image. There are only two types of generic catas-
trophe events in scale-space namely pairwise creation
events and annihilation events [Dam97], and it has fur-
ther been shown that generic catastrophe events only
involves pairs of critical points where one and only
one eigenvalue of the Hessian matrix changes its sign,
e.g. the annihilation of a minimum (+, +, +) and a sad-
dle (+, +, -). The implementation detail of the method
for extracting critical paths and catastrophe points in
3+1D scale-space can be found in [SSKJ03].

3 MSSTs
Multi-Scale Singularity Trees (MSSTs) are scale-space
based multi-scale image representation. They are con-
structed based on the nesting of image features in the
scale-space to represent the deep structure of the orig-
inal image. Two kinds of MSSTs are introduced in
[SSKJ05]: Extrema-Based MSSTs and Saddle-Based
MSSTs. Extrema-Based MSSTs will be discussed in
this article. The method produces rooted ordered bi-
nary trees with catastrophe points as nodes. In 3+1D
scale-space, catastrophes are also possibly caused by
creations or annihilation of saddle points, e.g. between
critical points with eigenvalues of the Hessian matrix
(+, +, -) and (+, -, -). These saddle-saddle annihilation
catastrophes together with all creation catastrophes are
ignored.
Other scale-space based methods that produce tree
structure but only for up to 2+1D scale-space can be
found in [LP90, Kui02].

3.1 Extrema Partitions

Given an image an any scale, we would like to parti-
tion the image at one scale into segments so that each
segment contains only and exactly one extremum. Let��� 	


be a compact connected domain and define� � � � 	 �
to be an image, �>�� �

as an extremum,
and �6 � � as an image point in the domain. Consider
a set of continuous functions � ��� � ����� � �

for which��# � *+���> and ��#�� *+���6 , � ���! "   , where �! "   is the set
of all paths in the domain from the extremum �> to the
point �6 , and � is parameterized using Euclidean arc-
length. We define the energy #  " #��6-* with respect to an
extremum �> evaluated at �6 as,#  " #76-* �$&%(')+*	,�-. -/ 021

N43 #657 � *!8 � ��#�94*� 9 8 � � 5:8 � �O#;��#<9-*&*� 9 8 �>= 9?�
(5)

Note that the energy functional is independent of pa-
rameterization. When 5�� �

, the energy functional is
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Figure 2: The Extrema-Based MSST of a three-dimensional image of four Gaussian blobs. The 2.0 iso-surfaces
of the image at scale H ��� is shown in blue, on the left panel. The small red and blue spheres are the maxima
and saddles respectively. The blue lines are the critical paths (the scale axis is projected away) and the small black
spheres are the catastrophe points. The black line and the red line denote the left-child linking and the right-child
linking in the tree. A schematic drawing of the extracted MSST is shown on the right panel. Note that there is a
saddle-saddle catastrophe which is ignored

also known as the path variation, a generalization of
the total variation [AC03]. The path variation depends
solely on the image intensity and is invariant to affine
transformation of the underlying space. Moreover, it
is co-variant with scaling of the image intensity. If5 � �

, the energy functional will increasingly depend
on the spatial distance, and therefore become increas-
ingly localized in space.
Let � � �

be the set of all extrema in the image. The
extrema partition [AC03]., �	� , associated with an ex-
trema �> � � � is defined as the set of all points in the
domain, where the energy #  "�
 #��64* is minimal,

� � �� �6 � ���� #  " 
 #��6-*��:#  " 
 #��64*D��� �>�� � �+���������� �
(6)

An approximation of the energy map � � � � � 	 �
,

which defines the energy at every point in the image
associated with an extremum �> � , can be efficiently cal-
culated using the Fast Marching Methods [Set99].

3.2 Constructing MSSTs

MSSTs are defined by nodes and their relations. Each
MSST node consists of three components: The im-
age segment(i) that immediately covers the area of the
image segment(ii) disappearing at the catastrophe(iii).
For algorithmically convenience we denote the ‘sur-
viving’ image segment the leftport, the catastrophe for
the body, and the disappearing image segment for the
rightport. Because there is exactly one image seg-
ment associated with an extremum and exactly one ex-
tremum disappears at an annihilation catastrophe, then
exactly one image segment also disappears.
A node #�� "! � ��"$#&% ! #�' �)(�* � is generated if an image seg-
ment of #�' �)(+* � disappears at the catastrophe ��"$#,% ! in-
side an image segment of #�� "! � . The inclusion is eas-
ily determined by calculating the energy map with re-
spect to the catastrophe ��"$#&% ! : the image segment of

#�' �-(�* � is nested in side the image segment of #�� "! �
if the energy evaluated at #�� "! � is minimal among all
extrema existing at that scale.
Assuming that critical paths and catastrophe points in
the scale-space are already and correctly detected, then
the MSST building algorithm is as follows:

1. Set the root of the tree as #��).0/ � � � #$1	#�.+232 , where#��).�/ � denotes the last extremum that remains in
the scale-space, �

�
#$1 denotes the highest catas-

trophe in scale, and #4.+252 denotes the extremum
that annihilates at the catastrophe.

2. At the highest unprocessed catastrophe ��2 "  � in
scale, calculate the energy map with respect to
the catastrophe and create a node #76�#�8 " '9��2 "  �#4.+232 , where #�.+252 is the extremum that disap-
pears at ��2 "  � , and the energy evaluated at the
extremum #46�#�8 " ' is minimal among all extrema
existing at that scale.

3. Link the new created node as the leftchild of a
node in the tree that does not have the leftchild
and where #46�#&8 " ' equals its leftport, or as the
rightchild of a node in the tree that does not have
the rightchild and where # 6�#�8 " ' equals its right-
port.

4. Repeat 2., 3., and 4. until all catastrophe points
are processed.

An example of the Extrema-Based MSST constructed
from a simple three-dimensional image of four Gaus-
sian blobs is shown in Fig. 2. The constructed MSST
has three nodes corresponding to the three relevant
catastrophes in the scale-space. An annihilation catas-
trophe of a pair of saddles is ignored.
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Figure 3: An extended Extrema-Based MSST example

4 BVHs from MSSTs
Given a MSST, we produce a BVH as follows. The
MSST is extended with a set of leaves according to the
leftport and the rightport representing each extremum
in the original image. The newly added leaves rep-
resent the finest scale for the BVH. All free ports are
extended with a leaf for the corresponding extremum,
and then all ports are removed. The result is that the
MSST is extended with one leaf for each extremum.
All the extrema will appear in the extended MSST one
and only one time. The extended MSST of the image
in Fig. 2 is shown in Fig. 3.
We can denote the catastrophe scale as a size measure
of the corresponding extremum. That is, at the catas-
trophe scale, the corresponding Gaussian will have a
size that dominates the underlying image structures.
We may also give a statistical interpretations using
Tchebycheff’s inequality [BM93]. It states that for
a random variable � with standard deviation H , the
probability of finding values outsize a bound propor-
tional to its standard deviation is inversely small:� #�8 � 7�� 8���� H *�� �

� � (7)

We take this as a guide to set the size of the leaf bound-
ing volumes, i.e. a leaf will be given a sphere, who’s
radius is proportional to the catastrophe scale. There
will be one extremum, which does not disappear in a
catastrophe, which is the last extremum in the scale-
space. We set the bounding volume of the final ex-
tremum to be proportional to the distance to its only
sibling in the MSST minus the already known sibling’s
radius in the BVH.
Since the BVH is binary, we find bounding volume for
the non-leaf nodes in the tree as the smallest sphere
that encloses the two child spheres. Although tighter
bounds may be found, this is left for further develop-
ment.

5 RESULTS
Currently, our algorithm is capable of producing trees
from objects that are sampled on a K �
	 � grid, for a
reasonable computation time, we only use 	L9 � grids.
We demonstrate our algorithm on the cow polygonal
mesh [Bra]. Figure 4 shows a schematic drawing of
the extracted BVH of a solid cow and Fig. 5 shows a

�

�

Body Head

�

Leg I
�

Leg II
�

Leg III Leg IV

Figure 4: A schematic drawing of the extracted BVH
of a solid cow

solid cow together with the spherical bounding volume
at each level in the hierarchy.
In the scale-space of the cow, the legs of the cow ap-
pears in a sequential manner from coarse to fine. This
makes the tree building process simple, however, in
this particular example, it would possibly be more nat-
ural to let the leg-nodes appear at the same time in a
4-ary tree node. In our tree, such decisions can be en-
forced by post-processing, and a useful indication in
this case would be that the catastrophes occur within a
very narrow scale-band.
There are many properties which are interesting when
evaluating the quality of a BVH. Unfortunately some
of them are contradicting each other.

� Smallest possible bounding volumes

� Smallest possible overlap between volumes at
the same depth in the hierarchy

� Small sized BVH, i.e. as few nodes as possible

� Complete coverage versus sampling based cov-
erage

� “balanced” trees

The last property is one we challenge, although it has
been proved that balanced trees provide best worst
case queries, a balanced tree do not represent the scale
of the object. Working with time critical or approxi-
mating queries this become an important property. We
suggest that the tree should be balanced with respect
to the density of the object.

6 DISCUSSION
Most recent work with BVHs has focused on: Try-
ing out new kinds of bounding volumes, figuring out
better methods for fitting a bounding volume to a sub-
set of an object’s underlying geometry, finding faster
and better overlap test methods, and comparing homo-
geneous BVHs of different bounding volume types.



Figure 5: A solid cow and the hierarchical bounding volumes at each level of the BVH. The surface of the original
cow, the links between catastrophes in the scale-space and the spherical bounding volumes are shown from left to
right for the level one to five of the BVH

In order to improve the performance of traversal al-
gorithms, depth control, layered bounding volumes,
caching bounding volumes, and shared bounding vol-
umes have been studied. We have chosen to classify
our method as being a mixed bottom-up and top-down
method, because the scale-space is built bottom-up,
and the MSST are found in a top-down manner. The
corresponding BVH is then built in a straightforward
incremental way, by doing an order traversal of the
MSST, and creating bounding volume nodes as catas-
trophes are encountered.
The computational complexity for our algorithm is
currently high. Using

� � as the number of pixels in
the image, � as the number of scales to be evaluated,H as the largest scale, � as the number of critical line-
pieces found, and # as the number of extrema at the
lowest scale, the computational complexity for each
part of our algorithm is as follows:

Computation of the Scale-Space: � #���H � � � *
It may be possible to improve the calculation
time for the Gaussian scale-space, e.g. using
sub-sampled image for approximating scaled
image at high scales or using faster alternatives
to spatial convolution. However, we have not
yet found alternatives that does not introduces
spurious extrema in homogeneous regions.

Storage of the Scale-Space: � # K � � *
The most memory intensive part of our algo-
rithm is the storage of the scale-space. We only
require the storage of two neighboring scales in
order to find the critical paths in our current im-
plementation.

Extracting Critical Paths: �G#�� � � � � � *
The critical paths can be extracted considerably
faster by tracking each extremum from the finest
scale, however this would require either to store
the full Scale-Space or perform local calcula-
tions during the tracking process. Since this is
by far not the slowest part of our algorithm, we
have left this for further research.

Finding a Euclidean Tree, 5�� �
in (5): � #�# � *

It is fastest to use the Euclidean metric in (5),
for

� �:5 � � see below.

Finding a General Tree: �G#6# � �����
	 � � *
This is the most computationally expensive part
of our algorithm. However, we expect that the
speed of the Fast Marching Method can be im-
proved by a narrow band implementation.

Gaussian scale space provides us with a continuous
degradation of an object, other algorithms fail com-
pletely on this point, they typical control their scale by
saying that at the next level of the BVH should have
50% less number of volumes, or at the next level the
volumes should fit 20% better. A direct study of scales
seems to be a more proper representation.
Medial surface (M-reps) based methods for building
BVHs have been the approach to use for bottom-up
construction. Our method differs from M-reps signif-
icantly by being a density based method, whereas M-
reps is more a surface-based method. Furthermore our
method provides us with a natural scale that is eas-
ily used to determine both bounding volumes and the
topology of the hierarchy. M-reps do not provide this
scale information nor can they tell one about the den-
sity of an object.
The well-established foundation on scale-space the-
ory provides us with a well-defined concept of scale,
shape, and detail of an object. These concepts are valu-
able tools as our work hopefully demonstrates.
The main contribution of our work is a new method for
building bounding volume hierarchy, however, there
is still much need to be done. So far our work has
been a feasibility study showing that the construction
of BVHs from MSSTs actually can be done. We have
not yet made any attempt towards comparing the qual-
ity of the multi-scale singularity BVH with other al-
gorithms. Future research will be on the tightening of
the bounding volumes utilizing information in scale-
space.
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