
Constructing Smooth Non-Manifold Meshes
of Multi-Labeled Volumetric Datasets

Bernhard Reitinger, Alexander Bornik, Reinhard Beichel

Institute for Computer Graphics and Vision
Graz University of Technology

Inffeldgasse 16/II
A–8010 Graz, Austria

contact: breiting@icg.tu-graz.ac.at

ABSTRACT
This paper presents a method for constructing consistent non-manifold meshes of multi-labeled volu-
metric datasets. This approach is different to traditional surface reconstruction algorithms which often
only support extracting 2-manifold surfaces based on a binary voxel classification. However, in some –
especially medical – applications, multi-labeled datasets, where up to eight differently labeled voxels can
be adjacent, are subject to visualization resulting in non-manifold meshes. In addition to an efficient
surface reconstruction method, a constrained geometric filter is developed which can be applied to these
non-manifold meshes without producing ridges at mesh junctions.

Keywords
surface reconstruction, mesh generation, multi-labeled volume, constrained smoothing

1 INTRODUCTION

Surface reconstruction for volumetric datasets is
an important method for exploring important fea-
tures especially in the medical field. By segment-
ing stacks of 2D gray-valued images (e.g. CT, MR
images), 2-manifold meshes in form of iso-surfaces
can be extracted and visualized. The traditional
method is the Marching Cubes (MC) algorithm
proposed by Lorensen and Cline in [Loren87]
or some of its variations like [Lewin03, Labsi02,
Lopes03] generating triangular models. All of
these methods are concerned about 2-manifold
meshes (homeomorphic to a sphere) which only
allow mesh interfaces between two different mate-
rials (one below and one above a certain thresh-
old).

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy oth-

erwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

Conference proceedings ISBN 80-903100-7-9

WSCG’2005, January 31–February 4, 2005

Plzen, Czech Republic.

Copyright UNION Agency Science Press

However, in some applications multiple coher-
ent surfaces should be reconstructed consistently
based on a non-binary classification resulted from
a previous image segmentation or labeling like
– for example – a full segmentation of the Visi-
ble Human Project [Acker98] where each organ is
tagged with a certain label and connected to other
organs. All interfaces between adjacent organs
must be extracted consistently. A naive solution
for this problem would be to apply the MC itera-
tively on each labeled region while masking out all
other regions. Although all interfaces would be ex-
tracted, a lot of inconsistencies are expected even
between two adjacent regions because two surfaces
of one interface will be generated which might not
fit together. This gets even worse if more than
two materials are meeting at one cell (a cell is
defined by its eight adjacent voxels). Different to
the traditional MC which generates a 2-manifold,
our algorithm inevitably produces non-manifolds
if more than two materials meet at one cell.

This paper proposes an efficient method for ex-
tracting such non-manifold surfaces based on la-
beled volumetric datasets in a consistent way. The
resulting mesh can either be used for visualization
or as input for a volumetric mesh generator. Our
algorithm neither generates holes nor cracks. De-
pending on the resolution of the input dataset,
staircase artifacts can occur which are smoothed



by applying customized topology-invariant filters
enhancing the overall mesh quality. For this rea-
son, we extended two existing filters. After surface
relaxation, triangle simplification may be applied
using the quadric error metric [Garla97].

This work was motivated by a medical project
which is concerned about virtual liver surgery
planning [Borni03]. The presented algorithm can
be used for two different tasks within this project.
At first, a visualization of liver segments by their
interface boundaries is provided which allows sur-
geons to examine the location and size of each sin-
gle liver segment (see Figure 10). Secondly, the
output mesh can be used as input for a conse-
quent volumetric mesh generator by applying the
algorithm proposed in [Si02]. An example for one
liver dataset is shown in Figure 1. For both cases,
the liver is labeled a priori using the segment clas-
sification algorithm proposed in [Beich04] where
each liver voxel is tagged with a certain mate-
rial value indicating one of eight different liver
segments (see Figure 1(a)). Due to the liver’s
anatomy, more than two different segments can be
adjacent. Therefore, the presented reconstruction
method is necessary in order to handle multiple
labels within one cell. The generated mesh can be
classified in two different kinds of surfaces; one do-
main boundary surface covering the object itself
and multiple interfaces which build the interior
structure (surfaces) of the object.

(a) (b) (c)

Figure 1: Visualization of a liver dataset contain-
ing different liver segments. (a) A slice of the la-
beled input volume, (b) non-manifold extracted
using the proposed algorithm, (c) a volumetric
mesh based on the mesh in (b) using the TetGen
library [Si02].

The rest of this paper is organized as follows: Sec-
tion 2 discusses related work for existing surface
reconstruction methods. Section 3 presents our
method for multi-labeled surface generation. Sec-
tion 4 outlines an extension to existing geometric
filters which are applied on the generated surface.
Section 5 presents a simplification method for de-
creasing the number of generated triangles. Re-
sults and screenshots are shown in Section 6 and
a conclusion closes this report.

2 RELATED WORK

The traditional method for extracting iso-surfaces
based on a certain threshold is the Marching Cubes

algorithm [Loren87] which distinguishes between
two different domains (above and below a certain
iso-value). Given a binary classification only 28

(256) different configurations can occur in a cell

which can be implemented using look-up tables.
Recently, Lewiner et al. presented an extension
avoiding topological errors which can occur due
to uncertainties [Lewin03].

Bloomenthal and Ferguson described in [Bloom95]
one of the first approaches for generating surfaces
from non-binary classifications which rely on im-
plicit surface modelling and computational solid
geometry. By subdividing cubic cells into tetra-
hedra, a triangulation is constructed algorithmi-
cally. This approach generates a large amount of
triangles which can also be degenerate and not
well-shaped.

Hege et al. presented a different approach for
extracting non-manifold surfaces based on a non-
binary classification [Hege97]. By using probabil-
ities assigned to each voxel, cells are subdivided
producing a lot of intermediate triangles. There-
fore, a post-processing patch generation must be
initiated in order to reduce the large number of
faces. In their approach, a look-up table was im-
plemented supporting up to three different mate-
rials meeting at one cell.

Another algorithm for generating surfaces based
on a non-binary classification was presented by
Wu and Sullivan [Wu03]. In their work, an ex-
tension for the traditional Marching Cubes was
developed supporting 2D and 3D datasets.

Different to these related algorithms, we present
an efficient yet simple approach which supports
up to eight different materials meeting at one cell.
In the following we will describe our method in
detail.

3 MESH GENERATION

The input for our algorithm is a rectilinear la-
beled volumetric dataset where a distinct label
(material) is assigned to each voxel V at position
(x, y, z). A zero label indicates background (out-
side of the domain) and all other labels unequal to
zero assign material. For a binary classification, 28

(256) different cases can occur at one cell. There-
fore, look-up tables exist for the Marching Cubes

algorithm to gain performance. If the dataset con-



sists of multiple different labels (non-binary), 88

(16777216) cases are possible within one cell and
a look-up table to cover all these configurations is
not feasible.

3.1 The Idea in 2D

The main idea of our algorithm is based on a cell
subdivision strategy and will first be explained for
the 2D case. Each non-homogeneous cell having
two or more different materials is subdivided by
inserting a cell mid-point. Additionally, segment
mid-points are generated if the labels of two ad-
jacent voxels (nodes) are different. For each gen-
erated segment mid-point a new segment (line) to
the cell mid-point is generated. Figure 2 shows the
four possible configurations for the 2D case. By
permutating these cases, all 44 can be captured. If
using the traditional Marching Cubes scheme for
a cell with three different labels, a triangular void
would be generated (see Figure 3). This gener-
ated void is invalid and cannot be assigned to a
material.

���������������
���������������
���������������
���������������
���������������

�������������
�������������
�������������
�������������
�������������

�������������������������������������������������

�������������������������������������������������

���������������������������������������������������������������

�������������������������������������������������

�������
�������
�������
�������

�������
�������
�������
�������

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	


 
 
 
 
 
 


 
 
 
 
 
 


 
 
 
 
 
 


 
 
 
 
 
 


���������
���������
���������
���������

�������
�������
�������
�������

0 0

00

1 1

2 2

2121

3 3 3 4

1 label 2 labels

4 labels3 labels

Figure 2: Four possible configurations in 2D.

HOLE

1 1

32

(a)

1 1

32

(b)

Figure 3: Three different materials meeting at one
cell (quad). (a) Traditional Marching Cubes gen-
erates a “hole”, (b) correct partitioning with three
different materials.

As we can observe in Figure 2, our algorithm does
produce valid T-junctions at cell mid-points and
is therefore a conforming triangulation.

Considering a 2D cell with two different materi-
als where two equal materials are opposite, the
topology is preserved due to the insertion of a cell

mid-point. However, this configuration produces
singularities which must be considered for filtering
in order to prevent spikes (see later).

3.2 3D Algorithm

As shown in the previous section, the 2D algo-
rithm inserts additional cell mid-points in order to
reconstruct interfaces correctly. The same strat-
egy is used for the 3D case. Before going into
more details of the algorithm we need to define
some constraints. At first, our generated mesh is
a non-manifold represented by a simplicial com-
plex of 2-simplices. By considering this constraint,
we guarantee a conforming mesh without invalid
triangle intersections.

Having a rectilinear volumetric grid, a cell C at
location (x, y, z) is defined by
Cx,y,z = [Vx,y,z;Vx+1,y,z;Vx+1,y+1,z;Vx,y+1,z;
Vx,y,z+1;Vx+1,y,z+1;Vx+1,y+1,z+1;Vx,y+1,z+1].

The generation algorithm is initiated by process-
ing each single cell Cx,y,z of the rectilinear volume
(see Algorithm 1). If a cell in not homogeneous
(having more than one material), it is enqueued
in a list Q.

Algorithm 1 Pre-processing

Input: rectilinear labeled 3D volume V

Ensure: Vx,y,z = {l : l ∈ N}
for all Cx,y,z do

if Cx,y,z is !homogeneous then

Q.add(Cx,y,z)
end if

end for

Output: Q

In the second step, only enqueued cells are pro-
cessed. Depending on the homogeneity of the in-
put, the processing list can be very small. The
second sweep is also called simplex generation be-
cause for a given node configuration, faces (tri-
angles) are generated using a small look-up ta-
ble. All generated faces and vertices are stored
in a compact data structure where each vertex
is unique and duplicates are avoided. This is
necessary to guarantee a correct post-processing
(i.e. smoothing or simplification). Algorithm 2
describes the complete second sweep and its de-
tails are explained in the following sections. The
output of the simplex generation algorithm is an
indexed face set I storing the triangulation of the
whole domain and its according vertex list V L.

3.2.1 Face Generation

Our face generation strategy is very efficient. In
any case of a non-homogeneous cell, a cell mid-
point is generated which subdivides this cell into
8 sub-cells. Additionally, face mid-points are gen-



Algorithm 2 Simplex generation

Input: Q

for all Cx,y,z in Q do

subdivide Cx,y,z by creating a cell mid-point
if Cx,y,z has one zero label then

Cx,y,z=EXTERNAL NODE

else
Cx,y,z=INTERNAL NODE

end if

generate vertices and faces using a LUT
classify cell nodes of Cx,y,z

for all generated faces fi do

I .add(fi)
V L.add(vertices of fi)

end for

end for

Output: I , V L

erated if a face of Cx,y,z has non-homogeneous
nodes. All interfaces between two sub-cells are
investigated if two adjacent sub-cells have differ-
ent materials. If a difference is found, two trian-
gles are spanned between these two sub-cells cov-
ering the interface. For efficiency, we use a look-up
(LUT) table to get the adjacencies between sub-
cells. For each cell we need 12 look-ups to gener-
ate adjacent faces within one cell. Figure 4 shows
some face generation examples for two, three or
more materials meeting at one cell.

1

1

1

2

2

2

1

1

1

2

2

2

2

1

2 materials

1

2

3
3

3

3

3

1
3

5

2

6

8

7

3 or more materials

Figure 4: Examples of face generations for the 3D
case

By using this generation method, adjacent cells

are connected correctly. As the input has no quan-
tity information but only labels, we cannot apply
any interpolation scheme ad hoc. However, as the

resulting mesh should be visual appealing, we need
to apply a filter for smoothing the surface to re-
duce the staircase characteristics produced by our
algorithm. However, in order to guarantee a cor-
rect smoothing of these non-manifold meshes, we
have to classify the nodes in a cell due to a certain
configuration.

3.2.2 Node Classification

Each node (or vertex in the manner of surfaces)
must be classified according to its location. This
guarantees a correct smoothing of non-manifold
meshes and avoids ridges between the domain
boundary and interface boundaries. Figure 5
shows a cell with its possible vertex locations. At
first, the possible 27 vertices are named by their lo-
cations in the cell. Corner-points are the original
voxels of the dataset each of them storing a certain
label. Face mid-points are called 2D center-points

and are generated if a cell’s face in not homoge-
neous. Border-points divide a segment between
two adjacent corner-points. And finally, the cell

mid-point is classified as 3D center-point. Addi-
tionally, we define certain types of nodes as the
following:

Definition 1: Domain Node (D)

A node (vertex) is classified as domain node,
if the node is part of the enclosing domain
surface if one exists.

Definition 2: Interface Node (I)

A node (vertex) is classified as interface node,
if the node is part of an interior surface which
separates two different interior materials.

Definition 3: Junction Node (J)

A node (vertex) is classified as junction node,
if the node is part of an interior surface and
separates more than two different interior
materials.

Definition 4: Domain Junction Node (DJ)

A node (vertex) is classified as domain junc-

tion node, if the node is part of an exterior
surface and separates at least two interior
materials but also one exterior material.

Table 1 shows the mapping between nodes and
possible types. A corner-point will not be clas-
sified at all because the surface will never pass



3D center−point
2D center−point
border−point
corner−point

Figure 5: Classification of nodes in a cell.

D I J DJ

3D center-point x x x x
2D center-point x x x x
border-point x x
corner-point

Table 1: Mapping of nodes to node types.

through it. A border-point is a domain node if
one of its adjacent corner-points has a zero mate-
rial, else it will be assigned as interface node. A
2D center-point is assigned as junction node if its
corresponding face has no zero material and mate-
rial count (number of different materials per face)
>= 3. If a face has at least one zero material, it
is assigned as domain junction node. If the ma-
terial count for one face is < 3 and the face has
no zero material it is assigned as interface node,
else domain node. 3D center-points are classified
according to a cell’s classification. If Cx,y,z is as-
signed EXTERNAL NODE and material count is 2,
then we classify it as domain node, else domain

junction node. If Cx,y,z is an INTERNAL NODE and
material count is 2, the 3D center-point is assigned
as interface node, else, junction node.

If this type mapping is applied, ridges are avoided
and self-intersections are prevented if smoothing
the surface. Figure 6 shows a comparison of two
examples one without applying this classification
scheme and one with these considerations.

4 SURFACE FILTERING

Surface filtering is necessary to reduce the stair-
case artifacts generated by our face generation
method. We use surface filters which only af-
fect geometry and do not alter topology. Be-
side smoothing, geometric filters are also used for
improving the overall quality of the mesh. Dif-
ferent geometric filters exist in literature which
can be applied for smoothing. The most sim-

Figure 6: If node classification is not assigned,
ridges occur (see left image). If the classification
is applied, no ridges are generated.

ple but effective smoothing filter is the Lapla-

cian filter [Field88]. Each vertex at position xi

is smoothed iteratively by using the following for-
mula:

xi+1 = xi + λ∆i (1)

where ∆i is defined as:

∆i =
N∑

j=1

wij(xj − xi) (2)

where wij specifies the weight between xi and its
neighboring xj and

∑
wij = 1. A good choice

for wij is 1

N
, where N is the number of adjacent

vertices. The scale factor λ (0 < λ < 1) influences
the degree of smoothness and is defined equally for
all vertices. Intrinsically, this filter also improves
the overall mesh quality. The big advantage of
this filter is its simplicity, however, it produces
shrinkage if applied many times.

Therefore, an extension to the Laplacian filter
was presented by Taubin [Taubi95] which avoids
shrinkage. The main idea is to apply two consecu-
tive Laplacian steps: at first, using a positive scale
factor λ and then using a negative scale factor µ,
greater in magnitude than λ (0 < λ < −µ).

Applying the standard filter for our produced
mesh, ridges on the domain boundary can occur
as shown in Figure 7(a). This is because vertices
on the domain boundary which are adjacent to
interface nodes are attracted by these nodes and
produce valleys. Therefore, we have performed
the node classification which will be considered
now for the filter. The (xj − xi) expression in
Equation 2 will only be calculated under certain
constraints. If the vertex at location xi is assigned
as domain node or interface node, all adjacent ver-
tices at xj are used for calculating ∆i. However, if
a vertex at location xi is a domain junction node,



only vertices at xj with classification domain junc-

tion node and domain node are considered. Sim-
ilarly, if vertices at xi is a junction node, only
vertices at xj of type junction node or domain

junction node are used. The result can be seen in
Figure 7(b).

(a) (b)

Figure 7: By applying the constrained Laplacian

(Taubin) filter, ridges are avoided successfully as
shown in this figure.

We observed that singularities can occur if voxels
are only 26-connected for 3D datasets. This gets
a problem if the surface is filtered. Two differ-
ent material regions are only connected through
one vertex and filtering would generate unwanted
spikes. In the current implementation we assign
a freeze label to these vertices which means that
they are not moved during smoothing and avoids
therefore these spikes.

5 MESH SIMPLIFICATION

In order to reduce the triangle count a simplifica-
tion algorithm is applied which is invariant to the
surface’s topology. We are using the quadric er-
ror metric which was introduced by Garland and
Heckbert [Garla97]. The algorithm works with
an iterative contraction of vertex pairs to sim-
plify models and maintains surface error approx-
imations using quadric matrices. The advantage
of this algorithm is that it supports non-manifold
meshes. Therefore, it can be applied to our data
structure without any modifications.

6 RESULTS

After explaining all different components of our
mesh generation method, some results are pre-
sented. The test input datasets are either gen-

Figure 8: Example of the dragon model which was
generated using our method using the Laplaican

filter with λ = 0.8 and 30 iterations. The right
image shows a zoom-in where the boundary inter-
face can be seen clearly.

erated by a prior segmentation and labeling of
a CT scan, or artificially generated by using
the hardware-accelerated voxelization presented
in [Reiti03]. Table 2 shows a summary of the in-
put datasets with different resolution (size). The
#vtx and #f indicate the generated vertices and
triangles after the simplex generation. If the in-
put resolution is high, Algorithm 1 is the domi-
nant factor in the measured time. If a lot of non-
homogeneous cells are found, Algorithm 2 takes
more time. We have measured, that – on average
– Algorithm 1 takes 83% and Algorithm 2 17% of
time for the tested datasets.

size #vtx #f time

Dragon 256
3

453921 910400 25.7

Horse 128
3

63147 127960 2.6

Liver 256 × 256 × 174 632272 1272088 18.5

Lung 128 × 128 × 148 331934 668624 6.1

Table 2: Table showing results of different
datasets. The time is measured in seconds.

Figure 8 shows the dragon model where the
dataset is divided into multiple layers simulating
interface boundaries. The right image shows a
zoom-in showing three bounded materials (yellow,
blue, red). Similarly, we also sub-divided the horse
dataset into different labels. Figure 9(a) shows
the raw output before smoothing, and Figure 9(b)
displays the smoothed result using the constrained
Laplacian filter.

We have also applied our algorithm on medical
datasets which are generated using a segmenta-
tion and classification as described in [Beich04].
Figure 10 shows a trajectory of different smooth-
ing levels performed on the liver dataset, starting
from no smoothing up to 30 iterations. Similar to



(a) raw (b) raw

(c) 30 iterations (d) 30 iterations

Figure 10: Construction of liver segment bound-
aries. Left image visualizes the liver with domain
boundaries without smoothing. Image (b) shows
the interior structure. Images (c) and (d) display a
smoothed liver with λ = 0.88 and 30 iterations. In
(c) the ridge-free interface between multi-material
regions can be seen.

(a) raw (b) 10 iterations

(c) 30 iterations (d) 50 iterations

Figure 11: The sheep dataset with different levels
of filtering. Left image is the raw output of the
simplex generation. The consecutive images show
the result of smoothing with the Taubin filter us-
ing λ = 0.88 and µ = −0.9.

(a) (b)

Figure 9: Example of the horse model. Left im-
age shows the raw output of the surface genera-
tion. The right image is the result of a Laplacian

smoothing using λ = 0.7 and 20 iterations.

the human liver, we also applied our algorithm on
a sheep lung which is shown in Figure 11. For this
dataset we used the Taubin filter with different
levels of smoothness.

As the resulting triangle counts are quite large for
interactive usage, we applied a the simplification
algorithm as explained in Section 5. Figure 12
shows two different datasets where the left model
was simplified using the quadric error metric to a
target face count of 70000 faces which decreases
the number of triangles to about 10% of the orig-
inal surface.

7 CONCLUSION

This paper presented an algorithm for generating
non-manifold meshes based on a non-binary clas-
sification of volumetric datasets. The generation
method consists of two main components, one pre-
processing step and a consecutive simplex gener-

ation. As the raw output produces staircase arti-
facts constrained surface filters based on a vertex
labeling scheme are applied. This prevents from
generating ridges at interface boundaries and pro-
vides a high-quality mesh.

As the output surface is a conforming mesh, and
therefore guarantees consistency, it can be used for
a further volumetric mesh generation as presented
in [Si02].

ACKNOWLEDGMENTS

This work was supported by the Austrian Science
Foundation (FWF) under grant P17066-N04.



(a) (b)

Figure 12: The sheep lung before and after sim-
plification using the quadric error metric. Target
face size is 70000.

References

[Acker98] M.J. Ackerman. The visible human project.
Proc. of the IEEE, 86(3):504–511, 1998.

[Beich04] R. Beichel, T. Pock, Ch. Janko, R. Zot-
ter, B. Reitinger, A. Bornik, K. Palagyi,
E. Sorantin, G. Werkgartner, H. Bischof, and
M. Sonka. Liver segment approximation in CT
data for surgical resection planning. In In SPIE

Medical Imaging ’04, San Diego, 2004. in print.

[Bloom95] J. Bloomenthal and K. Ferguson. Polygo-
nization of non-manifold implicit surfaces. In
Proc. of SIGGRAPH ’95, pages 309–316, 1995.

[Borni03] A. Bornik, R. Beichel, B. Reitinger,
G. Gotschuli, E. Sorantin, F. Leberl, and
M. Sonka. Computer aided liver surgery plan-
ning: An augmented reality approach. In R.L.
Galloway, editor, Medical Imaging 2003, Pro-

ceedings of SPIE, volume 5029. SPIE Press,
May 2003.

[Field88] D.A. Field. Laplacian smoothing and delau-
nay triangulations. Communications in Applied

Numerical Methods, 4:709–712, 1988.

[Garla97] M. Garland and P.S. Heckbert. Surface
simplification using quadric error metrics. In

Proc. of the 24th annual conference on Com-

puter graphics and interactive techniques, pages
209–216, 1997.

[Hege97] H.-C. Hege, M. Seebaß, D. Stalling, and
M. Zöckler. A generalized marching cubes
algorithm based on non-binary classifications.
Technical report, Konrad-Zuse-Zentrum (ZIB),
1997. SC 97-05.

[Labsi02] U. Labsik, K. Hormann, M. Meister, and
G. Greiner. Hierarchical iso-surface extraction.
Journal of Computing and Information Science

in Engineering, 2(4):323–329, December 2002.

[Lewin03] T. Lewiner, H. Lopes, A. Wilson Vieira,
and G. Tavares. Efficient implementation of
marching cubes: Cases with topological guar-
antees. Journal of Graphics Tools, 8(2):1–15,
2003.

[Lopes03] A. Lopes and K. Brodlie. Improving the ro-
bustness and accuracy of the marching cubes al-
gorithm for isosurfacing. IEEE Transactions on

Visualization and Computer Graphics, 9(1):16–
29, 2003.

[Loren87] W.E. Lorensen and H.E. Cline. Marching
cubes: A high resolution 3d surface construc-
tion algorithm. Computer Graphics, 21(4):163–
169, 1987.

[Reiti03] B. Reitinger, A. Bornik, and R. Beichel. Ef-
ficient volume measurement using voxelization.
In Proc. of the Spring Conference on Computer

Graphics 2003, pages 57–64, Budmerice, April
2003. Comenius University, Bratislava.

[Si02] H. Si. TetGen: A 3D Delaunay Tetrahedral

Mesh Generator, Version 1.2 User Manual.
Weierstrass Institute for Apply Analysis and
Stochastics, 2002. No. 4.

[Taubi95] G. Taubin. Curve and surface smooth-
ing without shrinkage. In Proc. of the Fifth

International Conference on Computer Vision,
pages 852–857. IEEE Computer Society, 1995.

[Wu03] J. Wu and J.M. Sullivan. Multiple material
marching cubes algorithm. Journal for Numer-

ical Methods in Engineering, 2003.


