

The 13-th International Conference in Central Europe on Computer
Graphics, Visualization and Computer Vision 2005

in co-operation with

EUROGRAPHICS

W S C G ' 2005

FULL PAPERS

University of West Bohemia

Plzen
Czech Republic

Honourary Chair
M.L.V. Pitteway, Brunel University, Uxbridge, United Kingdom

Co-Chairs
Tosiyasu L. Kunii: Kanazawa Institute of Technology, Tokyo, Japan

Vaclav Skala, Univ. of West Bohemia, Plzen, Czech Republic

Edited by
Vaclav Skala

WSCG’2005 Full Papers Conference Proceedings

Editor-in-Chief: Vaclav Skala
 University of West Bohemia, Univerzitni 8, Box 314
 306 14 Plzen
 Czech Republic
 skala@kiv.zcu.cz
Managing Editor: Vaclav Skala

Author Service Department & Distribution:

 Vaclav Skala - UNION Agency
 Na Mazinách 9
 322 00 Plzen
 Czech Republic

Printed at the University of West Bohemia

Hardcopy: ISBN 80-903100-7-9

WSCG 2005

International Programme Committee

Alexa, Marc (Germany)
Bajaj, Chandrajit (United States)
Bartz, Dirk (Germany)
Bekaert, Philippe (Belgium)
Benes, Bedrich (Mexico)
Bengtsson, Ewert (Sweden)
Bouatouch, Kadi (France)
Brodlie, Ken (United Kingdom)
Brunet, Pere (Spain)
Brunnet, Guido (Germany)
Clapworthy, Gordon (United Kingdom)
Coquillart, Sabine (France)
Debelov, Victor (Russia)
Deussen, Oliver (Germany)
du Buf, Hans (Portugal)
Ertl, Thomas (Germany)
Ferguson, Stuart (United Kingdom)
Floriani, Leila De (Italy)
Flusser, Jan (Czech Republic)
Goebel, Martin (Germany)
Haber, Jörg (Germany)
Harris, Mark (United Kingdom)
Hauser, Helwig (Austria)
Hege, Hans-Christian (Germany)
Chen, Min (United Kingdom)
Chrysanthou, Yiorgos (Cyprus)
Jansen, Frederik,W. (The Netherlands)
Jorge, Joaquim (Portugal)
Kakadiaris, Ioannis (United States)
Kalra, Prem (India)
Kjelldahl, Lars (Sweden)
Klein, Reinhard (Germany)
Klosowski, James T. (United States)
Kobbelt, Leif (Germany)
Kruijff, Ernst (Germany)
Magnor, Marcus (Germany)
Margala, Martin (United States)
Moccozet, Laurent (Switzerland)

Mudur, Sudhir,P. (Canada)
Mueller, Klaus (United States)
Muller, Heinrich (Germany)
Myszkowski, Karol (Germany)
O'Sullivan, Carol (Ireland)
Pasko, Alexander (Japan)
Peroche, Bernard (France)
Post, Frits H. (Netherlands)
Puech, Claude (France)
Puppo, Enrico (Italy)
Purgathofer, Werner (Austria)
Rauterberg, Matthias (Netherlands)
Rheingans, Penny (United States)
Rokita, Przemyslaw (Poland)
Rossignac, Jarek (United States)
Rudomin, Isaac (Mexico)
Sbert, Mateu (Spain)
Shamir, Ariel (Israel)
Schaller, Nan,C. (United States)
Schneider, Bengt-Olaf (United States)
Schumann, Heidrun (Germany)
Skala, Vaclav (Czech Republic)
Slusallek, Philipp (Germany)
Sochor, Jiri (Czech Republic)
Stuerzlinger, Wolfgang (Canada)
Sumanta, Pattanaik (United States)
Szirmay-Kalos, Laszlo (Hungary)
Taubin, Gabriel (United States)
Teschner, Matthias (Switzerland)
Theoharis, Theoharis (Greece)
Trahanias, Panos (Greece)
Velho, Luiz (Brazil)
Veltkamp, Remco (Netherlands)
Weiskopf, Daniel (Germany)
Westermann, Ruediger (Germany)
Wuethrich, Charles Albert (Germany)
Zara, Jiri (Czech Republic)
Zemcik, Pavel (Czech Republic)

WSCG 2005 Board of Reviewers

Adzhiev,V. (United Kingdom)
Alexa,M. (Germany)
Ammann,C. (Switzerland)
Anan,H. (United States)
Andreadis,I. (Greece)
Artusi,A. (Italy)
Aspragathos,N. (Greece)
Aveneau,L. (France)
Bajaj,C. (United States)
Bartz,D. (Germany)
Bekaert,P. (Belgium)
Benes,B. (Mexico)
Bengtsson,E. (Sweden)
Bieri,H. (Switzerland)
Bilbao,J. (Spain)
Bischoff,S. (Germany)
Bottino,A. (Italy)
Bouatouch,K. (France)
Bourdin,J. (France)
Brodlie,K. (United Kingdom)
Brunet,P. (Spain)
Brunnet,G. (Germany)
Buehler,K. (Austria)
Callieri,M. (Italy)
Clapworthy,G. (United Kingdom)
Coleman,S. (United Kingdom)
Coombe,G. (USA)
Coquillart,S. (France)
Daniel,M. (France)
de Aquiar,E. (Germany)
De Decker,B. (Belgium)
de Geus,K. (Brazil)
Debelov,V. (Russia)
del Rio,A. (Germany)
Deussen,O. (Germany)
Diehl,S. (Germany)
Dingliana,J. (Ireland)
Dmitriev,K. (Germany)
Doleisch,H. (Austria)
Dong,F. (United Kingdom)
Drakopoulos,V. (Greece)
du Buf,H. (Portugal)
Duce,D. (United Kingdom)
Durupina,F. (Turkey)
Egges,A. (Switzerland)
Eibl,M. (Germany)

Erbacher,R. (United States)
Ertl,T. (Germany)
FariaLopes,P. (Portugal)
Faudot,D. (France)
Feito,F. (Spain)
Ferguson,S. (United Kingdom)
Fernandes,A. (Portugal)
Fischer,J. (Germany)
Flaquer,J. (Spain)
Floriani,L. (Italy)
Flusser,J. (Czech Republic)
Gagalowicz,A. (France)
Galo,M. (Brazil)
Geraud,T. (France)
Giannini,F. (Italy)
Gudukbay,U. (Turkey)
Gutierrez,D. (Spain)
Haber,J. (Germany)
Hadwiger,M. (Austria)
Haro,A. (United States)
Harris,M. (United Kingdom)
Hast,A. (Sweden)
Hauser,H. (Austria)
Havran,V. (Germany)
Hege,H. (Germany)
Hladuvka,J. (Slovakia)
Horain,P. (France)
Hornung,A. (Germany)
Chen,M. (United Kingdom)
Chin,S. (Korea)
Chover,M. (Spain)
Chrysanthou,Y. (Cyprus)
Iwanowski,M. (Poland)
Jaillet,F. (France)
Jansen,F. (Netherlands)
Jeschke,S. (Germany)
JoanArinyo,R. (Spain)
Kalra,P. (India)
Kjelldahl,K. (Sweden)
Klosowski,J. (United States)
Kobbelt,L. (Germany)
Kolcun,A. (Czech Republic)
Koutek,M. (Netherlands)
Krolupper,F. (Czech Republic)
Kruijff,E. (Germany)
Larsen,B. (Denmark)

Leopoldseder,S. (Austria)
Lewis,J. (United States)
Lintu,A. (Germany)
Loizides,A. (Cyprus)
Loizides,A. (Cyprus)
Magnor,M. (Germany)
Maierhofer,S. (Austria)
Mandl,T. (Germany)
Mantler,S. (Austria)
Margala,M. (United States)
Marinov,M. (Germany)
Maughan,C. (USA)
McAllister,D. (USA)
McMenemy,K. (United Kingdom)
Mertens,T. (Belgium)
Moccozet,L. (Switzerland)
Mokhtari,M. (Canada)
Moltedo,L. (Italy)
Montrucchio,B. (Italy)
Moreton,H. (USA)
Mudur,S. (Canada)
Mueller,K. (United States)
Muller,H. (Germany)
Myszkowski,K. (Germany)
Neubauer,A. (Austria)
Nielsen,F. (Japan)
O'Sullivan,C. (Ireland)
Ozguc,B. (Turkey)
Pan,Z. (China)
Pandzic,I. (Croatia)
Pasko,A. (Japan)
Pedrini,H. (Brazil)
Perez,M. (Spain)
Peroche,B. (France)
Plemenos,D. (France)
Post,F. (Netherlands)
Prakash,E. (Singapore)
Pratikakis,I. (Greece)
Prikryl,J. (Czech Republic)
Puppo,E. (Italy)
Purgathofer,W. (Austria)
Rauterberg,M. (Netherlands)
Ravyse,I. (Belgium)
Renaud,c. (France)
Revelles,J. (Spain)
Rheingans,P. (United States)
Rodrigues,M. (United Kingdom)
Rokita,P. (Poland)
Rossignac,J. (United States)
Rudomin,I. (Mexico)
Sahli,H. (Belgium)

Sainz,M. (USA)
Sbert,M. (Spain)
Segura,R. (Spain)
Shamir,A. (Israel)
Schaller,N. (United States)
Schneider,B. (United States)
Scholz,V. (Germany)
Schumann,H. (Germany)
Sijbers,J. (Belgium)
Sips,M. (Germany)
Sirakov,N. (United States)
Sitte,R. (Australia)
Slusallek,P. (Germany)
Snoeyink,J. (United States)
Sochor,J. (Czech Republic)
Sorel,M. (Czech Republic)
Sroubek,F. (Czech Republic)
Stuerzlinger,W. (Canada)
Stylianou,G. (Cyprus)
Suarez Rivero,J. (Spain)
Sumanta,P. (United States)
Szekely,G. (Switzerland)
Szirmay-Kalos,L. (Hungary)
Tang,W. (United Kingdom)
Taubin,G. (United States)
Teschner,M. (Germany)
Theobald,C. (Germany)
Theoharis,T. (Greece)
Theußl,T. (Austria)
Tobler,R. (Austria)
Torres,J. (Spain)
Trahanias,P. (Greece)
Traxler,A. (Austria)
Van Laerhoven,T. (Belgium)
Velho,L. (Brazil)
Veltkamp,R. (Netherlands)
Vergeest,J. (Netherlands)
Vuorimaa,P. (Finland)
Weiskopf,D. (Germany)
Weiss,G. (Germany)
Westermann,R. (Germany)
Wu,S. (Brazil)
Wuethrich,C. (Germany)
Yilmaz,T. (Turkey)
Zach,C. (Austria)
Zachmann,G. (Germany)
Zara,J. (Czech Republic)
Zemcik,P. (Czech Republic)
Zhu,Y. (United States)
Zitova,B. (Czech Republic)

WSCG 2005
Contents

Honourary Chair

Pitteway,M.L.W.: Welcome to the 13th International Conference in Central Europe on Computer
graphics, Vizualization and Computer Vision 2005! (U.K.)

Invited speakers

Ferguson,S.: Adapting Computer Game technology to Build a Surgical Simulator (U.K.)
Klosowski,J.T.: Scalable Visualization using Commodity Clusters: Challenges and Solutions (USA)
Hubo,E., Bekaert,P.: A Data Distribution Strategy for Parallel Point-Based Rendering 1

Regular papers
Lario,R., Pajarola,R., Tirado,F.: Cached Geometry Manager for View-dependent LOD Rendering 9
Herout,A., Zemcik,P.: Hardware Pipeline for Rendering Clouds of Circular Points 17
Kanodia,R.L., Linsen,L., Hamann,B.: Multiple Transparent Material-enriched Isosurfaces 23
Knuth,M., Fuhrmann,A.: Self-Shadowing of Dynamic Scenes with Environment Maps using the GPU 31
Loviscach,J.: Paving Procedural Roads with Pixel Shaders 39
Bleser,G., Pastarmov,Y., Stricker,D.: Real-time 3D Camera Tracking for Industrial Augmented Reality

Applications (Germany) 47

Guizatdinova,I., Surakka,V.: Detection of Facial Landmarks from Neutral, Happy, and Disgust Facial
Images (Finland) 55

Fournier,G., Péroche,B.: Multi-mesh Caching and Hardware Sampling for Progressive and Interactive
Rendering (France) 63

Geimer,M., Abert,O.: Interactive Ray Tracing of Trimmed Bicubic Bézier Surfaces without Triangulation
(Germany) 71

Lintu,A., Haber,J., Magnor,M.: Realistic Solar Disc Rendering (Germany) 79
Mora,F., Aveneau,L., Meriaux,M.: Coherent and Exact Polygon-to-Polygon Visibility (France) 87
Murotani,K., Sugihara,K.: New Spectral Decomposition for 3D Polygonal Meshes and its Application for

Watermarking (Japan) 95

Reitinger,B., Bornik,A., Beichel,R.: Constructing Smooth Non-Manifold Meshes of Multi-Labeled
Volumetric Datasets (Austria) 227

Beets,K., Claes,J., Van Reeth,F.: A Subdivision Scheme to Model Surfaces with Spherelike Features
(Belgium) 103

Jin,C., Fevens,T., Li,S., Mudur,S.P.: Feature Preserving Volumetric Data Simplification for Application
in Medical Imaging (Canada) 235

Levet,F., Hadim,J., Reuter,P., Schlick,Ch.: Anisotropic Sampling for Differential Point Rendering of
Implicit Surfaces (France) 109

Sugisaki,E.,Yu,Y.,Anjyo,K.,Morishima,S.: Simulation-Based Cartoon Hair Animation (Japan) 117
Ge,Ch., Chen,Y., Yang,Ch., Yin,B., Gao,W.: Motion Retargeting for the Hand Gesture (China) 123
Fiorentino,M., Uva,A.E., Monno,G.,: The SenStylus: A Novel Rumble-Feedback Pen Device for CAD

Application in Virtual Reality (Italy) 131

Froehlich,B., Blach,R., Stefani,O., Hochstrate,J., Hoffmann,J., Klueger,K., Bues,M.: Implementing
Multi-Viewer Stereo Displays (Germany) 139

Miyazaki, T, Kaneko, T, and S. Kuriyama: Virtual Destruction of a 3D Object with a Stick (Japan) 147
Somol,P., Haindl,M.: Novel Path Search Algorithm for Image Stitching and Advanced Texture Tiling

(Czech Republic) 155

Kartasheva,E., Adzhiev,V., Comninos,P., Pasko,A., Schmitt,B.: Construction of Implicit Complexes: A
Case Study (United Kingdom) 219

Klein,J., Zachmann,G.: Interpolation Search for Point Cloud Intersection (Germany) 163
McDonald,J., Wolfe,R., Alkoby,K., Brzezinski,J., Carter,R., Davidson,M.J., Furst,J., Hinkle,D., Kroll,B.,

Lancaster,G., Smallwood,L., Toro,J., Ougouag,N., Schnepp,J.: Achieving Consistency in a
Combined IK/FK Interface for a Seven Degree-of-Freedom Kinematic Chain (United States)

171

Somchaipeng,K., Erleben,K., Sporring,J.: A Multi-Scale Singularity Bounding Volume Hierarchy
(Denmark) 179

Frau,S., Roberts, J.C., Boukhelifa,N.: Dynamic Coordinated Email Visualization (United Kingdom) 187
Semwal,S.K., Chandrashekhar,K.: Cellular Automata for 3D Morphing of Volume Data (United States) 195
Schulze-Wollgast,P., Tominski,C., Schumann,H.: Enhancing Visual Exploration by Appropriate Color

Coding (Germany) 203

Wan,T.R., Chen,H., Earnshaw,R.A.: A Motion Constraint Dynamic Path Planning Algorithm for Multi-
Agent Simulations (United Kingdom) 211

A Data Distribution Strategy for Parallel Point-Based
Rendering

Erik Hubo
Expertise Center for Digital Media

 Limburgs Universitair Centrum
Universitaire Campus

B-3590 Diepenbeek Belgium
erik.hubo@luc.ac.be

Philippe Bekaert
Expertise Center for Digital Media

 Limburgs Universitair Centrum
Universitaire Campus

B-3590 Diepenbeek Belgium
philippe.bekaert@luc.ac.be

ABSTRACT

During the last couple of years, point sets have emerged as a new standard for the representation of largely
detailed models. This is partly due to the fact that range scanning devices are becoming a fast and economical
way to capture dense point clouds. Traditional rendering systems are impractical when a single polygonal
primitive contributes less than a pixel during rendering. We present a data distribution strategy for parallel point-
based rendering, using a cluster of PCs as target platform. We describe a data-structure and a system
architecture, which allows for decoupling the point-data from the computational work. This strategy enables
both a balanced workload as well as no full data replication on each node. We exploit frame-to-frame coherence
to make our system scalable. The system renders high-resolution images from high complex data sets at
interactive frame rates. To our knowledge parallel point-based rendering has not been investigated in the past.
Our results indicate the feasibility of sort-first parallelization applied to point-based rendering.

Keywords
Cluster Computing, Parallel Rendering, Point-Based Rendering

1. INTRODUCTION
A recent trend in computer graphics is the shift
towards sample-based rendering. Today's range
sensing devices are capable of producing highly
detailed and massive point clouds, which do not fit in
the main memory of a single commodity PC. Point-
based rendering can be more efficient than traditional
rendering for these complex models if triangles
occupy a small screen region. Processing many small
triangles leads to bandwidth bottlenecks and
excessive floating point and rasterization
requirements [DeeM93]. Because of the absence of
topology and relative positions, point-clouds are well
suited for spatial subdivision and distribution
between different PC's. One way of visualizing these
enormous data sets is the use of expensive
multiprocessor graphics servers with a huge main
memory. A reasonable less expensive alternative of

these dedicated graphics machines is a cluster of
commodity PC's, linked by a high bandwidth
network. The main challenge is to develop efficient
parallel rendering algorithms that scale well within
the processing, storage and communication
characteristics of a PC cluster. Using this system
architecture has many advantages: price-performance
ratio, modularity, flexibility, storage capacity and
scalability. Processing power, storage and memory
capacity grow linearly with the number of PCs. A
drawback to the traditional, tightly-integrated parallel
computers is the fact that there is no fast access to a
shared virtual memory space, and that the bandwidth
and latencies of inter-processor communication are
significantly higher. The challenge is to develop
algorithms that evenly divide workload among PCs,
do not introduce extra work due to parallelization
and scale well as more PCs are added to the system.
In this paper we propose a data and work distribution
scheme for parallel point-based rendering on a PC
cluster.
This paper is organized as follows: first we discuss
previous work in section 2. Next, we give a short
system overview in section 3. In section 4 we present
our implementation, data structures and system
architecture. Finally, sections 5 and 6 discuss our
results and conclusions.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WSCG 2005 Conference proceedings ISBN 80-903100-7-9
WSCG’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

2. PREVIOUS WORK

Point-Based Rendering
During the last couple of years, there has been an
increased interest of the computer graphics
community in point based rendering techniques.
Point-based rendering dates back as far as 1985, the
year in which Levoy and Whitted [LeMa85]
proposed the use of points to model and render 3D
continuous surfaces. In 1989, Westover [WeLe89],
introduced splatting for interactive volume rendering.
Splatting algorithms handle volume data as a set of
particles that absorb and emit light. Westover’s basic
splatting algorithm suffers from considerable artifacts
due to inaccurate visibility determination when
composing the splats from back to front. More
recently, image-based rendering [McLe95] has
become popular because the rendering time is
proportional to the number of pixels (points) warped
from the source to the output images. This contrasts
with the scene-dependant time complexity for more
traditional rendering techniques. Later on, the
Lightfield [LeMa96] and Lumigraph [GoSt96]
techniques were developed. These algorithms
describe the radiance of a scene as a function of
position and direction in a four-dimensional space,
however, at the price of storage overhead.
One of the first point based rendering systems was
QSplat [RuSz00]. In QSplat, a multi-resolution
hierarchy, based on bounding spheres, is employed
for the representation and progressive visualization
of large models. The system is able to handle large
meshes at constant frame rate. Pfister and Zwicker
introduced surfels [PfHa00], short for surface
elements. Surfels are a powerful paradigm for
efficiently rendering complex geometric objects at
interactive frame rates. Surfels can handle complex
shapes; introduce low rendering cost and high image
quality. Three orthogonal LDI's [ShJo98] are used to
sample objects and image space filters are employed
to achieve hole-free rendering. Later Zwicker et al.
presented a framework for direct volume rendering
[ZwMA01] using a splatting approach based on
elliptical Gaussian kernels, superior to the footprints
of Westover [WeLe89]. This results in high-quality
anti-aliased rendering without excessive blurring.
Botsch et al. proved that a pure software
implementation could render up to 14 million Phong
shaded samples per second by using a quantization of
splat shapes [BoMa02]. However the models used to
achieve these rendering times are not complex in
terms of memory requirement. Their quantized
hierarchical data representation is very compact with
a memory consumption of less than 2 bits per point
position. Software-based point-based rendering
algorithms have proven to be superior to polygon-
based rendering algorithms for highly complex

scenes. High quality results can be achieved but their
rendering speed is limited. Recent algorithms use
graphical hardware to overcome this problem. This
idea was first introduced in [RuSz00]. In [CoLi02]
the authors avoid using the z-buffer by sorting an
octree from back to front each frame similar to
McMillan [McLe95]. In [BoMa03] the authors
provide high quality as well as efficient rendering
based on a two-pass splatting technique with
Gaussian filtering. Finally, in their most recent
publication the authors propose to base the lighting
of a splat on a linearly varying normal field
associated with it, resulting in a visually high quality
image [BoMa04]. Dachsbacher et al. [DaCa03]
present a hierarchical LOD structure that is suitable
for GPU implementation. They can process 50M low
quality points per second
A main drawback of all the GPU algorithms is that
they only perform well on rather simple models with
a low screen resolution. This is due to the fact that,
although extremely fast, a GPU’s on-board memory
is currently rather limited in terms of data storage. To
overcome this limitation we use a PC cluster to speed
up the rendering. Since PC clusters have a scalable
memory capacity, they are well suited for the
interactive rendering of high-resolution images of
complex models.
A short overview of parallel rendering is presented
next.

Parallel rendering
Parallel rendering systems have long been used for
ray tracing [WaIn01], radiosity and global
illumination [FuTh96, ZaDa95, ReEr98]. These
systems can often be classified by the stage in the
graphics pipeline in which the primitives are
partitioned: sort-first, sort-middle or sort-last
[MoSt94]. In sort-first systems, screen space is
partitioned in non-overlapping 2D tiles, each of
which is rendered independently. The final image is
obtained by composing all 2D tiles. The main
advantage of this method is the low communication
cost. The efficiency of sort-first algorithms is limited
by redundant rendering due to overlapping tiles
[SaRu01]. In general, since the overlap factors grow
with increasing numbers of processors, the scalability
of sort first systems is limited [MuCa95]. Sort-
middle, the most straightforward approach, is
commonly used in traditional systems. Primitives are
redistributed in the middle of the rendering pipeline,
between geometry processing and rasterization. This
approach is not well suited for a cluster of PC’s due
to its high communication requirements. Finally sort-
last methods defer sorting until the end of the
rendering pipeline. The main advantage of sort-last is
its scalability [MoSt94].

In the last few years, there has been a growing
interest in PC clusters for interactive rendering tasks.
Humphreys and Hanrahan presented a sort-first
system designed for 3D graphics called WireGL
[HuGr99, HuGr00]. WireGL was used to achieve
scalable display size with minimal impact to the
application's performance. Unlike sort-middle, sort-
first can use retained-mode scene graphs to avoid
most data transfers for graphics primitives between
processors [MuCa95]. In [SaRu00] a hybrid sort-first
sort-last approach for parallel polygon rendering is
presented. A specific algorithm for dynamic, view-
dependent and coordinated partitioning is used of
both the 3D model and the 2D image, which has
positive results in terms of both performance and
scalability.
Continual growth in typical dataset size and network
bandwidth has made stream-based analysis a hot
topic for remotely stored 3D models [RuSz01].
Streams are appropriate computational primitives,
because large amounts of data arrive continuously,
and it is impractical or unnecessary to retain the
entire dataset. Chromium [HuGr02] is another a
stream-processing framework based on WireGL. Its
stream filters can be arranged to create sort-first and
sort-last parallel graphics architectures.
Since we are interested in high-resolution images, we
prefer a PC cluster method to the recently popular
GPU methods because of its scalable memory
capacity. High-resolution images require complex
models with many point samples, which cannot be
accommodated by the memory of the graphical
hardware. We believe our sort-first parallelization is
scalable because the overlap factor is negligible in
point-based rendering. To the authors’ knowledge
parallel point-based rendering has not been
investigated in the past.

3. SYSTEM OVERVIEW
Our system operates in two stages:
Preprocessing Stage: The first stage serves as an
offline preprocessing stage and is only performed
once per 3D model. Details are provided in section
4.1. The input for the first stage is a point- cloud. The
system creates a multi-resolution hierarchical spatial
subdivision structure, optimized for fast data
traversal.
Rendering stage: The second stage is the render
stage. We use four types of processes in our system
architecture to decouple the data from the
computation in order to achieve an optimal load
balance. We briefly describe these processes of the
rendering pipeline below (Details are provided in
section 4.2 to 4.5):
Display process: This process executes the first and
last stage of the rendering pipeline. In the first stage,

the display process divides the view frustum into a
set of smaller mini view frusta, according to a box of
interest, and sends them together with camera data to
the data traverse processes. After computation in the
final stage, the display process receives the images
corresponding to these mini frusta and loads them
into the framebuffer for display.(see figure 1 (a)).
Data traverse process: A data traverse process
requests a mini frustum from the display process.
While traversing the octree data structure, the data
traverse process clips the octree cells against the mini
frustum, and decides which octree cells are suitable
for rendering. For each mini frustum the data
traverse process maintains, together with the list of
useful octree cells, a list of used top-level octree
cells. These are hierarchically higher octree cells (see
figure 2). Depending on the workload and the

Display Process

Data Traverse
 Processes

Data Send
 Processes

Render
Processes

Render packet
Top-level info packet

10011010110110101011
00001010101001001011
10111010101010110010
10101101010100101001
01000101001010001001
00101000100001010010

10011010110110101011
00001010101001001011
10111010101010110010
10101101010100101001
01000101001010001001
00101000100001010010

Data Packet

1100010

1100010 1100010
1100010

1100010

image packet

Box of intrest

Mini frusta

N
etw

ork

N
et

w
or

k

workload packet

Network

(a)

(b)

(c)

(d)

Figure 1: System overview of the rendering
pipeline: (a) Display process: Frustum subdivision
according to a box of interest and display. (b)
Data traverse processes: traversing data and
gathering render information. (c) Data send
processes: sending point-data. (d) Render
processes: Caching and rendering the incoming
data and sending the rendered images back to the
display node.

available data on the render nodes (see section 4.5),
the data traverse process can correctly determine the
render node the data should be sent to. (see figure
1(b)).
Data send process: The data traverse processes
inform the data send processes what point-data
should be sent to which render node (see section 4.5).
(see figure 1(c)).
Render process: Render processes receive packets
from data send processes (data packets) and from
data traverse processes (render packets). Data
packets contain point-data of a top-level octree cell.
Render packets contain pointers to the data that has
to be rendered, camera and mini frustum data.
Received data packets are temporarily stored on the
render node (see section 4.5). A render node creates
one image per received render packet, assuming all
necessary data packets are available. This image is
sent back to the display process. (see figure 1 (d)).

4. IMPLEMENTATION
In this section we describe the implementation of our
distributed point-based-rendering system in detail,
and comment on the applied data structures and
algorithms.
Preprocessing
The preprocessing stage is the first stage in the
algorithm and has to be executed only once for any
given input point cloud. Like other point-based
rendering algorithms [RuSz00, BoMa02], an octree
based hierarchical spatial subdivision structure is
created from an input point cloud. The advantages of
this data structure are: (1) fast data traversal: frustum
and backface-culling, optimal succession of octree
cells cache coherence [ChTr99] (2) immediate access
to all data in an octree cell (for data sending) (3)
multi-resolution. If no normals or splat sizes per 3D

position are included in the point cloud, these data
can be simply derived from sample neighborhoods.

4.1.1 Octree
We construct the octree data-structure using a two-
step procedure. First, we create an ordinary axis-
aligned octree. Since we are working with large
datasets, special care has to be taken to limit the
octree recursion, which could adversely affect the
algorithms efficacy. The leaf octree cells contain the
actual point-data.
In the second step the heavy loaded octree is
rewritten to a fast, compact and memory-coherent
octree. Initially, we split the point-data from the
octree. The algorithm recursively creates the point-
array. This array is sorted in such a way that every
octree cell has a start index and a size to access its
point-data in this point-array (see figure 2). This is
useful when we need fast data-access to a non-leaf
octree cell. Besides a start index and size to its data,
each octree cell contains location, normal, normal
cone and bounding box information. Each octree cell
has some structural information: a level (section
4.1.2), an index to its sibling, and an index to its top-
level octree cell (see figure 2). All the data of the
octree cell is aligned in 64 bytes for cache-
performance reasons. If an octree cell has no siblings
it has a recursive index to its parent’s sibling (see
figure 2: octree cell 10’s sibling). A top-level octree
cell is a uniform parent at a low depth in the octree: it
shares the same point-data as any octree cell beneath
it. Each octree cell has an index to the top-level
octree cell that contains its data (see figure 2). To
align the data structure and avoid cache trashing
[ChTr99] we write the octree down to an array, the
octree-cell-array, by traversing the octree in depth-
first order (the same order as the data traverse

0

1 5 11

2 3 4 6 12 13

8 9 10 14 15 16

7

DATA SEND PROCESS

Top-level octree cell 1 data Top-level octree cell 5 data Top-level octree cell 11 data
Data
level0

 1

1 5 11

next sibling

DATA TRAVERSE PROCESS

Top-Level Octree Cell Array

i Top-Level Octree CellsOctree cell at index i
in the octree-cell-arrayX Y X: top-level octree cell
Y: level

 4

 1 1 1 1 1

 1 1 1 1 1 2 2

 2 3 3

 1 1 1 5 5

 5 5 5

 11 11

 11 11 11

 1 5 11

 -1
First Child

Data

RENDER PROCESS

1 5 11 Top-Level Octree Cell Array

Top-level octree cell 3 data

Data Stream

Render Stream

Top level to
Render Node Stream

Control Stream

Render
Packet

Data Packet

 11,S 15

Top-level octree cell 5 data

 5, S 7

 i ,S j
i : top-level octree cell
j : Start index to octree cells data
 in top- level octree cell i

 i , S j

Content of a Render Packet

Point-Array

Octree-Cell-Array

Figure 2: The octree data structure: Data Traverse Process: octree written down to an array, all
information available except the point-data. Data Send Process: Top-level octree cell array pointing to
point-array. Render Process: Top- level octree cell array pointing to received data packets. Render
packets show what has to be rendered.

processes use (see figure 2)) This way we do not
need to save a pointer to the first child of an octree
cell.

4.1.2 Multi Resolution
It is not necessary to use the full point-data for a
model far from the camera. It is better to use a
compact version of the data to save processing and
network resources. Other algorithms, e.g. [RuSz00],
use the information in their spacial subdivision
scheme to create a multi-resolution model. Since we
decouple the data structure from the point-data, we
cannot introduce multi-resolution point-data in the
data-structure. Therefore level-splats are introduced.
As we mentioned in the previous section, every
octree cell has a level (see figure 2). Data-points have
level zero, leaf octree cells have level one, and the
levels of all other octree cells is one more than the
maximum level of their children (see figure 2). To
create level(n) splats we build for each level(n)
octree cell a spatial subdivision data-structure on its
level(n-1) splats. We use this data structure together
with a covariance analysis [PaMa02] (Mahalanobis
distance [JoIT]) to cluster level(n-1) splats to level(n)
splats.

Display process
The system contains only one display process, which
provides the user-interaction. The display process
dynamically divides the view frustum into mini view
frusta. This is a sort first approach [MoSt94]. The
dimensions of these mini frusta are computed
considering a box of interest. Typically this box is
the bounding box of the point-data. The display
process sends these mini frusta together with camera
data and a timestamp to data traverse processes that
reported to be idle. The display process keeps a
queue of incoming images and sequentially displays
these.

Data traverse process
A data traverse process only loads the octree-cell-
array (see section 4.1.1) into its main memory. This
implies that the data traverse processes can work on
the entire data set without loading the massive point-
data. This way the computational work can be
decoupled from the data, resulting in a well-balanced
workload. Each idle data traversing process asks the
display process a new mini frustum and creates a
render packet associated with it. This render packet is
filled during the traversal of the octree as described
below:
 TraverseOctreeCellArray(){
 int index = 0;
 do
 if(whole array[index] in mini frustum)
 AddToPacket(index); index = siblingindex
 else if(part of array[index] in mini frustum)

 if(array[index] benefit of subdivision is high)
 index++
 else
 AddToPacket(index); index = siblingindex
 else if(array[index] out mini frustum)
 index=siblingindex
 while(index exists) }
Where array is the octree-cell-array, index is the
position in this array of the octree cell that we are
using and siblingIndex is the position of the sibling
of this octree cell in the octree-cell-array. This
function exploits the structure of the octree-cell-
array and avoids cache trashing [ChTr99].
Furthermore it uses frustum culling and decides
whether the benefit of examining the children of the
octree cell is sufficient. The AddToPacket function
works on the octree cell at position index in the
octree-cell-array. First we try to backface cull the
octree cell, considering its normal and normal cone.
If the top-level octree cell of the octree cell does not
exist, we are too high in the octree and need to
examine the children of the octree cell. The algorithm
decides which data resolution it should use
depending on the screen resolution, the octree cells
distance to the camera and the available data
resolutions for this octree cell. The size and the start
index of the octree cells data are added to the render
packet. The added start index is the offset from the
octree cells data to the top-level octree cells data (see
figure 3).

StartIndex(Toplevel(i))

StartIndex(i)

added start index

Point-Data-Array

offset

Added Start index = StartIndex(i) - StartIndex(toplevel(i)).

Where i is an octree cell.

Figure 3: Added start index is the offset from the
octree cells data to the top-level octree cells data.
The indices of the used top-level octree cells are also
added to the render packet. When the octree traversal
is finished, the render packet is ready. Every data
traverse process has information concerning the
current workload and the available data on each
render node (see section 4.5). The render node with
the smallest cost is chosen to receive and render the
render packet. The cost is computed as described
next:

Cost(i) = Render Cost(i)+Network Cost(i)

Render Cost(i) = workload on render process(i)*Ts

Network Cost(i) = unavailable data on render process(i) * Tn

Where i is a render node, Ts is the time to render one
splat and Tn is the inverse network speed. Finally the
data traverse process informs all data send processes
what unavailable point-data they need to send to the
chosen render node.

Data send process
A data send process loads the point-array, or a part
of it, grouped per top-level octree cell in its main
memory (see figure 2).
Data send processes receive their instructions from
the data traverse processes; they inform the data send
processes to which render node which top-level
octree cells data should be sent (see figure 2). Data
send processes always send the entire point-data of a
top-level octree cell.

Render process
In [MoSt94], the authors state that a sort first
approach is only scalable if the frame-to-frame
coherence is exploited. Therefore, we introduce top-
level octree cells. These are regular octree cells at a
low depth in the octree (depth three, four or five
depending on the size of the model). Combined, all
top-level octree cells mutually exclusive enclose the
entire point-array (see figure 2). When using top-
level octree cells we avoid both redundant data in the
cache of our render processes and high network
traffic. Furthermore, we exploit the frame-to-frame
coherence, by sending more data than directly
needed.
A render node is a separate workstation running four
render processes that share the same memory place.
A render node receives two kinds of data streams,
one from the data traverse processes and one from
the data send processes. Initially, each render node
contains an empty array with all top-level octree
cells. The point-data in this array is filled each time
point-data of a top-level octree cell is received from a
data send process. Render packets, sent by the data
traverse processes, contain pointers to the point-data
of the octree cells that lie in the mini frustum. Each
pointer is an offset in the point-data of the top-level
octree cell where the pointers octree cell belongs to
(see figure 2 and 3). Render packets also indicate
which top-level octree cells point-data should be
available to render this packet. If all requested point-
data is available, an idle render process will render
the packet. As long as the requested data is not
available, the packet will be queued. To avoid

running out of memory, a least recently used caching
scheme is applied. The least recently used point-data
of a top-level octree cell will be deleted after a time-
out period has expired. All data traverse processes
will be informed about this, so they can recompute
the cost of sending data to that render node. For the
same reason, render nodes inform the data processes
about their current workload, this is the amount of
points they still need to render. The rendered image
is sent back to the display process for composition
and display.
In our current framework we use a simplified EWA
[ZwMA01] splatting algorithm that could be easily
replaced by a more advanced splatting algorithm if
required.

5. RESULTS
The PC cluster used for our experiments consist of 9
workstations. Each node has two 2.4 Ghz Intel
Pentium IV Xeon processors, 2 GB DDR Ram, and
is running Suse Linux 9.1. The nodes communicate
with the LAM MPI implementation through a gigabit
network. Since we are using a purely software based
implementation, we exploit the computational power
of each workstation and run several processes
simultaneously. In our test setup the system runs as
many Data Traverse as Render Processes (please note
that there is not a one-to-one mapping between these
processes.)

Scalability
5.1.1 Model Complexity
We first consider the scalability of our system with
regards to the model complexity. We have two test
cases: (1) three dragon point sets with 0.3M, 1,2M
and 4,2M points. (2) Different models with different
complexities: Dragon 4,2M points, Turbine Blade
10M points, Hand 5M points and Venus 3M points.

5.1.1.1 Splats Per Second
Our experiments showed that if we use only one
render node, we are able to splat an average of 1.5
Million Splats per Second, if all necessary data is
available on the render node. Figure 4 shows the
scalability of the splats per second. If the model

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8

(a) Render Nodes

Msps

Dragon 0.3M

Dragon 1,2M

Dragon 4,2M

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8

(b) Render Nodes

Msps

Venus 3.3M
Dragon 4.2M
Hand 5M
Blade 10M

Figure 4:(a)(b) We averagely splat 1.5 Million Splats per Second per render node. If the model grows in
complexity the splat rate could drop a little because the cost of traversing the octree increases.

grows in complexity, the global splat rate could drop
a little because the cost of traversing the octree
increases (the difference between figure 4 (a) Dragon
0.3M and (b) Blade 10M).

5.1.1.2 Frames per Second
If the model grows in complexity, more points need
to be rendered each frame. Since the splat rate is
more or less constant (see figure 4), the frame rate
will drop for these complex scenes (see figure 5 (a)).
However, it is not necessary to render more points
than dictated by the screen resolution. This means the
frame rate does not entirely depend on the
complexity of the model, it also depends on the
screen resolution and the available model resolutions.
We could speed up the frame rate by choosing the
optimal model resolution for each octree cell,
depending on its distance to the camera and the
screen resolution (see figure 5(b)). This results in a
scalable frame rate.
Figure 5 (c) shows us that the frame rate is rather
constant. If the frame rate drops, point-data packets
are sent.

5.1.2 High Resolution
A small part of the computational power is spent on
sending images to the display process that loads them
to the graphics board. This implies that the
performance of our system is not very sensitive to the
screen resolution, if the number of splats stays
constant. As we can see on figure 6(a) the frame rate
only drops if the resolution becomes too high. This is

a result of the high communication costs associated
with sending high-resolution images. However, if the
number of splats increases with the resolution, as we
described section 5.1.1, the frame rate will drop
faster (see figure 6(b)), because more points need to
be rendered. However, the quality of these images
will be higher.

Load Balance
Each render node has a cost to render a given render
packet. The correct choice of the render node with
the smallest cost (see section 4.3 data traverse node)
is vital for good load balancing. In figure 6(c) the
workload for 8 render nodes is depicted, during the
rendering of the Turbine Blade point set (10M
points). When our process starts, the workload is low
because many point-data packets are sent to the
render nodes. Figure 6(c) clearly indicates that our
cost function and system architecture is well chosen,
because all render nodes are almost equally loaded
and the global workload does not drop too much.
When the workload drops, point-data packets are
sent.

6. CONCLUSION
This paper presents a scalable data distribution
strategy for parallel point-based rendering on a PC
cluster architecture. Since the used data-structure and
the algorithm’s architecture decouple the data from
the computational work, the system achieves a well
balanced workload and each data traverse process
can work on the entire data without a full replication

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8
(a) Render Nodes

FPS

640*480
1248*1024
1920*1440
4000*3000

0

5

10

15

20

25

1 2 3 4 5 6 7 8(b) Render Nodes

FPS

640*480
1248*1024
1920*1440
4000*3000

Load Balance

0

100

200

300

400

500

600

700

800

(c) Time

CPU

Figure 6:(a) Tests are done with the dragon 4M point set. The system is, if the number of splats stays
constant, only sensitive to the screen resolution if the overhead of sending the images back to the display
node is too high (b) the frame rate drops faster because the number of splats increases with the
resolution (c) the workload for 8 render nodes, during the rendering of the Blade point set (10M points).

0

50

100

150

200

250

1 2 3 4 5 6 7 8
(a) Render Nodes

FPS

Dragon 0.3M
Dragon 1,2M
Dragon 4,2M

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8
(b) Render Nodes

FPS

Venus 3.3M
Dragon 4.2M
Hand 5M
Blade 10M

0

5

10

15

20

25

30

(c) Time

FPS

Fps

Avg

Figure 5:(a)(b) If the model grows in complexity more point are needed each frame. Since the splat rate
is rather constant, the frame rate will drop. For non-complex models we could render up to 210 fps while
very complex models still result in 11 fps.(c) the frame rate is rather constant

of the data. The algorithm dynamically partitions the
screen into smaller mini frusta (a sort-first approach).
Our technique exploits the sort-first properties of the
algorithm, by sending more data than is directly
needed. Large data sets at high screen resolution can
be rendered at interactive frame rates. Point-Based
rendering is well suited for a sort-first parallel
rendering approach because the overlap factor is
negligible.
Topics for further study include faster software
point-splatting algorithms with higher quality, using
low-level processor instructions. Also, combining
clustered CPU and GPU rendering might be an
interesting research venue.

7. ACKNOWLEDGEMENTS
We would like to thank everybody who helped us
with this publication and the Stanford Computer
Graphics Laboratory for sharing the models used in
our experiments.

8. REFERENCES
[BoMa02] M. Botsch, A. Wiratanaya L. Kobbelt, Efficient

high quality rendering of point sampled geometry, 13th
Eurographics workshop on Rendering, pp 53-64, 2002.

[BoMa03] M.Botsch, L.Kobbelt,High-Quality Point-Based
Rendering on Modern GPUs, 11th Pacific Conference
on Computer Graphics and Applications, pp 335,2003.

[BoMa04] M.Botsch,M.Spernat,L.Kobbelt,Phong Splat-
ting, pp 25-32, Symp.on Point-Based Graphics,2004.

[CaEd74] E. E. Catmull, A subdivision algorithm for
computer display of curved surfaces.1974.

[ChTr99] T.M. Chilimbi, M. D. Hill, J. R. Larus, Cache-
Conscious Structure Layout, Programming language
design and Implementation SIGPLAN99, pp 1 –12,
1999.

[CoLi02] L. Coconu, H Hege, Hardware-accelerated point-
based rendering of complex scenes, 13th Eurographics
workshop on Rendering, pp 43- 52,2002.

[DaCa03] C. Dachsbacher, C Vogelgsang and Marc
Stamminger, Sequential point trees, Trans. Graph.,pp
657-662, 2003.

[DeeM93] Data Complexity for virtual reality: where do all
the triangles go?, IEEE Virtual Reality Annual
International Symposium, pp 357-363, 1993

[FuTh96] T. A. Funkhouser, Coarse-Grained Parallelism
for Hierarchical Radiosity Using Group Iterative
Methods, Computer Graphics,pp 343-352, 1996.

[GoSt96] S.J.Gortler, R. Grzeszczuk,R. Szeliski,M. F.
Cohen, The Lumigraph,SIGGRAPH96, pp 253–262,
1996

 [HuGr99]G. Humphreys, P. Hanrahan, A distributed
graphics system for large tiled displays, Proceedings of
the conference on Visualization '99,pp 215-224,1999.

 [HuGr00]G. Humphreys, I. Buck, M. Eldridge,P.
Hanrahan, Distributed rendering for scalable displays,
ACM/IEEE conference on upercomputing,pp.30,2000.

 [HuGr02]G. Humphreys, M. Houston, R. Ng,R Frank, S.
Ahern,P. D. Kirchner,J. T. Klosowski, Chromium: a

stream-processing framework for interactive rendering
on clusters, Computer graphics and interactive
techniques,pp 693-702 ,2002.

[JoIT]I.T. Jolliffe, Springers Series in Statistics, Principal
Component Analyse, second edition, pp 92- 93. ISBN
0-387-95442-2

[LeMa85] M. Levoy, T. Whitted, The use of points as
display primitive. Tech. Rep. TR 85-022, University of
North Carolina at Chapel Hill.

[LeMa96] M. Levoy, P. Hanrahan, Light Field
Rendering,SIGGRAPH96,pp 31 – 42,1996

[McLe95] L. McMillan, G. Bishop, Plenoptic Modeling:
An Image-Based Rendering System, pp 39-46, 1995.

[MoSt94] S. Molnar,M. Cox, D. Ellsworth,H. Fuchs, A
Sorting Classification of Parallel Rendering, IEEE
Computer Graphics and Algorithms, p23-32, 1994.

[MuCa95] C. Mueller, The sort-first rendering architecture
for high-performance graphics, symposium on
Interactive 3D graphics, pp 75 - end, 1995.

[PaMa02] M. Pauly, M. Gross, L.P. Kobbelt, Efficient
simplification of point-sampled surfaces, IEEE
Visualization pp 136- 170,2002.

[PfHa00] H. Pfister, M. Zwicker,J.v. Baar, M. Gross,
Surfels: Surface Elements as Rendering Primitives,
SIGGRAPH00, pp 335-342,2000

[ReEr98] E. Reinhard, A. Chalmers,F. W. Jansen,
Overview of Parallel Photo-realistic Graphics, nr CS-
EXT-1998-147, 1998.

[RuSz00] S. Rusinkiewicz, M. Levoy, QSplat: A
Multiresolution Point Rendering System for Large
Meshes, pp 343-352, Siggraph00, 2000.

[RuSz01] S. Rusinkiewicz, M. Levoy,Streaming QSplat: a
viewer for networked visualization of large, dense
models, symposium on Interactive 3D graphics,pp 63-
68, 2001.

[SaRu00] R. Samanta,T. Funkhouser,K. Li, J. Pal Singh,
Hybrid sort-first and sort-last parallel rendering with a
cluster of PCs, Eurographics workshop on Graphics
hardware, pp 97-108, 2000.

[SaRu01] R. Samanta,T. Funkhouser,K., Parallel
Rendering with K-way Replication, IEEE 2001
symposium on parallel and large-data visualization and
graphics, pp 75 –84, 2001

[ShJo98] J.Shade, S. Gortler,L. He R. Szeliski, Layered
depth images, Computer graphics and interactive
techniques, pp 231 –242, 1998.

[WaIn01] I. Wald, P. Slusallek, C. Benthin, Interactive
Distributed Ray Tracing of Highly Complex Models,
EUROGRAPHICS, Workshop on Rendering, pp 277-
288, 2001,

[WeLe89] L. Westover, Interactive volume rendering,
Chapel Hill workshop on Volume visualization pp 9-
16, 1989.

[ZaDa95] D. Zareski, B.Wade, P. Hubbard,P. Shirley,
Efficient Parallel Global Illumination Using Density
Estimation,IEEE/ACM 1995 Parallel Rendering
Symposium (PRS '95),pp 47- 54, 1995.

[ZwMA01] M. Zwicker, H. Pfister, J.v.Baar, M.Gross,
Ewa volume splatting, IEEE Visualization 2001, pp 29-
36, 2001.

Cached Geometry Manager for
View-dependent LOD Rendering

Roberto Lario
Universidad Complutense

Madrid, Spain
rlario@dacya.ucm.es

Renato Pajarola
University of California Irvine

USA
pajarola@acm.org

Francisco Tirado
Universidad Complutense

Madrid, Spain
ptirado@dacya.ucm.es

ABSTRACT
The new generation of commodity graphics cards with significant on-board video memory has become widely
popular and provides high-performance rendering and flexibility. One of the features to be exploited with this
hardware is the use of the on-board video memory to store geometry information. This strategy significantly
reduces the data transfer overhead from sending geometry data over the (AGP) bus interface from main memory
to the graphics card. However, taking advantage of cached geometry is not a trivial task because the data models
often exceed the memory size of the graphics card. In this paper we present a dynamic Cached Geometry
Manager (CGM) to address this issue. We show how this technique improves the performance of real-time
view-dependent level-of-detail (LOD) selection and rendering algorithms of large data sets. Alternative caching
approaches have been analyzed over two different view-dependent progressive mesh (VDPM) frameworks: one
for rendering of arbitrary manifold 3D meshes, and one for terrain visualization.

1. INTRODUCTION
The functionality and speed of graphics hardware has
increased significantly in last few years, making the
GPU a programmable stream processor with sufficient
power and flexibility to perform intensive
calculations. Despite advances in the graphics
hardware, the data transfer from main memory to the
graphics card remains the major bottleneck [HCH03].
This restriction prevents the full exploitation of the
potential computational horsepower of the GPU and
introduces significant overhead in short data transfers
[THO02].

View-dependent level-of-detail (LOD) algorithms can
significantly reduce the amount of data transfer as the
geometric scene complexity is adaptively minimized
using a view-dependent error metric [LRC03]. The
adaptive nature of such methods introduces constant
but infrequent and small geometric changes between
consecutive frames. Our goal is to take advantage of
this fact using the video memory of modern consumer
graphics hardware as geometry cache. The rendering
performance can greatly be improved if the geometric
data of a given scene is stored in video memory.
However, the limited size of available video memory
restricts the complete caching of big data models. The
use of view-dependent LOD algorithms can provide a

solution to this problem because the geometric
information required for rendering a scene at a certain
LOD is in general only a small fraction of the full
resolution model. This visible portion of geometry
information can be cached on the graphics card using
video memory (see Figure 1) and is updated every
frame when the viewpoint location of the camera or
the resolution is changing. In order to efficiently
handle the constantly occuring video memory updates,
a Cached Geometry Manager (CGM) is needed. The
continuous adaptive LOD changes guarantee that only
a small amount of the cached geometry in the video
memory has to be updated between consecutive
frames.

CPU

Main
Memory

GPU

Video
Memory

AGP Bus

Figure 1: CPU/GPU communication diagram.

In this paper we describe several strategies to
implement an efficient geometry-cache manager. Two
view-dependent progressive mesh (VDPM)
frameworks are used to test the proposed techniques
and to show the speed-up in rendering performance
when applied to a general view-dependent LOD
algorithm. The first framework is FastMesh [Paj01], it
uses an efficient view-dependent and adaptive LOD
method for rendering arbitrary 3D meshes in real-
time. The general concepts of this framework are
common to most similar VDPMs, e.g. such as
[XV96], [Hop97], [LE97], [DMP97] or [KL01]. The
second framework is QuadTIN [PAL02], an efficient
quadtree-based triangulation approach for irregular
terrain height-fields that provides fast quadtree-based
adaptive triangulation, view-dependent LOD-selection
and real-time rendering. Many interactive terrain

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a
fee.

WSCG 2005 conference proceedings, ISBN 80-903100-7-9
WSCG 2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

visualization systems, e.g. such as [SS92], [LKR96],
[DMP96], [Pup96], [Paj98], [BAV98] or [EKT01],
exhibit a similar top-down LOD triangulation and
rendering approach.
The remainder of the paper is organized as follows:
Section 2 presents a very brief overview of related
work. Section 3 describes the Cached Geometry
Manager. In Section 4 the two VDPM frameworks are
presented to test the CGM approach. Experimental
results are presented in Section 5 and Section 6 ends
the paper with some conclusions.

2. RELATED WORK
Despite the extensive work on level-of-detail (LOD)
techniques [LRC03], only very few methods that use
cached geometry have been proposed recently. One
possible reason for this lack is that only recent
generations of graphics cards allow the application
program to manage large amounts of video memory
systematically and dynamically for storing geometry.
In [Lev02] a terrain rendering algorithm is presented
that operates on clusters of cached geometry called
aggregate triangles. The dynamically generated
aggregate triangles are kept in the geometry cache for
several frames to improve rendering performance. A
similar concept is followed in [CGG03a], [CGG03b]
where a LOD hierarchy of simplified height-field
triangle patches is generated in a pre-process. At run-
time the appropriate LOD triangle patches are selected
for rendering and a LRU strategy is used for caching.
In [LPT03] square patches of a quadtree-based
hierarchical terrain triangulation are used for fast
rendering and caching in video memory. A common
limitation of the above methods is that they are
restricted special-purpose solutions for terrain
rendering and not applicable in general to other
VDPM frameworks. In contrast, the concepts
presented in this paper are directly applicable to a
wide range of VDPM frameworks. A remarkable
approach to provide seamless geometric LODs is
provided by GLOD [CLD03]. It allows advanced
users to define discrete LOD objects as well as specify
the use of video memory for patches of the geometry.
In contrast to GLOD, the proposed Cached Geometry
Manager interacts directly with VDPM frameworks
that dynamically generate continuously adaptive LOD
meshes and provides transparent use of video
memory.

3. CACHE GEOMETRY MANAGER
Most view-dependent simplification frameworks
represent the geometry in a hierarchical data structure
called vertex hierarchy (see Figure 2). The nodes
located near the root correspond to low-resolution
vertices while those located farther away represent
high-resolution detail vertices. The vertex hierarchy is
dynamically queried to perform a view-dependent
LOD simplification for each frame. A front of active

nodes divides the current nodes used to generate the
simplified scene from the rest. This frontier can
continuously and incrementally by updated between
rendered frames.

Vertex
Hierarchy Low detail

High detail

active nodes

front of active nodes

Figure 2: Vertex hierarchy diagram.

One can observe that by far most of the vertices of a
scene remain active between consecutive frames and
just a small fraction changes its state. Hence most
vertices can be stored and kept continually in video
memory in order to improve rendering performance.
Each frame only few vertices require a read operation
from main memory, to transfer to video memory,
when they change their state from inactive to active.
Note that a remove operation is needed when the
video memory is full and new vertices have to be
added. Inactive but cached vertices are the prime
candidates to be deleted from video memory in this
case. A video memory manager is required to carry
out these operations.

Vertex Arrays
Indexed vertex buffers or indexed vertex arrays (IVA)
in OpenGL, are the best way to take advantage of
modern graphics accelerator (see section 11.4.5 in
[MH02]). The application puts the data into specific
buffers and gives the pointers to the driver, which
accesses the data directly. Hence vertex arrays need
much fewer OpenGL function calls for rendering than
the classic immediate mode vertex submission (using
glBegin()/...glVertex().../glEnd() blocks). In [Mar00],
several methods to optimize submission of vertex data
in OpenGL are described. Our CGM takes advantage
of vertex arrays in combination with the OpenGL
extension NV_vertex_array_range [Kill99]. The order
and positions of vertices is different in the cached
IVA from the main memory IVA. Thus the vertex
indices of an indexed triangle mesh must be remapped
accordingly for rendering. However, the rendering
speedup will compensate for this extra re-indexing
required by a dynamic CGM.

CGM Strategies
In this and the following section we describe three
basic caching strategies to implement the video
memory manager. These three strategies are going to
be discussed for two variants of VDPM frameworks in
order to cover the range of applications: those which
calculate an explicit front of active nodes by
incremental updates between consecutive frames, and
those which implicitly define the active front by
selecting the active nodes top-down for each frame
(see Figure 2). In this section we first discuss the more

general case of implicit active front VDPM
frameworks. Note that a non-explicit front does not
mean it does not exist, in fact the front always
implicitly exists in any view-dependent LOD
framework. The implicitly-defined refers to the
behavior of the VDPM framework that has no other
information than if a vertex is selected or not for each
rendered frame. From here on we will refer to both
video memory and geometry cache as equivalent
concepts. The basic two tasks of the cache manager
are: (1) to determine that a vertex is already resident
(cached) in the video memory, and (2) to find and use
an open slot in the cache to store a new vertex. Task
(1) can efficiently be determined by a cross indexing:
each vertex in main memory has a field that indicates
the cache index where it was last stored, and each
cache slot has an index field indicating which vertex it
stores. Hence if both indices coherently cross-link the
same vertex then it is already cached and ready for
use. More complicated is task (2) for which we
describe viable strategies below.
First-Available Strategy (FA): This simple strategy
uses the video memory as a linear list of slots with
flags. This list is incrementally traversed from the
beginning to the first non-used slot (First Available)
every time a new vertex must be cached. Then this
slot is marked as used. The process continues while
there are vertices to cache, and a pointer is moved
from the head to the end to search for the next
available open slot. Owing to the fact that the list of
slots is sequentially traversed this strategy can be
implemented using a simple array, as illustrated in
Figure 4a). Each slot is considered used when it stores
a vertex used in the current or last frame. This policy
considers the fact that it is very likely that a vertex
used in frame i will also be required in frame i+1.
Hence each slot flag is an integer counter which stores
the last frame in which that cached vertex was used.
This strategy is simple to implement, but has one
potential drawback: unused slots near the beginning of
the list will immediately be overwritten when a new
vertex has to be cached while unused slots at the end
may cache an unused vertex for a long time. This bias
of reusing cache slots based on their position is not
necessarily the best solution. At the expense of more
complexity, the next strategy addresses this problem.
LRU Strategy: As mentioned above, the FA strategy
considers any empty slot in the cache as equally good.
If a slot has not been used in the current or last frame
it is considered available. However, there is an
intuitive reason that more recently used vertices are
more likely to be used again than vertices that have
not been used for a long time. Hence a more refined
policy is to take into account the age of the unused
slots and use a last-recently-used (LRU) strategy. The
LRU parameter is directly obtained from the frame

counter associated with each slot. One possible data
structure to make use of this strategy is a doubly-
linked-list. Two pointers (head and tail) are needed for
the proposed implementation as shown in Figure 4b).
The head points to the youngest slot, and the tail
points to the oldest slot. New vertices are cached in
the slot pointed to by tail which is then moved to the
head. Reused slots of rendered vertices already in
cache are simply moved from their current position in
the linked list to the head. Consequentially, unused
slots automatically move towards the tail which
always points to the oldest slot entry. Note that these
operations do not imply a displacement of the actual
vertex data in video memory, it is just a mechanism
for the cache manager to maintain access to the last-
recently-used open slot. Each slot in this linked list
corresponds to a fixed memory location in the cache.
LRU + Error-PriorityQueue Strategy: Figure 2
shows clearly that the vertices near the top of the
hierarchy are more significant as they correspond to
coarser LOD information. Consequently, these
vertices are included in the mesh representation before
any vertices of finer LODs. Therefore, for a new
vertex it is more suitable to choose among the empty
slots the one that corresponds to an old vertex which
represents a fine level-of-detail. In order to add this
new feature to the CGM we propose to categorize the
age of the unused slots and introduce a priority-queue
for the oldest-category vertices. The oldest category
vertices are naturally and compactly stored at the end
of the LRU list as described above. Hence as shown in
Figure 4c) we only manage this last section of the
LRU list in a priority-queue with the LOD error-
metric parameter as key. Note that it is not advisable
to choose a big priority queue size since this data
structure is more costly than the doubly-linked-list of
the simple LRU approach.
As with the LRU approach, reused slots are moved
from the current location to the head and unused slots
slowly sink towards the tail. The tail marker also
indicates the bounds of the oldest-category. Thus
elements at the tail are moved to the priority-queue as
soon as their age has reached a certain limit and the
priority-queue is not at maximal capacity. When a
new vertex has to be inserted into the cache, the top
slot of the priority-queue is used and moved to the
head.

head

a) FA b) LRU c) LRU + errorPQ

head head

tail

tail
error
Priority
Queue

low detail

high detail

young

old

relevance

young

old

relevance

ptr_FA

Figure 3: Data structures for the CGM strategies.

CGM Strategies for Front-Frameworks
The strategies described in the previous section can be
refined if the VDPM framework has explicit
knowledge of which vertices have been removed from
and which vertices have been added to the current
LOD triangle mesh. Thus if the change from active to
inactive, and vice-versa in Figure 2, is explicitly
observable by the application. This feature is typical
in LOD systems that maintain an explicit active front
for the current frame and update this front
incrementally as illustrated in Figure 5. For a new
frame, the newly activated vertices are called added
(+) vertices, and those deactivated are called removed
vertices (-). For each frame the added vertices have to
be inserted into video memory, if not already cached
from previous frames, while the removed vertices
(may) remain cached but change their slot flag to be
unused. Note that the removed vertices have always
just been active in the previous frame.

Vertex
Hierarchy

Low detail

High detail

active nodes

-

front of active
nodes at
frame n+1

front of active
nodes at
frame n

- removed nodes at frame n+1
+ added nodes at frame n+1

+

Vertex
Hierarchy

Low detail

High detail

active nodes

-

front of active
nodes at
frame n+1

front of active
nodes at
frame n

- removed nodes at frame n+1
+ added nodes at frame n+1

+

Figure 4: Vertex hierarchy of a front-framework.

FA Strategy for front-framework: This strategy,
while obviously suboptimal when information about
both added and removed vertices is explicitly
provided by the LOD system, applies without changes
to explicit-front frameworks.
LRU Strategy for front-framework: The LRU
policy described previously can be improved using a
third pointer, called frontier in Figure 6 that divides
the active slots from the inactive ones.

head

tail

error
Priority
Queue

low detail

high detail

young

old

relevancefrontier

(-) slots

(+) slots

new vertices
(from main memory)

head

tail

young

old

relevance

frontier

(-) slots
(+) slots

a) b)
Figure 5: a) LRU for Front-Frameworks. b) LRU +
errorPQ for Front-Frameworks. (-) slots of removed
vertices. (+) slots of added vertices.
The slots of removed vertices are moved to just below
the frontier while slots of added vertices change their
position from the tail to the head. Advantage can be
taken for vertices that were already active and cached
in the previous frame because their corresponding slot

in the LRU list is not affected by any move operation
in the linked list. Note that these reused vertices are by
far the largest fraction of active vertices. Therefore,
compared to the basic LRU cache algorithm, linked-
list operations are limited to the few removed and
added vertices in front-frameworks.
LRU + Error-PriorityQueue Strategy for front-
framework: Following the same idea expressed
above, a priority queue may consider the LOD error-
metric to choose the least relevant available slot. As
with the LRU strategy also the LRU + priority-queue
strategy can be refined if the sets of removed and
added vertices are explicitly known and a fontier
pointer separates the active from the inactive slots. As
illustrated in Figure 7, the slots of removed (-) vertices
are moved to behind the frontier pointer, while the
slots of added (+) vertices are moved from the priority
queue to the head. The slots between the frontier and
the tail pointer are candidates to be transferred to the
priority-queue if it is not at maximum capacity. Again,
advantage is taken by not touching any of the slots of
vertices that remain active between consecutive
frames.
4. TARGET FRAMEWORKS
Two different view-dependent LOD frameworks have
been analyzed for testing the proposed Cached
Geometry Manager: FastMesh [Paj01] and QuadTIN
[PAL02]. As mentioned in the introduction, the
former is a VDPM system for rendering arbitrary
manifold 3D meshes, and the latter is for rendering
terrain height-fields. Both frameworks are briefly
explained in the following sections before we provide
experimental results.

Arbitrary Mesh Render System: FastMesh
FastMesh [Paj01] is an efficient hierarchical
multiresolution triangulation framework based on a
half-edge triangle mesh data structure and edge-
collapse operations. Optimized computation of view-
dependent error metrics within the framework provide
conservative LOD error bounds. FastMesh is efficient
both in space and time cost, and it spends only a
fraction of the time required for rendering to perform
the view-dependent LOD error calculations and
dynamic triangle mesh updates. Conceptually it
follows exactly the diagram shown in Figure 5 as
many other similar approaches such as [XV96],
[Hop97], [LE97], [DMP97], [KL01] do.

One of the main features of FastMesh is the explicit
calculation of the front of active nodes, which is
obtained for any frame by incremental changes to the
previous frame. Hence FastMesh directly provides
information about vertices added or removed from the
front for every frame and falls into the category of
front-frameworks described above in Section 3.3. The
initial implementation of FastMesh rendered the mesh

as a list of active triangles in immediate mode vertex
submission which has been changed for this project to
an indexed vertex array (IVA) rendering mode.
Experimental results using the front-framework CGM
strategies described in Section 3.3 are given for this
VDPM framework in Section 5.1.

Terrain Rendering System: QuadTIN
QuadTIN [PAL02] is an efficient quadtree-based
terrain triangulation approach. It provides fast
quadtree-based adaptive triangulation, view-
dependent LOD-selection and real-time rendering. Its
fundamental quadtree-based triangulation method and
top-down vertex selection and rendering approach is
similar to many other terrain visualization systems
such as [SS92], [LKR96], [Paj98], [BAV98],
[EKT01]. In contrast to other approaches, however,
QuadTIN presents an efficient quadtree-based
triangulation approach over irregular input point sets
with feature adaptive sampling resolution while
preserving a regular quadtree multiresolution
hierarchy over the irregular input data set. Although
the resulting quadtree hierarchy is not balanced, it
conforms to the restricted quadtree constraints [SS92].
Additional information such as geometric
approximation error, bounding spheres and normal
cones are used for view-dependent LOD-triangulation
and rendering. Like most other terrain visualization
systems, QuadTIN selects the active vertices for a
LOD of a particular viewpoint in a recursive top-
down traversal for each frame. Hence QuadTIN
belongs to the category of VDPMs with implicitly
defined active front and does not provide explicitly
the removed or added vertices between two
consecutive frames. Experimental results using the
basic CGM strategies given in Section 3.2 are
reported in Section 5.2 for this VDPM framework.

5. EXPERIMENTAL RESULTS
Experimental results were performed on a 3.0 GHz
Pentium 4 with 1GB RAM using an NVIDIA
GeForceFX 5200 graphics card. For all scenes a 45º
vertical field-of-view camera followed several test
trajectories as described below.

FastMesh Results
The models used with the FastMesh rendering system
are given in Table 1. The rendering experiments were
averaged over 1000 frames in a window of 800 x 800
pixels using an error tolerance equal to one and a half
pixels (projective tolerance of geometric error
projected on screen).

model hand dragon happy
vertices 327323 437645 543652
faces 654666 871414 1087716

Table 1: 3D models used with FastMesh.

Three different camera trajectories have been
analyzed to examine the impact of the Cached
Geometry Manager within the FastMesh framework
as illustrated in Figure 8:

• Circular camera trajectory.
• Small camera rotations.
• Straight line camera trajectory.

These camera movements are very common as they
are typical movements observers normally execute to
explore a 3D object. The camera is pointing to the
center of the model in all the trajectories.

a) b) c)
Figure 6: 3D object rendering camera trajectories: a)
circular trajectory. b) small rotations. c) straight line
trajectory (zoom in/out).
The chosen CGM size (slot-list length) was 216 =
65536 because all models required at least 215 =
35768 vertices to render from every tested viewpoint.
Of course, in this context no LOD mesh can have
more vertices than available in the geometry cache,
and the application program must make sure that the
best LOD for a limited number of vertices is selected.
If this mesh exceeds the cache size then the
application should disable the CGM and render the
mesh in normal mode, or possibly render the mesh
using the CGM in multiple passes. We are only
studying the effect of the CGM in this paper and do
not address the latter issues in this work. In the
experiments, the size of each vertex element is 36
bytes, consisting of: 3 floats (position) + 3 floats
(normal) + 3 floats (color).

We have focused the numerical results on the biggest
model (happy) to avoid excessive and repeated
information. Statistical data for the other models is
given in Table 3. Figure 9 shows the per-frame timing
results (in miliseconds) of happy model for the three
different camera trajectories. The total time per frame
has been divided into three parts: the rendering time,
the time needed to construct the vertex array (build
IVA), and the time required to perform the error
metrics and updating the LOD mesh (others). Note
that a brute-force rendering of this model using a
standard immediate mode vertex submission achieved
less than 4 frames per second, or equivalently required
more than 250ms per frame. Our CGM techniques
only affect the vertex array construction and rendering
time but not any other tasks of the VDPM framework.
In particular, the LOD-computation and vertex
selection is not affected by the CGM and thus limits
the overall speed-up with respect to the observable
frame-rate. Hence we focus on the speed-up achieved
only within the rendering part of a VDPM framework
which is the sole target of the CGM.

0

50

100

150

200

250

render modes for HAPPY model (trajectory A)

ti
m

e
 p

e
r

fr
a
m

e
 (

m
il

is
e
c
o

n
d

s
)

rendering build IVA others

others 102.2 102.1 105 105 105

build IVA 0 20.5 44.8 31.2 31.8

rendering 103.6 76.1 3.7 3.7 3.7

glBegin()/.../glEnd() glDrawElements CGM: First
Available

CGM: LRU CGM:LRU+PQ10%

0

50

100

150

200

250

render modes for HAPPY model (trajectory B)

ti
m

e
 p

e
r

fr
a
m

e
 (

m
il

is
e
c
o

n
d

s
)

rendering build IVA others

others 99.2 98.6 101.2 101.2 101.2

build IVA 0 19.6 39.5 29.4 29.5

rendering 94.3 68.9 3.2 3.2 3.2

glBegin()/.../glEnd() glDrawElements CGM: First
Available

CGM: LRU CGM:LRU+PQ10%

0

50

100

150

200

250

render modes for HAPPY model (trajectory C)

ti
m

e
 p

e
r

fr
a
m

e
 (

m
il

is
e
c
o

n
d

s
)

rendering build IVA others

others 106.1 105.3 108.2 108.2 108.2

build IVA 0 21.2 43 31.7 31.8

rendering 102.8 75.2 5.2 5.2 5.2

glBegin()/.../glEnd() glDrawElements CGM: First
Available

CGM: LRU CGM:LRU+PQ10%

Figure 7: Per frame timing results (in miliseconds) for the Happy model for: a) circular camera trajectory, b)
small camera rotations and c) straight line camera trajectory. The build IVA time contains the time consumed
by the cache memory manager in modes where the CGM is enabled.

0

50000

100000

150000

200000

250000

300000

350000

0 125 250 375 500 625 750 875

number of frames (trajectory A)

ve
rti

ce
s

in
se

rte
d

in
 v

id
eo

 m
em

or
y

First Available LRU LRU + PQ10%

0

50000

100000

150000

200000

250000

300000

350000

0 125 250 375 500 625 750 875

number of frames (trajectory B)

ve
rti

ce
s

in
se

rte
d

in
 v

id
eo

 m
em

or
y

First Available LRU LRU + PQ10%

0

20000

40000

60000

80000

100000

120000

0 125 250 375 500 625 750 875

number of frames (trajectory C)

ve
rt

ic
es

 in
se

rt
ed

 in
 v

id
eo

 m
em

or
y

First Available LRU LRU + PQ10%

Figure 8: Vertices inserted into video memory for the Happy model for: a) circular camera trajectory, b) small
camera rotations and c) straight line camera trajectory.
As we mentioned in section 4.1, the initial version of
FashMesh traverses a linked-list of triangles to render
the model in immediate mode vertex submission. The
standard IVA mode is still faster than the previous
despite the transformation from a linked-list of
triangles to an indexed triangle array. The
LRU+errorPQ%10 strategy employs an error priority
queue size equal to 10 percent of the total cache size.
As expected, the rendering improvement is
significant. The build-IVA time for these modes
increases the workload of the CGM. However, the
global speedup obtained for the three strategies easily
compensates the extra CGM cost. In fact, the actual
rendering cost, which is the only cost affected by the
CGM, is improved by a factor of up to 3 (including
the IVA build time) as shown in Table 3.

Despite three different camera trajectories, all show
almost the same behavior. More information may be
obtained taking into account the number of vertices
inserted in video memory. It allows to undestand
which strategy makes better use of the cached
geometry since more inserted vertices involves more
data transfer from main to video memory. This
information is given in Table 2.

CGM TYPE Trajectory A Trajectory B Trajectory C
First Available 171873 302288 290747
LRU 169928 286331 66453
LRU+PQ10% 169972 281707 66436

Table 2: Vertices inserted into video memory for the
three CGM modes over 1000 frames (Happy model).
The First Available strategy clearly makes the worst
use of cached geometry, especially for small camera

rotations. In contrary to our initial expectations, in
most cases the simple LRU strategy outperforms the
LRU + Error-PriorityQueue strategy. The latter gives
the best result only for the circular camera trajectory,
and even in this case, the lower data transfer rate does
not compensate for the more expensive priority queue
operations. Figure 10 b) and c) show the inefficiency
of the First Available strategy for the last two camera
trajectories, where the insertion of new vertices is
unnecessary after a certain number of frames. Recall
the most expensive frame is always the first because
the cache stores no vertices at that time.

Table 3 lists the rendering speed-ups achieved by the
different CGM strategies with respect to the original
immediate mode vertex submission FastMesh version.
The first column corresponds to the variant with a
standard main-memory IVA but no CGM. The last
three columns indicate the speedup factors for the
three implemented CGM strategies. The individual
speed-ups for the rendering stage reach factors up to 3
which shows the real impact of the Cached Geometry
Manager on the rendering phase of a VDPM
framework.

Model camera CGM render modes
trajectory std IVA First Available LRU LRU + PQ10%

A 1.07 2.14 2.97 2.92
happy B 1.07 2.21 2.89 2.88

C 1.07 2.13 2.79 2.78
A 1.06 1.97 2.69 2.66

dragon B 1.05 2.12 2.83 2.8
C 1.05 2.12 2.76 2.76
A 1.07 2.25 3.07 3.06

hand B 1.05 2.29 2.92 2.91
C 1.05 2.31 2.95 2.95

Table 3: FastMesh speed-ups (just rendering stage)
for different CGM strategies.

QuadTIN Results
The height-field model used for the QuadTIN
rendering experiment is the well known Puget Sound
data set (2563548 vertices, after QuadTIN-preprocess
error tolerance = 6 meters, [PAL02]). The results were
averaged over 3000 frames in a window of 1024 x
768 pixels using an error tolerance equal to one pixel
(projective tolerance of geometric error projected on
screen).

The chosen CGM size was 216 = 65536 following the
same criteria applied as for the experiments with
FastMesh. The size of each vertex element in this case
is 32 bytes: 3 floats (position) + 3 floats (normal) + 2
floats (texture coordinate). The camera trajectories
tested to perform the CGM analysis with the QuadTIN
rendering system are the following (see Figure 11):

• Circular camera trajectory.
• Camera rotation with fixed eye.
• Straight line camera trajectory.

a) b) c)
Figure 9: Terrain rendering camera trajectories: a)
circular trajectory. b) camera rotation with fixed eye.
c) straight line trajectory.
The CGM strategies applied to QuadTIN are the ones
described in detail in Section 3.2. The QuadTIN
system constructs an indexed triangle strip as required
for a standard IVA approach. Note that due to the
implicit definition of the active front, no information
about incrementally added or removed vertices

between consecutive frames is provided. QuadTIN
only reports which vertices are selected for a
particular frame and LOD. Note again that the CGM
extension only affects the rendering time but not the
LOD-selection and meshing parts of the VDPM
framework, and hence we focus on the achievable
rendering speed-up which is the sole target of the
CGM.

Figure 12 shows four columns, one for each rendering
strategy, for each camera trajectory: the first column
for the standard IVA mode, and the three others for
the different CGM strategies. In this case, the best
result is achieved by the First Available (FA) strategy.
Despite the fact that the FA strategy still makes the
worst use of the geometry cache (see Table 4), its
simple and fast data structures are still advantageous
over the doubly-linked list of slots in the two different
LRU CGM strategies. This result is not completely
surprising as the minor data transfer overhead of FA is
amortized by the simple and fast array data structure
for slots.
The straight line camera trajectory deserves a special
discussion (see Figure 13c)) since the FA strategy
remains the fastest despite its bad reuse of cached
geometry. The LRU and LRU+PQ10% strategies
require more computation time but much less data
transfer. Depending on the CPU speed in relation to
the AGP bus bandwidth this result may slightly
change, and the LRU strategies may win over the FA
strategy for certain configurations. The relation
between CPU speed and AGP bus bandwith of the
system will decide which is the best strategy.

0

2
4

6
8

10

12
14

16
18

20

render modes for Puget Sound model (trajectory A)

tim
e

pe
r

fr
am

e
(m

ili
se

co
nd

s)

rendering CGM others

others 11.3 11.8 11.8 11.8

CGM 0 1.4 2.7 4.4

rendering 5.9 0.8 0.8 0.8

glDrawElements CGM: First
Available

CGM: LRU CGM:LRU+PQ10%
0

5

10

15

20

25

30

render modes for Puget Sound model (trajectory B)

tim
er

 p
er

 fr
am

e
(m

ili
se

co
nd

s)

rendering CGM others

others 17.6 18.1 18.1 18.2

CGM 0 2.2 4.3 7.3

rendering 8.9 1.1 1.1 1.1

glDrawElements CGM: First
Available

CGM: LRU CGM:LRU+PQ10%
0

2

4

6

8

10

12

14

render modes for Puget Sound model (trajectory C)

tim
er

 p
er

 fr
am

e
(m

ili
se

co
nd

s)

rendering CGM others

others 7.8 8.1 8.1 8.1

CGM 0 0.9 1.2 1.5

rendering 3.8 0.5 0.5 0.5

glDrawElements CGM: First
Available

CGM: LRU CGM:LRU+PQ10%

Figure 10: Per frame timing results (in miliseconds) for the Puget Sound data set for: a) circular camera
trajectory, b) camera rotation with fixed eye and c) straight line camera trajectory.

30000

50000

70000

90000

110000

130000

150000

170000

190000

0 500 1000 1500 2000 2500

number of frames (trajectory A)

ve
rt

ic
es

 in
se

rt
ed

 in
 v

id
eo

 m
em

or
y

First Available LRU LRU + PQ10%

30000

80000

130000

180000

230000

280000

0 500 1000 1500 2000 2500

number of frames (trajectory B)

ve
rt

ic
es

 in
se

rt
ed

 in
 v

id
eo

 m
em

or
y

First Available LRU LRU + PQ10%

0

50000

100000

150000

200000

250000

300000

0 500 1000 1500 2000 2500

number of frames (trajectory C)

ve
rt

ic
es

 in
se

rt
ed

 in
 v

id
eo

 m
em

or
y

First Available LRU LRU + PQ10%

Figure 11: Vertices inserted into video memory for the Puget Sound data set for: a) circular camera trajectory,
b) camera rotation with fixed eye and c) straight line camera trajectory.

CGM TYPE Trajectory A Trajectory B Trajectory C
First Available 322353 329214 102097
LRU 228694 63465 64688
LRU+PQ10% 200126 63465 64690

Table 4: Vertices inserted in video memory for the
CGM modes over 3000 frames (Puget Sound model).
The QuadTIN rendering speed-up factors are shown
in Table 5. The speedup of the rendering stage itself,
which is the only stage affected by the CGM, reaches
factors up to 2.7. This dramatically shows the
potential of using a CGM in a view-dependent LOD
rendering system.

camera CGM render modes
trajectory First Available LRU LRU + PQ10%

A 2.68 1.69 1.13
B 2.7 1.65 1.06
C 2.71 2.24 1.9

Table 5: QuadTIN speedups (just rendering stage)
for different CGM modes.

6. CONCLUSION
This paper presents several strategies to implement an
efficient Cached Geometry Manager that takes
advantage of on-board video card memory for caching
vertex data. It provides effective solutions to manage
the video memory as a geometry cache in order to
dramatically reduce the vertex data transfer rate from
main to video memory for each rendered frame. The
proposed techniques can be applied to a wide range of
view-dependent LOD rendering frameworks, and
allow the efficient reuse of cached geometry
information stored on the video graphics card.

The presented approaches significantly improve the
rendering performance of view-dependent LOD
rendering applications with little extra implementation
effort. Experimental results on two different VDPM
frameworks have confirmed the suitability and the
effectiveness of our approach to dramatically
accelerate the rendering stage. Overall performance
speed-up of observable frame rates heavily depends
on the application-side view-dependent LOD-
selection and meshing frameword. More recent and
improved VDPM frameworks – compared to the
tested FastMesh and QuadTIN systems – with
significantly lower LOD-selection and meshing cost
will exhibit significanly higher overall frame rate
performance if combined with a dynamic CGM as
demonstrated in this paper.

7. ACKNOWLEDGMENTS
This research was supported by the Spanish research
grant TIC 2002-750 and the New Del Amo award
UCDM-33657.

8. REFERENCES
[BAV98] BALMELLI L., AYER S., VETTERLI M.: Efficient

algorithms for embedded rendering of terrain models. IEEE Inter.
Conference on Image Processing ICIP 98 (1998), pp. 914-918.

[CGG03a] CIGNONI P., GANOVELLI F., GOBBETTI E.,
MARTON F., PONCHIO F., SCOPIGNO R.: BDAM - Batched

Dynamic Adaptive Meshes for High Performance Terrain
Visualization. EG/IEEE TCVG Symp. on Visualization 2003.

[CGG03b] CIGNONI P., GANOVELLI F., GOBBETTI E.,
MARTON F., PONCHIO F., SCOPIGNO R.: Planet-Sized
Batched Dynamic Adaptive Meshes (P-BDAM). IEEE
Visualization 2003, pp. 147–154.

[CLD03] COHEN J., LUBKE D., DUCA N., SCHUBERT B.:
GLOD: Level of Detail for the Masses (2003). URL
http://www.cs.jhu.edu/~graphics/ TR/TR03-4.pdf.

[DMP96] DE FLORIANI L., MARZANO P., PUPPP E.:
Multiresolution models for topographic surface description. The
Visual Computer (Aug. 96), pp. 317-345.

[DMP97] DE FLORIANI L., MAGILLO P., PUPPO E.: Building
and traversing a surface at variable resolution. IEEE Visualization
97 (1997), pp. 103-110.

[EKT01] EVANS W., KIRKPATRICK D., TOWNSEND G.:
Right-triangulated irregular networks. Algorithmica (March
2001), pp. 264-286.

[HCH03] HALL J. D., CARR N. A., HART J. C.: Cache and
Bandwidth Aware Matrix Multiplication on the GPU. Technical
Report UIUCDCS-R-2003-2328. University of Illinois at Urbana-
Champaign Computer Science Department. April 2003.

[Hop97] HOPPE H.: View-dependent refinement of progressive
meshes. SIGGRAPH 97 (1997), pp. 189-198.

[Kil99] KILGARD M. J.: NVIDIA OpenGL Extension
NV_vertex_array_range. URL: http://www.nvidia.com
/dev_content/nvopenglspecs/GL_NV_vertex_array_range.txt.

[KL01] KIM J., LEE S.: Truly selective refinement of progressive
meshes. Graphics Interface 2001, pp. 101-110.

[LE97] LUEBKE D., ERIKSON C.: View-dependent simplification
of arbitrary polygonal environments. SIGGRAPH 97 (1997) pp.
199-208.

[Lev02] LEVENBERG J.: Fast view-dependent LOD rendering
using cached memory. IEEE Visualization 2002, pp. 259–265.

[LKR96] LINDSTROM P., KOLLER D., RIBARSKY W.,
HODGES L. F., FAUST N., TURNER G. A.: Real-time,
continuous level of detail rendering of height fields. SIGGRAPH
96 (1996), pp. 109-118.

[LPT03] LARIO R., PAJAROLA R., TIRADO F.: Hyperblock-
QuadTIN: Hyper-block quadtree based triangulated irregular
networks. IASTED International Conference on Visualization,
Imaging and Image Processing (VIIP 2003), pp. 733-738.

[LRC03] LUEBKE D., REDDY M., COHEN J., VARSHNEY A,
WATSON B., HUEBNER R.: Level of detail for 3D graphics.
Morgan Kaufman. 2003.

[Mar00] MARSELAS H.: Optimizing Vertex Submission for
OpenGL. Game Programming Gems, pp. 353-360. Charles River
Media. 2000.

[MH02] MÖLER T., HAINES E,: Real-time rendering. 2nd edition.
A K Peters. 2002.

[Paj98] PAJAROLA R.: Large scale terrain visualization using the
restricted quadtree triangulation. IEEE Visualization 98 (1998),
pp. 19-26 and 515.

[Paj01] PAJAROLA R.: FastMesh: Efficient View-dependent
Meshing. Pacific Graphics 2001, pp. 22-30.

[PAL02] PAJAROLA R., ANTONIJUAN M, LARIO R.: QuadTIN:
quadtree based triangulated irregular networks. IEEE
Visualization 2002, pp. 395–402.

[Pup96] PUPPO E.: Variable resolution terrain surfaces. 8th
Canadian Conference on Comput. Geometry (1996), pp. 202-210.

[SS92] SIVAN R, SAMET H.: Algorithms for constructing quadtree
surface maps. 5th International Symposium on Spatial Data
Handling (August 1992), pp. 361-370.

[THO02] THOMPSON C. J., HAHN S., OSKIN M.: Using modern
graphics architectures for general-purpose computing: a
framework and analysis. 35th annual ACM/IEEE international
symposium on Microarchitecture (2002), pp. 306-317.

[XV96] XIA J. C., VARSHNEY A.: Dynamic view-dependent
simplification for polygonal models. IEEE Visualization 96
(1996), pp. 327-3.

 Hardware Pipeline for Rendering Clouds of
Circular Points

Adam Herout

Faculty of Information Technology
Brno University of Technology

Božet�chova 2
 612 00 Brno, Czech Republic

herout@fit.vutbr.cz

Pavel Zem�ík
Faculty of Information Technology

Brno University of Technology
Božet�chova 2

 612 00 Brno, Czech Republic

zemcik@fit.vutbr.cz
ABSTRACT

This paper presents an algorithm for image rendering using FPGA (Field-Programmable Gate Arrays). The image
is rendered by an FPGA chip coupled with a DSP (Digital Signal Processor) on an experimental board. The
graphical data is 3D point-clouds – sets of particles that are from the geometrical point of view oriented ellipses
in 3D space. Such scene representation seems to be more suitable for potentially many purposes than the most
commonly used triangle meshes. The actual experimental implementation which verifies the concept and shows
promising results is described.

Keywords
point clouds, rendering, FPGA, hardware acceleration

1. INTRODUCTION
The developers of graphics applications can rely on
the presence of accelerated graphics engines in the
computers. However, it is quite unfortunate from the
point of view of choice of graphics and imaging
algorithms that the function of the graphics
accelerators is usually quite strictly limited to
rendering of planar triangles/polygons and limited
choice of shading and texture algorithms and it is
usually impossible to use them for implementation of
any other algorithms. At the same time, the real
research of such high-performance graphics
subsystems is being done by the manufacturers and
by only a limited number of affiliated institutions,
such as research laboratories and universities.

A reasonable way forward was offered by the
recent development of Field Programmable Gate
Arrays (FPGAs). Current technological progress
allows implementation of even very complex devices
in the programmable logic devices and achieving

good results even with architectures and algorithms
that are not supported by the traditional computer
graphics manufacturers.

This paper presents a hardware architecture for
real-time high quality rendering of point-based
graphical scenes [Gro02, Pfi00, Zwi01]. By a particle
we mean a surface element (also referred to as surfel
or point, element) defined by x,y,z coordinates,
nx,ny,nz normal, size, and color. The design is based
on an FPGA chip, hosted on a multi-purpose board
featuring the FPGA chip, DSP (Digital Signal
Processor), DRAM and SRAM memory. Common
graphical accelerators (designed to efficiently render
polygon-based entities) are unsuitable for this
purpose since they do not offer any good way of
transferring simple point/particle data. Transfer of
triangle vertex data is effective enough (rasterization
algorithms are far more time consuming than the
transfer itself) but the process of rendering points
using this common hardware faces the bottleneck of
data stream bandwidth [Gro02]. Some manufacturers
of the graphics hardware are accepting the above
mentioned trend and are already experimenting with
the particles and programmable logic [Mit03].

Probably the most feasible geometrical
representation of the scene element (particle) is an
oriented circle whose projection is an ellipsis. The
rendering algorithm can be subdivided into several
principal parts:

1. Projection of the particles’ positions into 2D
screen space and Z co-ordinate and computation

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WSCG 2005 conference proceedings ISBN 80-903100-7-9
WSCG’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

of the corresponding particles’ projected normal
and radius. This is merely 3D projection that is
implemented using a transformation matrix
multiplication (see e.g. [Wat93]).

2. Evaluation of the particles’ color (lightness)
based on the projected normal vector, local
lighting model (material), and the light sources’
and observer’s parameters. This task is
implemented through a precalculated color
(lightness) table indexed by the quantized normal
vector.

3. Rendering of the particles into the image frame
buffer (one-by-one with visibility solved using
depth-buffer). This task is done through
specialized circuits programmed into the FPGA
and is described in more details below.

In the proposed approach, parts 1 and 2 are
performed through the host processor (DSP) while
the part 3 which is the actual rendering is performed
through programmable hardware in the FPGA and
supported by the host DSP only in terms of data flow
organized through the host processor’s DMA (direct
memory access) channels.

The particle rendering engine being described is
the “simplistic” implementation of the proposed
rendering architecture. It should be seen rather as a
“proof of concept” than as the full-scale
implementation. For this reason, maximum possible
rendering subtasks were left on the host DSP
processor. (However, they can eventually be moved
into the FPGA.)

The block diagram of the rendering engine is
shown in Figure 1. It is based on the above
constraints and uses the Texas Instruments C6711
DSP [TMS01] as the host processor that handles the
particles and performs the above rendering subtasks.
The DSP then transfers the particle data into the
Xilinx Virtex E-300 FPGA [Vir01] through DMA
block memory transfer. The particle data comprises
the coordinates, encoded shape (described below),
and color information.

2. RENDERING ALGORITHM
As each particle generally affects large number of
pixels, it is desirable to have the frame and depth
buffers distributed in several memory banks that can
be accessed in parallel in order to parallelize the
rendering process. To achieve efficient parallelization
of rendering, it must be ensured that the particles
affect minimum possible number of words in the
memory banks and at the same time that the affected
words are as uniformly as possible distributed in all
memory banks. The constraints in the FPGA led us to
the decision to use 8 memory banks with 8 bits for

color and 8 bits for the depth value (with the possible
extension to 32 bits for four 8-bit pixels).

Figure 1. Rendering engine block diagram
Our research [Her04, Zem03] performed up till

now resulted in the following concept of “striping”.
The basic idea of this algorithm is to let the FPGA
handle one horizontal stripe (a portion of the frame-
buffer covering several subsequent scan-lines) and
render particles coming from the particle source into
it. The particle source ensures particles come in a
predefined order – with increasing y (i.e. vertical)
coordinate. The stripe is then moving vertically
across the frame-buffer by one line, rendering all
particles and covering the whole frame-buffer area.
Each move-down of the stripe consists of two steps:
a) flushing the top-most line to the global frame-
buffer, and b) re-using it as a fresh bottom line for the
next stripe position. To avoid delays caused by
flushing of the finished lines, more color-buffer lines
are allocated, allowing the rendering to proceed
continually – see Figure 2.

Figure 2. The striping algorithm
The presumption of the particles being sorted

into groups by one coordinate and in a particular
order is not too restrictive. The particles can be
sorted into this form easily, provided the system
contains a memory buffer large enough to store all
the particles in the scene. Such memory does not
necessarily have to provide high-bandwidth random
access, and it does not need to be connected to the
FPGA closely as each of the particles is needed by

��������		

�����	���
	

�����	������	���
	�����	��	������	������	

�����������	���
	�����	��
���	

�������	

�����	

����������	

�������	
������	

����	
����
���	
��������	

 �
����!��	

"����	
������	

#����		
������	

#�
���	
�����
�	

�������	 ��������	��
��� 	

the FPGA during the rendering only once and in a
defined order. This memory can contain particle lists
for each line of the frame buffer and sort incoming
particles into them (see Figure 3). The process of
sending the particles into the rasterizing FPGA will
be started after receiving all particles of the scene.

Figure 3. Sorting particles by their y-coordinate
Incorporating these mechanisms together with a

rasterization pipeline rasterizing the shapes of the

particles (ellipses) may result in an architectural
design similar to the one shown in Figure 5, based on
a “particle writing machine” in Figure 4.

Figure 4. Particle writing machine
utilizing the striping

The particle writing machine embodies the
following operations:

operation arguments description
write-particle x, d,

color, shape
Writes particle of given properties (d=depth, shape – encoded into a
small number of bits by a suitable algorithm).
Note that the y coordinate is determined by the state of the writing
machine – the number of calls to the new-line operation.

new-line Disposes the “oldest” line of the stripe, starts flushing into the frame-
buffer, and activates the next free spare color-buffer line.

start-at-line y Starts a new frame, skips y first lines without particles (filled with
background color).
This operation may well exist without the argument, only starting a new
frame – it would be then followed by appropriate number of subsequent
calls to new-line.

Table 1. Basic operations of the particle writing machine

Figure 5. Over-all rasterizer design, consisting of a particle source incorporating the
rasterization process, of the particle memory sorting particles by their y-coordinate

and the striping writer

$		

�	

��	

�	

��	

$	��� �� �����

�������	

�����	

"��� �	
������	

�������	� �����	

"�%�	

�����������	&	
'(��	�(

�������	

�����	

"����	
������	

�������	� �����	

(������	� ������	

��������	
�����

	

������������	

�	�����	

����	�������	

)	

*	

�������*	

������	

�������	
+,	�,	����- 	

 ��������	
#�����	

*.	

/.	

0.	

3. EXPERIMENTAL HARDWARE
IMPLEMENTATION

For the hardware implementation, FPGA Xilinx
Virtex E 300 has been used. In the future, Virtex II is
planned to be used instead. Hardware design
programmed in the FPGA consists of particle
reader/writer, pixel reader/writer, frame and depth
buffers and the viewing engine. FPGA input
frequency is 100 MHz, but for the major part of the
design, 50 MHz is used. Accessing time to the SRAM
(used as a video-RAM) is 15 ns. This memory and
ADV 478 chip (D/A converter and palette memory)
are placed outside the FPGA. There is also 16 MB
SDRAM placed at the board used by the DSP. This
SDRAM runs at 100 MHz.

The Display Refresh Subsystem takes care
about correct viewing of an image placed in the
SRAM and its writing into this memory.

Every pixel clock period, data are read from the
memory (address is the counter automatically
incremented every pixel clock cycle). Meanwhile,
shared data bus is put to the third state at the side of
FPGA, so that data from the memory could be read
by the ADV 478 chip. Pclk rising edge ensures the
data on this bus to be converted to analog format
suitable for a TV or a monitor.

 Figure 6. Experimental implementation
block scheme

Between every two pixels read for the TV out, it
is possible to place one read or write cycle from/to
SRAM. Such cycle is used for reading the image to
the DSP and writing pixels into the RAM. The
writing requests come from two sources – pixel writer
(pixels written directly from the DSP) and frame
buffer of the particle writer.

SRAM is organized as a two-bank video RAM in
order to implement double-buffering: while writing
an image to one bank, the second bank is being
shown on the screen and vice versa.

An extension to the striping particle writer
concept as presented in section 2 is the Pixel
Reader/Writer unit, which allows accessing the

SRAM frame-buffer directly from the DSP. It simply
gets data and address from the DSP and writes to the
SRAM through the viewing engine. This operation
may be used for writing additional information to the
screen. It is also possible to read the data from the
memory, and e.g. store the image in the DSP
controlled memory for future use. However, this
means of access to the frame-buffer is meant
primarily for debugging and testing purposes, it is not
very fast, since any request through this port waits to
be synchronized with monitor refresh and the particle
writer.

Functional description of the Particle Writer
unit is described in the theoretical part of this article.
Hardware implementation consists of few state
machines using two groups of block RAMs – one for
the frame buffer and one for the depth-buffer.

Figure 7. Particle Writer
When a particle description is sent from the

DSP, it is processed by the register decoder. Base
horizontal coordination is set to its position, and two
counters are running to define the exact position of
the current processed pixel. One counter runs from
zero to maximum and displays the upper part of the
particle. Second counter runs from maximum to zero
and displays the lower mirrored part. Writing engines
start writing reacting to the start write signal. While
processing, data are read from the depth-buffer, and
writing engines decide whether to write (both to the
frame and the depth-buffer) or not by comparing the
actual depth with the depth from the depth-buffer.
Reading from the depth-buffer must start some cycles
before the writing process due to the memory read
latency.

When the special code word is written by the
DSP, writing is moved to the next line and flushing of
the processed line is started – data from the Block-
RAM are written to the SRAM through the viewing
engine.

4. ACHIEVED RESULTS
The proposed algorithm was fully implemented on an
experimental setup shown below in Figure 8, that
uses the Camea DX6 board [Cam03]. Current
maximal number of particles rendered by the FPGA
is 5 million per second. This number comes out from

�������	

 ���
���	
#������	

 ����
�	
�������	

#��	
����.	

�����

���	�

#���������	 ���������	

���
�

�����

����	

����	

����,	
����	

����	1����	
����.	����	

"�
����	
"�2	

��
���	

��
�
.	

����	��
�	

�� ���	
����	

*3	���
	
�����������	

*3	���
	
������������	

��+�	
 �����4	
(�����	

#��	
����.	

#��	
����

�������	
(�����	

� �2	

 #	
(

���� �#5	678	

95	
��� �
���,	

�
���

���

����

����,	

����,	
����

"�%�	

#�
���	
 ����
�	
���
�
.	

the clock period which is 20 ns, and the number of
cycles required for showing one particle. One column
of a particle is written in one period, and two periods
are required for pre-reading the depth-buffer data.
Totally 10 periods are 200 ns per particle.

Of course, possibilities exist to improve the
performance. Using more advanced FPGA chip (for
example Virtex II) would lead into higher possible
frequency (we assume at least 100 MHz). Another

possibility is to parallelize writing to the memory by
setting the width of the data bus to the Block-RAMs
from 8 bits to 32 bits. Extra logic for treating this
situation would be needed, but speed-up ratio would
be up to four. We could also avoid the depth-buffer
reading latency by pipelining. Finally, we could show
one particle in 2 clock cycles (10 ns), which means
speedup up to 10 times from the current state to 50
million particles per second, still using standard off-
the-shelf components.

Figure 8. Experimental setup displaying a medical data set

5. CONCLUSION
In this paper, a rendering system based on

Xilinx Virtex E-300 FPGA and Texas Instruments
C6711 DSP was described. The system implements
a modern 3D point-cloud rendering algorithm and is
fully functional. 3D point cloud graphics seems to
be a concept of close future for visualization and
realistic rendering, partially replacing the most
common approach at the moment – triangle meshes.

The proposed rasterization algorithm solves the
rendering task including the visibility issues
between the particles inside the FPGA in order to
achieve high performance. A part of the projection
phase is left to the host task being performed by the
DSP. While this solution leaves space for further
hardware acceleration, it was chosen as the best
possible approach to test the concept.

Hardware implementation in the FPGA
contains control subsystems treating read and write
cycles of the video-RAM, pixel writer and the
particle writer. The particle writer unit consists of
eight pixel writers that write the data to the internal
Block RAMs, the flushing unit that transfers the
image to the video SRAM, and of the DSP bus
interface.

Current speed of particle drawing is 5 million
per second. Changes that could increase this number
up to 50 million still using currently available
general purpose components are proposed.
However, this implementation is considered to be
rather a proof-of-concept than a final graphics
acceleration solution. The Virtex II Pro Xilinx
FPGA that is to come should allow further
optimizations and may be ground for a graphical
hardware challenging graphics equipment of
desktop computers.

6. ACKNOWLEDGMENTS
This work was partly supported by the “Rapid
prototyping tools for development of HW-
accelerated embedded image- and video-processing
applications”, GA AV�R, T400750408 grant.

7. REFERENCES
[Cam03] “DSP Accelerator Boards”, CAMEA,

Ltd., (available at
http://www.camea.cz/products/accelerators.cz.htm)

[Her04] Herout, A, Zemcik, P: Animated Particle
Rendering in DSP and FPGA. In: SCCG 2004
Proceedings, Bratislava, SK, 2004, pp 237-242,
ISBN 80-223-1918-X

[Gro02] Gross, M: “Point Based Computer
Graphics”, Spring Conference of Computer
Graphics 2002, Budmerice, Slovakia, 2002

[Mit03] Mitsubishi Electric Research Laboratories:
“SURFELS - Surface Elements as Rendering
Primitives, (available at
http://www.merl.com/projects/surfels/)

[Pfi00] Pfister, H, Zwicker, M, van Baar, J, Gross,
M: Surfels: Surface Elements as Rendering
Primitives. Proceedings of SIGGRAPH 2000,
pp 335-342

[Ree83] Reeves, WT: “Particle Systems – A
Technique for Modeling a Class of Fuzzy

Objects”, ACM Transactions on Graphics, Vol.
2, No. 2, April 1983

[Rus01] Rusinkiewicz, S: “QSplat: A
Multiresolution Point Rendering System for
Large Meshes”, Proceedings of SIGGRAPH
2001, USA, 2001

[TMS01] TMS3B0C6711, TMS320C6711B
Floating point Digital Signal Processors, Texas
Instru-ments, SPRS088B, September 2001,
USA, 2001, (available at http://www.ti.com)

[Vir01] VirtexTM 2.5V Field Programmable Gate
Arrays, Xilinx, DS003-1 (v2.5), April 2, 2001,
USA, 2001, (available at http://www.xilinx.com)

[Wat93] Watt A.: 3D Computer Graphics, Addison-
Wesley, Wokingham, UK, 1993

[Zem02] Zemcik, P: “Hardware Acceleration of
Graphics and Imaging Algorithms Using
FPGAs”, SCCG 2002, Budmerice, Slovakia,
2002

[Zem03] Zemcik, P, Tisnovsky, P, Herout, A:
“Particle Rendering Pipeline”, SCCG2003, Bud-
merice, Slovakia, 2003

[Zwi01] Zwicker, M, Pfister, H, van Baar, J, Gross,
M: “Surface Splatting” In: Proceedings of
SIGGRAPH 2001, ACM SIGGRAPH, Los
Angeles 2001

Multiple Transparent Material-enriched Isosurfaces

Ravindra L. Kanodia∗ Lars Linsen∗† Bernd Hamann∗

∗ Institute for Data Analysis and Visualization (IDAV)
Department of Computer Science

University of California, Davis
Davis, CA 95616, U.S.A.

† Department of Mathematics and Computer Science
Ernst-Moritz-Arndt-Universität Greifswald

Greifswald, Germany

ABSTRACT

Isosurface extraction is a standard method for visualizing scalar volume data that can be used to render a specific
material boundaries inherent in multi-material data sets. Multiple transparent isosurfaces can thus be used to
visualize multiple material boundaries, but still fail to capture any data in between the boundary layers. We
describe how isosurfaces can be “enriched” with surrounding material information. By visualizing surrounding
material, both material boundary information and gradient - or change in density - information of the scalar
field are represented. Visualizing multiple transparent material-enriched isosurfaces leads to a fairly effective
volumetric impression. Thus, our approach approximates results obtained from direct volume rendering.

The visualization of multiple transparent isosurfaces requires a back-to-front rendering of the typically triangulated
surface components. The order of the surfaces’ triangles is imposed by the location of the convex cells they are
extracted from, which supports fast rendering of multiple isosurface.

Keywords
Multiple Transparent Isosurfaces, Volume Rendering, Material-enriched Isosurfaces.

1 Introduction

Isosurface extraction and direct volume rendering are
the most common techniques used for visualizing
scalar-valued volume data. The volumetric data sets
typically result from numerical simulations or from
3D scanning and imaging processes. The computed
or measured scalar fields represent material properties

∗ravi@cyberman.com, hamann@cs.ucdavis.edu
† linsen@uni-greifswald.de

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first
page. To copy otherwise, or republish, to post on servers or to re-
distribute to lists, requires prior specific permission and/or a fee.

Conference proceedings ISBN 80-903100-7-9
WSCG 2005, January 31-february 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency - Science Press

such as pressure, temperature, density, etc.

Isosurface extraction methods explicitly compute the
three-dimensional geometry of material boundaries in
the form of two-manifold surfaces. Once an isosurface
has been extracted, surface rendering is efficient, espe-
cially when exploiting acceleration mechanisms using
graphics hardware. Moreover, the rendered surface is
of high quality, as a sharp material boundary is com-
puted and photo-realistic shading algorithms can be
applied. On the other hand, one isosurface represents
only one material boundary and fails to capture most
of the volumetric information.

Direct volume rendering methods provide a “richer”
visualization, as the whole range of material informa-
tion is incorporated into the rendered image. Transfer
functions are used to control color and opacity for the
depiction of the various materials present in the vol-
ume data. Direct volume rendering results provide a
strong sense of the overall content of a data set. Unfor-

tunately, the computational costs are high. Hardware-
accelerated approaches exist and are commonly used,
but are limited in their applicability to large data sets.

Multiple transparent isosurface rendering can be used
to overcome the single isosurface’s drawback by
adding more information to rendered images, while
maintaining the advantages in speed and quality. In
Section 3, we describe how a standard isosurface ex-
traction algorithm can be extended to extract multi-
ple isosurfaces into a data structure that allows for
fast and correct rendering. We exploit the properties
of marching isosurface-extraction algorithms to com-
pute the occlusion properties of the multiple isosur-
faces “on-the-fly”, i. e., without applying an expensive
post-processing step for polygon sorting.

Unfortunately, visualization of multiple transparent
isosurfaces do not quite establish the same-quality vol-
umetric impression of the visualized data set as direct
volume rendering techniques do. Multiple transpar-
ent isosurface rendering can only approximate direct
volume-rendered images when using “spiky” transfer
functions, i. e., transfer functions with vanishing opac-
ity everywhere except for a finite number of small
separated intervals. The spikes or peaks in the opac-
ity function correspond to individual isosurfaces. The
individual isosurfaces are colored with respect to the
color information of the respective material, which can
be looked up in the transfer function. In between opac-
ity peaks, however, there are gaps, which represent
material that cannot be captured using multiple isosur-
faces.

We present an approach to “fill” these gaps to a cer-
tain extent. We enrich the multiple transparent isosur-
faces with information about the material in-between
the isosurfaces. In Section 4, we describe how mul-
tiple material-enriched isosurfaces can be used to ap-
proximate volume rendering. We present and discuss
our results in Section 5.

2 Related Work

Isosurfaces are commonly extracted from volumetric
scalar fields using marching-cell algorithms. These
algorithms go back to the marching-cubes approach
[LC87], which operates on uniform rectilinear grids.
The algorithm “marches” through the grid considering
each cell of the grid once. Intersections of the iso-
surface with the edges of each cell are computed us-
ing linear interpolation of the values at the cell’s cor-
ners. The intersection points are connected forming
a triangular surface mesh. Many extensions and im-
provements have been made to the original approach
including the solution of ambiguous cases [Ham91],

better triangulations [Nie03], and a generic algorithm
combining previous approaches [BL03]. When split-
ting the hexahedral cells into tetrahedral ones, ambigu-
ous cases are resolved (while making certain assump-
tions though), and isosurfaces can be extracted using a
marching-tetrahedra algorithm [GH95].

Multiple isosurfaces are extracted by the method of
Wan et al. [WTTL96]. Gerstner [Ger02] developed a
multiresolution approach for fast multiple isosurface
extraction from adaptively refined tetrahedral grids.
For a fast rendering of the multiple isosurfaces, Ger-
stner deployed a binary tree-based sorting method.
The implementation of our multiple isosurface extrac-
tion algorithm is based on a marching-tetrahedra ap-
proach, but any other isosurface extraction approach
that marches through a grid of convex polyhedra could
be used instead.

Gerstner’s method [Ger02] renders different isosur-
faces with different colors and opacities, which leads
to results similar to those one can obtain using direct
volume rendering with spiky transfer functions. In-
formation about the scalar field in between the isosur-
faces is not captured. In particular, the transformation
from one material, whose boundary is represented by
one isosurface, to another material, whose boundary is
represented by another isosurface, is not visualized, as
it would be when using direct volume rendering with
smoother transfer functions.

Direct volume rendering goes back to the work by
Levoy [Lev88], who introduced the concept of vol-
ume ray casting for uniform rectilinear grids. Data
values within a cell are computed using trilinear in-
terpolation. Ray casting in an improved form is still
a widely used approach for direct volume visualiza-
tion, as it produces high-quality results. Another di-
rect volume rendering approach with high-quality re-
sults is splatting [Wes90], where the trilinear interpo-
lation is replaced by a Gaussian function. The shear-
warp approach [LL94] is targeted toward higher speed
at the expense of lower-quality results. Recent devel-
opments in graphics hardware made the 3D-texture-
mapping approach favorable in terms of speed and,
with floating-point precision, even in terms of quality.
The uniform rectilinear grid is mapped to the 3D tex-
ture memory and trilinear interpolation is performed
by the hardware components [CCF94]. One obvious
limitation is the restriction to the size of the 3D tex-
ture memory.

When comparing isosurface extraction with direct
volume rendering, isosurface rendering is still faster
and/or produces higher-quality images in terms of
smoothness and illumination. The advantage in speed
is given by the reduction of the volume data set to a
two-manifold surface, whose triangular mesh repre-

sentation allows for fast rendering. Moreover, many
fast and realistic lighting techniques for triangular
mesh rendering exist, which allow for smooth shading
without rendering artifacts. Also, the explicit com-
putation of material boundaries facilitates quantita-
tive analyses, which is particularly important for bio-
medical applications such as clinical measurements.
On the other hand, the reduction of a volumetric model
to a surface model obviously can lead to significant
loss of information. Direct volume rendering incorpo-
rates all of the volume data and shows overlaying and
internal features in a realistic fashion. We enrich mul-
tiple transparent isosurfaces with surrounding material
information, such that the volumetric impression of a
direct volume rendering is approximated while main-
taining the advantages of isosurface rendering with re-
spect to speed and quality.

3 Fast Multiple Isosurface Ren-
dering

Let f : D → R be a trivariate scalar function with do-
main D ⊂ IR3 and range R ⊂ IR. The values f (x) ∈ R
of function f are known at discrete sample points
x = (x,y,z) ∈ D. Let the sample points be organized in
a three-dimensional grid with convex grid cells. More-
over, let v0, . . . ,vn−1 ∈ R be an arbitrary number n
of isovalues. The multiple isosurfaces are defined by
f (y) = vi for i = 0, . . . ,n−1 and y ∈ D. Let Fi be the
isosurface with respect to isovalue vi, i = 0, . . . ,n−1.

A marching isosurface extraction algorithm deter-
mines an isosurface Fi by iterating through the three-
dimensional grid once, i. e., each cell is considered
once, and determining an isosurface component within
each cell independently, if existent.

Typically, uniform rectilinear or tetrahedral grids are
used for discrete data representation and a linear inter-
polation model for the determination of the isosurface
components within each cell. The approach presented
in this paper does not depend on the grid structure
and the interpolation method used. It only requires
the cells of the grid to be convex, which can easily
be achieved in the unlikely case that they are not. For
implementation purposes, we used uniform tetrahedral
grids and linear interpolation within each tetrahedron,
following the ideas in [GH95].

Multiple isosurfaces can be extracted just as single
ones are, i. e., by iterating through the grid once and
extracting for each cell all existent isosurface com-
ponents within the cell for all isosurfaces Fi, i =
0, . . . ,n− 1. Thus, the algorithm is still linear in the
number of cells. Each cell stores up to n isosur-
face components. When using a linear interpolation

method, the isosurface components are represented us-
ing a polygonal surface model.

When rendering multiple transparent isosurfaces, the
isosurface components must be sorted in a back-to-
front or front-to-back order according to depth from
the view-point or viewing plane. We employ a fast
yet simple back-to-front sorting method. It essentially
exploits a loophole for depth-sorting: The isosurface
components in a scene do not have to be truly sorted
according to depth from viewing plane, as long as
the rendering algorithm guarantees that no isosurface
component is drawn after another isosurface compo-
nent which occludes it.

Under the assumption that all grid cells are convex
and non-overlapping polyhedra, we can uniquely de-
termine whether one cell is in front of another cell
with respect to a given viewing vector, or the other
way round. Each isosurface component lying entirely
in the back cell must be rendered before any isosurface
component lying entirely in the front cell. Moreover,
the “in-front-of” relation defines a partial order, as it
fulfills the property of being transitive. Thus, the iso-
surface components can be sorted by sorting the cells.

The sorting of the cells can be done hierarchically by
grouping neighbored cells to form larger convex and
non-overlapping cells. For uniform rectilinear or uni-
form tetrahedral grids, cells can be grouped to rows of
cells, and rows can further be grouped to slabs. Ob-
viously, rows and slabs are, again, convex and non-
overlapping.

Exploiting this three-step hierarchy, cells can be sorted
in constant time. We only have to determine for
each of the three axes of the grid’s coordinate system
whether high or low values are closer to the viewing
plane, i. e., we have to determine the orientation of the
grid with respect to the viewing direction. The sorting
of the cells is implicitly given by grid order.

It remains to sort the isosurface components within
each cell. If isosurface components are represented
using a polygonal surface model, the number of tri-
angles per cell is bounded by the maximum number t
of triangles per cell generated by the single isosurface
extraction algorithm. Therefore, for multiple isosur-
face extraction, the total number of triangles per cell
is bounded by n · t. As this number is small, we em-
ploy a standard depth-sort algorithm to sort the trian-
gles within each cell, which does not slow down the
performance of our multiple isosurface rendering al-
gorithm noticeably.

4 Material-enriched Isosurfaces

Rendering multiple isosurfaces obviously exhibits ad-
ditional information compared to a visualization us-
ing a single isosurface. However, this additional infor-
mation partially gets lost when displaying the surfaces
using same color and opacity. Since for performance
reasons multiple isosurfaces are extracted simultane-
ously, they are also stored together and cannot be eas-
ily separated afterwards. Therefore, already during the
extraction phase, we have to tag each isosurface com-
ponent and even each triangle. The tag can be an iden-
tifier of the material whose boundary is represented by
the isosurface. Multiple isosurfaces are rendered by
assigning color and opacity to each material [Ger02].

By performing this assignment step, a transfer func-
tion, as known from direct volume rendering, is ap-
proximated. However, this use of multiple transparent
isosurfaces to approximate direct volume rendering is
rather limited. When using direct volume rendering,
the transfer function allows for color and opacity as-
signments for every value v ∈ R. When using multiple
isosurface rendering, color and opacity for only n val-
ues v0, . . . ,vn−1 ∈ R are assigned. Any other material
with value v 6= vi, i = 0, . . . ,n−1, is not visualized.

To add more material information to a visualization,
we introduce the concept of material-enhanced isosur-
faces. During isosurface extraction, we first compute
the surface normal n at point p as the normalized gra-
dient, which needs to be computed anyway if smooth
shading algorithms are applied. We determine and
store the material value vnear found at a short distance
λ from point p along the normal direction n, i. e.,

vnear = f (p+λn) .

During rendering, this additional material information
can be used to color the isosurface. The color asso-
ciated with material value vnear is obtained from the
used transfer function. Also, the distance λ can be de-
termined from the transfer function: The opacity func-
tion has peaks at isovalues v0, . . . ,vn−1; the wider these
peaks are, the greater is distance λ .

We have implemented two versions to color material-
enriched isosurfaces. Let Fi be the isosurface to be
rendered. The first option is to render the isosurface
with the color of material value vnear. The second op-
tion is to render the isosurface by blending the color of
material value vnear with the color of isovalue vi. The
former leads to a stronger volumetric impression, as
more emphasis is placed on the material around each
isosurface, while the latter leads to a more realistic im-
pression, as the color is closer to the color assigned to
the isovalue.

5 Results and Discussion

In Figures 1 and 2, we compare visualizations us-
ing material-enriched isosurfaces with standard iso-
surface visualizations in the context of single isosur-
face rendering. The isosurfaces are extracted using an
extended marching-tetrahedra approach. The colors
used in the renderings are obtained from a user-defined
transfer function.

(a)

(b)

(c)

Figure 1: Single isosurface rendering applied to
“fuel injection” data set: (a) standard isosurface;
(b) material-enriched isosurface using color of mate-
rial vnear; (c) material-enriched isosurface using color
blending.

Figure 1 shows a simulation data set of fuel injected
into a combustion chamber. The higher the density

value is, the less air is present.1 Figure 1(a) shows a
standard isosurface, while Figures 1(b) and 1(c) show
the rendering of material-enriched isosurfaces. In Fig-
ure 1(b), the assigned color is defined by a transfer-
function look-up table for material with value vnear,
i. e., material near the surface. In Figure 1(c), the as-
signed color is a blending of the colors used in Figures
1(a) and 1(b).

The visualizations with material-enriched isosurfaces
exhibit more information in the data set. A sin-
gle material-enriched isosurface suffices to understand
that the density field has the steepest gradient per-
pendicular to the extracted isosurface where the fuel
is injected (left side in the figures), which decreases
smoothly with increasing distance.

In Figure 2, we provide another example for sin-
gle transparent material-enriched isosurface rendering.
The data set represents a simulation of a two-body
probability distribution of a nucleon in the atomic nu-
cleus 16O, where the position of a second nucleon is
known.2 The material-enriched isosurface renderings
in Figures 2(b) and 2(c) exhibit a high-density region
(reddish color) - an information that cannot be per-
ceived from the standard isosurface visualization in
Figure 2(a).

In Figure 3, we show multiple transparent isosurfaces
extracted from the “fuel injection” data set. In Fig-
ure 3(a), the multiple isosurfaces are rendered with
the same color and opacity. It is difficult to distin-
guish the different layers of material boundary. In Fig-
ure 3(b), the visualization of the different isosurfaces
uses colors and opacities obtained from an assigned
transfer function. This visualization leads to results
similar to the ones shown in [Ger02]. The different
material layers are easy to identify, but no volumet-
ric impression as known from direct volume rendering
techniques can be achieved. In Figure 3(c), we use
material-enriched isosurfaces, where color is assigned
with respect to near material values. A strong volu-
metric impression is achieved. The visualization with
multiple transparent material-enriched isosurfaces can
indeed approximate a visualization using direct vol-
ume rendering. Figure 3(d) shows a visualization with
material-enriched isosurfaces, where the color of the
“iso-material” is blended with the color of the near ma-
terial. The volumetric impression is not as strong as in
Figure 3(c), but the visualization is more realistic, as
the colors are close to the colors in Figure 3(b). For
comparison, we also show a direct volume-rendered
image in Figure 3(e).3

1Data set courtesy of SFB 382 of the German Research Council
(DFG).

2Data set courtesy of SFB 382 of the German Research Council
(DFG).

3A visualization of this data set using a more sophis-

When comparing the multiple transparent material-
enriched isosurface renderings with the direct volume
rendering, we observe that the surfaces can approxi-
mate the direct volume rendering in terms of volumet-
ric impression, but we also recognize differences in
the resulting images. When using direct volume ren-
dering, material boundaries are not as clearly visible.
For example, the outer-most material boundary visible
in the renderings in Figures 3(a)-(d) is hardly visible in
Figure 3(e). This is probably due to the fact that this
outer shell is a very thin layer of the chosen material.
Even though we slightly “drift away” from our initial
goal to approximate direct volume rendering as closely
as possible, we consider the capability to add informa-
tion about these thin outer layers as advantageous. On
the other hand, we believe that these layers could also
be visualized using direct volume rendering with ap-
propriate higher-dimensional transfer functions and/or
higher sampling rates.

Another example of multiple transparent isosurface
rendering is given in Figure 4. The isosurfaces are
extracted from the “nucleon” data set. Standard iso-
surfaces with uniform 4(a) or material color 4(b) are
compared to material-enriched surfaces with colors for
near material 4(c) or blended colors 4(d).4 Although
the geometry does not change, material-enhanced iso-
surfaces clearly can reveal the different rates of change
around an isosurface. Thus, a more general transfer
function can be implemented.

One disadvantage of multiple isosurfaces compared to
direct volume rendering is their vulnerability to noise.
In a volume rendering, noise appears as “dust” of
“fog”, while in a multiple-isosurface method, noise
manifest itself as jarring, jagged triangle groups. A
noise reduction algorithm can solve this problem, but
would also affect the data. We plan to explore whether
a feature detection employed in a preprocessing step
can take care of this problem instead.

We have tested our implementation on a standard PC
with an Athlon 733 MHz processor. Our unoptimized
prototype achieved a rendering performance of three to
five frames per second. Our triangle sorting method is
extremely fast, but the triangle drawing method could
be improved. The rendering algorithm steps through
all cells of the triangle-storing grid one at a time, re-
gardless whether they are filled or not. In practice, this
does not turn out to be a major issue; rendering time is
dominated by the very high number of material shifts
that occur when rendering multiple material-enhanced
isosurfaces - three per triangle.

ticated direct volume rendering technique can be found at
http://www.volvis.org.

4A visualization using direct volume rendering can be found at
http://www.volvis.org.

(a) (b) (c)

Figure 2: Single isosurface rendering applied to “nucleon” data set: (a) standard isosurface; (b) material-enriched
isosurface using color of material vnear; (c) material-enriched isosurface using color blending.

(a) (b)

(c) (d)

(e)

Figure 3: Multiple transparent isosurface rendering and direct volume rendering applied to “fuel injection” data
set: (a) standard isosurfaces; (b) standard isosurfaces with material color; (c) material-enriched isosurfaces using
color of material vnear; (d) material-enriched isosurfaces using color blending; (e) direct volume rendering.

(a) (b)

(c) (d)

Figure 4: Multiple transparent isosurface rendering and direct volume rendering applied to “nucleon” data set: (a)
standard isosurfaces; (b) standard isosurfaces with material color; (c) material-enriched isosurfaces using color of
material vnear; (d) material-enriched isosurfaces using color blending.

Still, there is room for improvement. A run-length en-
coding would allow large empty spaces to be skipped.
After isosurface extraction, we would determine for
each cell how far the next non-empty cell is. Then,
during rendering, instead of stepping through the cells
one-by-one, we would use the stored information to
skip all empty cells. However, the run-length encod-
ing would have to be done six times, storing how many
cells to be skipped for each of the possible six draw-
ing orders. OpenGL display lists could also work, but
constructing six of them would be necessary to cover
all possibilities. Alternatively, one could use a hierar-
chical volumetric data organization such as an octree
data structure.

6 Conclusions and Future Work

We have presented an enhancement of isosurface ren-
dering based on coloring isosurfaces with respect to
material information at a short distance from the sur-
face in surface normal direction. Already a single
isosurface visualization can benefit from the enhance-
ment. A single well-chosen material-enriched isosur-

face can provide a fairly good insight into the nature
of the underlying scalar field. When using multiple
transparent material-enriched isosurfaces, a volumet-
ric impression of volume data can be achieved similar
to a visualization using direct volume rendering.

Multiple transparent material-enriched isosurfaces di-
minish the drawback of standard isosurfaces, which do
not represent any information of the volume data apart
from a few selected material boundaries. In particular,
standard isosurfaces do not capture any gradient infor-
mation of a scalar field. Adding more and more iso-
surfaces would eventually lead to a banding effect. By
visualizing material information close to the isosur-
faces, material-enriched isosurfaces capture both ma-
terial boundaries and gradient information, leading to
a more complete visual depiction of the overall data
set.

One idea to expand upon would be to weight the blend-
ing of the color of the “iso-material” and the color of
the near material. We plan on basing the weight coef-
ficients on the opacity values of the two materials ob-
tained from the transfer function. Our approach should
easily support such a change, which may produce an
even better approximation to direct volume rendering

with arbitrary transfer functions.

While diminishing drawbacks of standard isosurfaces
rendering, multiple transparent material-enriched iso-
surfaces still benefit from the advantages of isosurface
rendering: Rendering is still fast (due to our fast sort-
ing method), lighting is easy, fast and of high quality,
and material boundaries are defined explicitely, if re-
quired, e. g., for quantitative analyses.

Acknowledgments

This work was supported by the National Science
Foundation under contract ACI 9624034 (CAREER
Award), through the Large Scientific and Software
Data Set Visualization (LSSDSV) program under con-
tract ACI 9982251, through the National Partnership
for Advanced Computational Infrastructure (NPACI)
and a large Information Technology Research (ITR)
grant; the National Institutes of Health under contract
P20 MH60975-06A2, funded by the National Insti-
tute of Mental Health and the National Science Foun-
dation; and the U.S. Bureau of Reclamation. We
thank the members of the Visualization and Computer
Graphics Research Group at the Institute for Data
Analysis and Visualization (IDAV) at the University
of California, Davis.

References

[BL03] David Banks and Stephen Linton. Counting
cases in marching cubes: Toward a generic algo-
rithm for producing substitopes. In Proceedings
of IEEE Conference on Visualization 1998. IEEE
Computer Society Press, 2003.

[CCF94] Brian Cabral, Nancy Cam, and Jim Foran.
Accelerated volume rendering and tomographic
reconstruction using texture mapping hardware.
In Proceedings of the 1994 symposium on Volume
visualization, pages 91–98. ACM Press, 1994.

[Ger02] Thomas Gerstner. Multiresolution Extraction
and Rendering of Transparent Isosurfaces. Com-
puters & Graphics, 26(2):219–228, 2002.

[GH95] André Guéziec and Robert Hummel. Exploit-
ing triangulated surface extraction using tetrahe-
dral decomposition. IEEE Transaction on Visu-
alization and Computer Graphics, 1(4):328–342,
1995.

[Ham91] Bernd Hamann. Visualization and Model-
ing Contours of Trivariate Functions. PhD thesis,
Arizona State Univeristy, Tempe, Arizona, 1991.

[LC87] William E. Lorensen and Harvey E. Cline.
Marching cubes: A high resolution 3d surface
construction algorithm. In Proceedings of the
14th annual conference on Computer graphics
and interactive techniques - SIGGRAPH 1987,
pages 163–169. ACM Press, 1987.

[Lev88] Marc Levoy. Display of surfaces from vol-
ume data. IEEE Computer Graphics and Appli-
cations, 8(3):29–37, 1988.

[LL94] Philippe Lacroute and Marc Levoy. Fast vol-
ume rendering using a shear-warp factorization of
the viewing transformation. In Proceedings of
the 21st annual conference on Computer graph-
ics and interactive techniques - SIGGRAPH 1994,
pages 451–458. ACM Press, 1994.

[Nie03] Gregory Nielson. MC∗: Star functions for
marching cubes. In Proceedings of IEEE Confer-
ence on Visualization 2003. IEEE Computer So-
ciety Press, 2003.

[Wes90] Lee Westover. Footprint evaluation for vol-
ume rendering. In Forest Baskett, editor, Proceed-
ings of the 17th annual conference on Computer
graphics and interactive techniques - SIGGRAPH
1990, pages 367–376. ACM Press, 1990.

[WTTL96] Ming Wan, Long Tang, Zesheng Tang,
and Xinyou Li. Pc-based quick algorithm for
rendering semi-transparent multi-isosurfaces of
volumetric data. In Proceedings of the 1996
Conference on Computer Graphics International,
page 54. IEEE Computer Society, 1996.

Self-Shadowing of C ynamic Rcenes with Dnvironment
Laps using the GPU

Martin Knuth
Fraunhofer IGD
Fraunhoferstr. 5

64283 Darmstadt, Germany

mknuth@igd.fhg.de

Arnulph Fuhrmann
Fraunhofer IGD
Fraunhoferstr. 5

64283 Darmstadt, Germany

afuhr@igd.fhg.de

ABSTRACT

In this paper we present a method for illuminating a dynamic scene with a high dynamic range environment map
with real-time or interactive frame rates, taking into account self shadowing. Current techniques require static
geometry (pre-computed light transport), are limited to few and small area lights or are limited in the frequency of
the shadows. We facilitate importance sampling of the environment map and GPU based shadow calculation in an
efficient way. The shadows are calculated per pixel, so no highly tessellated models are necessary in opposition to
other techniques. Our method provides a novel and highly efficient way for using shadow maps as data structure
for visibility computations done entirely on the GPU. We achieve real-time frame rates for moderate sized models
on current graphics hardware. Since we evaluate the light transport of the scene per frame, complex dynamically
animated models can be rendered efficiently.

Keywords Shadow Algorithms, Environment Mapping, GPU Programming

1. INTRODUCTION

Shadows reveal information about spatial object rela-
tion within a scene. Hence, using shadows in com-
puter graphics allows a better immersion into a scene.
Enhancing the quality and dynamics of the shadows
will result in a more efficient comprehension of the
image. For that task we present a system for rendering
shadows caused by an environment map. The system
evaluates the self shadowing of the scene at interac-
tive or real time frame rates on current GPUs. The
shadows are evaluated per pixel and are not limited to
low frequencies. Furthermore, objects are allowed to
be non-manifold. All this is done for fully dynamic
scenes without prior knowledge of the animation.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

WSCG 2005 conference proceedings,
ISBN 80-903100-7-9
WSCG’2005, January 31-February 4, 2005, Plzen, Czech
Republic.Copyright UNION Agency - Science Press

Existing systems used for rendering such scenes lit by
an environment map are limited to vertex lighting, do
not allow shadows or are not interactive.

The presented method makes use of importance sam-
pling to create a light setup, which approximates the
environment map. The light visibility is determined
with shadow buffers. Since the rendering is entirely
done on the GPU, no time expensive read backs of
data towards the CPU is needed.

In section 2 we refer to existing work related to our
approach. Then, we explain our algorithm and the
ideas behind it. Additionally some issues are pre-
sented which have to be considered when implement-
ing the algorithm on a GPU. In section 4 an implemen-
tation of the system is shown and discussed, followed
by a summary and a look into the future.

2. RELATED WORK
There exists a lot of literature addressing the prob-
lems of shadowing 3D scenes in real time. In [Has03]
several methods for generating soft shadows are com-
pared. Unfortunately, they are either limited to small
area sources or too slow to be useful for our approach.
Rendering real time shadows of dynamic geometry
on today’s graphics hardware is mainly done by only
two approaches: shadow volumes [Cro77] and shadow

maps [Wil78]. Both methods are capable of rendering
shadows of directional- and point lights, creating hard
shadow boundaries. Shadow maps are fast to compute
and need less fill rate than shadow volumes. On the
other hand, care has to be taken of sampling artefacts.
An approach for minimizing shadow buffer artifacts
can be found in [Ree87].

Direct illumination of a scene with an environment
map is given by a group of environment mapping
methods (like [Gre86, Ram01, Hei99]). They do not
support shadows, which is a big disadvantage.

In [Deb98] Paul Debevec presents image based light-
ing done with high dynamic range (HDR) environment
maps, to bring together synthetic and real scenes under
natural lighting conditions.

Ray tracing [Wal03b, Wal03a, Pur02] is another ap-
proach for visibility determination. It has reached
interactive and real time frame rates by using a PC-
cluster, the GPU or dedicated ray tracing hardware.
Unfortunately, there is still development needed until
this hardware is out of prototype state. The software
solution needs the power of an efficient cluster sys-
tem. Ray tracing on the GPU at last needs fast read
back towards the CPU, which is a bottleneck.

Global illumination at interactive frame rates can be
done, utilising a real time raytracer. A direct approach
towards global illumination on the GPU is presented
in [Coo04], achieving interactive frame rates for small
scenes. Another method to achieve fast global illumi-
nation computations was presented by Keller et. al in
[Kel97]. The method accumulates images of the scene
illuminated by single shadowcasting lights.

Other methods make use of occlusion or precomputed
lighting information to allow the use of an environ-
ment map as light source. The information is mostly
stored per vertex. Nevertheless a lot of additional in-
formation has to be stored. Since directions have to
be mapped to data, structures like spherical harmon-
ics are used. Since these methods are based on pre
computations they normally can not be used for an-
imated geometry. This flaw is faced by Kautz et al.
in [Kau04]. They presented a method for speeding
up the pre-calculation to interactive frame rates on
small models. In opposition to our method they need
a model hierarchy which can have high preprocess-
ing cost - if animated. Due to its Spherical Harmon-
ics/vertex based character, the method processes only
low frequency shadows.

Many methods use directional- or point-lights as
an approximation of the environment map. Our
algorithm belongs to this kind of methods. For
the pre-calculation of ambient occlusion NVIDIA
[Pha04]presented an algorithm, which uses accumu-

lation of shadow maps in a preprocessing step to light
the scene. As a disadvantage their method needs sev-
eral seconds of preprocessing time for calculating the
occlusion, with a reasonable visual quality.

Another approach for calculating ambient occlusion is
presented in [Sat04]. It takes into account the colour
of the environment map. Their method is mainly dif-
ferent in three points to our approach: Occlusion is
evaluated per vertex, lights are generated with spheri-
cal distribution and at last occlusion data is read back
from GPU.

Since the approximation of an environment map with
directional lights is a difficult task, several methods
addressing this problem exist. The easiest way is to
sample the environment map homogeneously. But
since most environment maps have varying areas of
interest, it is advantageous to take the importance
of these areas into account [Aga03, Kol03, Ost04,
Sze04]. This is done by analysing the image to figure
out more important areas of the image to place lights
in.

3. OUR METHOD

Importance sampling

If we directly used the environment map for lighting
a surface point, we would have to solve the problem
of integrating over a hemisphere to get the amount of
incoming radiance. Since the used environment maps
are discrete, we could use a sum overn texels of the
environment map for that task, but this would be still
too much work to do.

Hence, we reduce the visibility problem tok direc-
tional lights, which are computed from the environ-
ment map. This is done by using structured impor-
tance sampling [Aga03]. This algorithm creates a dis-
tribution of the lights on the environment map accord-
ing to the importance of the respective region. The im-
portance of a region is determined by its extend and its
light intensity. Roughly speaking, the method creates
many lights in bright areas and only a few in darker
ones, as can be seen in Figure 1. For more details on
the importance metric and a derivation of it we refer
the interested reader to the original paper [Aga03].

The computed point lights accumulate the radiance of
their surrounding region. This method works consid-
erably well, so a teapot scene inside Galileo’s Tomb
using only 300 lights rendered by Agarwal et al.
shows no significant difference to a reference image
computed with 100,000 samples using standard Monte
Carlo sampling.

In difference to [Sat04] we use importance sampling
in our system, since the rotation of lights is decou-

Figure 1: Environment map with 128 importance sam-
pled lights shown as white dots.

pled from the rotation of the geometry. Rotation of
the environment is followed by equal rotation of the
lights. Although importance sampling of an environ-
ment map as described in [Aga03] takes some time, it
either can be pre-computed and stored or done once at
start up.

Scene Rendering
Conventional real-time algorithms render a shadowed
scene light after light in several passes. So, a shadow
map is calculated for each light and used directly.
Since all triangles have to be rasterized in each pass,
this approach generates a lot of redundant calcula-
tions, which slows down the rendering. Our idea is
to get rid of most of these redundant calculations, by
doing something similar to ray tracing: Take a pixel
and calculate all lighting for it, then take the next one.
Calculations for a given pixel which are independent
of the light position need to be done only once. The
algorithm looks like this:

Calculatek lights from environment map.
for all Framesdo

Calculatek shadow maps.
for all pixel do

Compute visibility of k lights using the
shadow maps.

end for
end for

Algorithm 1: The shadowing algorithm.

Since rendering the scene taking all lights into account
at once, a lot of redundant calculations are prevented.
The rendering of the scene into the frame buffer be-
comes a single pass operation. But the storing and
handling of thek shadow maps raises problems ad-
dressed in the next section.

Shadow Map Management
Normally, a shadow map is used for one light at a time
only. Since shadow maps are usually represented by

textures, this causes a lot of state changes. To min-
imize these state changes we render several shadow
maps into one texture to fulfill the requirements set by
our algorithm (See Figure 2).

Figure 2: Texture containing several shadow maps,
packed side by side.

This approach concentrates first completely on
shadow map generation for all light sources and then
on rendering the actual scene. Shadow map generation
and scene rendering are completely separated.

Further Reduction of the Number of
Lights
The structured importance sampling reduces the num-
ber of lights necessary to approximate the lighting of
an environment map. But, there are still too many
lights needed to emulate soft shadows caused by lights
on the environment map. Reducing the number of
lights further will result in clearly distinguishable
shadows with hard boundaries, due to under sampling
(See Figure 3).

Figure 3: An example for under sampling the environ-
ment map: On the left 32 lights are used and the single
shadows are clearly distinguishable. On the right fig-
ure 2048 light sources have been used.

These hard boundaries arise from sharp shadow edges
of the individual light sources. More reduction needs a
method to avoid these artefacts. The shadow maps are
stored as plain depth information within a texture. So
we can use simple 2D image manipulation functions to
solve the problem by using a softening filter function.

This allows a blending of shadow boundaries. By this,
a quality similar to images rendered with much more
lights is achieved (See Figure 4).

Figure 4: Using smoothing to avoid shadow artifacts:
The left image is illuminated by 64 lights. Single
shadows are well visible. The center image is illu-
minated by the same number of light sources, but with
smoothed shadows. As reference, the right image is
illuminated with 192 lights.

In [Aga03] jittering is used to reduce these artefacts.
This is done by randomly choosing a light direction
pointing inside the stratum of the light. This takes
into account the distance of the occluder to the sur-
face point: With increasing distance of the occluder
the shadow gets more and more blurry.

In our approach a shadow map contains the visibility
for a constant light direction. As a consequence we
can only jitter the position within the shadow map. A
shadow boundary will be equally thick regardless of
the distance to the occluder. So our method cannot be
interpreted as a quick alternative to soft shadow algo-
rithms. Taken alone it just blurs a shadow boundary.
The soft shadow effect is caused mainly by the large
number of lights used.

GPU-based visibility
Current GPUs behave like a dataflow machine. This
has severe consequence when designing algorithms
for GPUs. Changing the GPU state for example will
stall the pipeline and if this happens often the over-
all performance decreases considerably. In our system
we take care of this by clearly dividing shadow map
calculation and scene rendering.

Unfortunately, it is necessary to split Algorithm 1 into
several parts, since the GPU has a limited program
length and not all lights can be computed in one pass.
In order to be able to map our shadowing algorithm
onto a programmable GPU, we modified Algorithm 1
into a multi-pass algorithm. The lights are packed into

clusters of sizec. The size depends on the maximum
number of lights supported by the fragment program
of the GPU. The modified algorithm is shown in Al-
gorithm 2 and can be implemented on current GPUs.

Calculatek lights from environment map.
for all Framesdo

for all Light clustersdo
Calculatec shadow maps.
for all pixel do

Compute visibility of c lights using the
shadow maps.

end for
end for

end for

Algorithm 2: The modified shadowing algorithm.

Also, all data and intermediate data used should be
stored within the GPU memory to prevent wait states.
So, intermediate data should simply reside on the
GPU. By using a GPU which is able to render into
a texture the shadow maps fulfill this criteria. The ge-
ometry data can be stored inside the GPU memory for
one frame of animation, since we are using a multi-
pass operation this speeds up the algorithm.

4. IMPLEMENTATION AND DISCUS-
SION
We implemented our algorithm on a Radeon 9700 us-
ing OpenGL. The workload was divided between CPU
and GPU. The CPU handles constants and the control
flow of the algorithm. The vertex processor computes
parameters which then can be interpolated over a tri-
angle. The fragment shader does the per pixel work.

In order to map the algorithm efficiently to graphics
hardware we used several extensions:

• GL ARB vertexprogram for vertex program
support.

• GL ARB fragmentprogram for fragment pro-
gram support.

• GL ARB vertexbuffer object for geometry stor-
age inside GPU memory.

• WGL ARB pbuffer to be able to render to tex-
ture.

We have implemented shadow maps via the PBuffer
extension of OpenGL. So using shadow map informa-
tion is simply a texture lookup. As described above,
we are trying to put as many shadow maps in the
PBuffer as possible. Unfortunately, the PBuffer has a

maximum resolution which limits the number of con-
tainable shadow maps. But since textures are usu-
ally coloured there is another way to put more shadow
maps inside one PBuffer. Every colour channel is used
separately. This multiplies the capacity by four with-
out decreasing the shadow map resolution (See figure
5). The shadow buffer information is interpreted in-

Figure 5: RGBA-texture as shadow buffer (alpha
channel not shown): Additionally several buffers were
packed side by side.

side the fragment program. Additional filtering (sim-
ple smoothing or percentage closer filtering ([Ree87]))
is done here, too.

Storing the geometry data inside the GPU is manda-
tory, since we have a multi-pass algorithm. So the bus
between CPU and GPU is free for control operations
and is not a bottleneck.

Vertex/Fragment Load Balancing
Load balancing is done by changing the number of
lights calculated simultaneously. By calculating one
light per pass, most work of the vertex program is
done by transforming vertex coordinates. The frag-
ment program has less work to do by handling one
light. Nevertheless, it is more often called due to more
passes are needed. Calculating several lights per pass
increases the load inside the fragment program. Since
fewer passes are needed the vertex program has to do
less work.

Results
In order to analyse the behaviour of the load balanc-
ing we implemented shaders for calculating shadows
of one, four and eight lights simultaneously inside the
fragment program. The shaders have shown a boost
of frame rates as more lights were rendered per frame,
since the number of passes decreases. All methods
for reducing fill rate and vertex count have shown di-
rect consequences towards higher frame rates. The im-
plementation also has shown that careful detection of

bottlenecks and several exploitations of redundancies
created a system, able to reach real time frame rates
for moderate polygon count models. In practical use,
bottlenecks tend to wander between fragment program
and vertex program, dependent on the amount of ob-
jects covering the screen.

The evaluation of the shadows within the fragment
program allows user defined filtering functions. Ob-
serving the visual results of our system, shadow
smoothing is not always necessary to be convincing.
It depends on the environment map and the number of
lights used.

5. CONCLUSIONS

We presented a method for self-shadowing of dynamic
scenes with environment maps using the GPU. Our
algorithm allows the creation of interactive systems,
which are capable of rendering scenes taking into ac-
count self shadowing caused by an environment map.
We evaluate the lighting condition of the geometry on
the fly by using current graphics hardware and their
shadow mapping features. Our algorithm achieves in-
teractive frame rates for large dynamic models, with-
out prior knowledge of the animation. The implemen-
tation is flexible enough to allow an easy load balanc-
ing between vertex and fragment program, by control-
ling the number of lights rendered per pass. In order to
raise the visual quality of the shadows we use smooth-
ing and percentage closer filtering.

The implementation of the algorithm has shown it’s
ability to achieve real-time frame rates for models with
moderate polygon count with plausible looking self
shadowing of the scene, realistically illuminated by
the HDR environment map.

6. FUTURE WORK

One direction for future research would be to consider
more information about the light source. The direc-
tional lights created by importance sampling describe
actually areas of the environment map and not just a
singular point. If we took the shape and size of the
light source into account during the visibility compu-
tations, it would be possible to reduce the number of
light sources needed for realistic images even further.

The rendered images would reach a next grade to-
wards photo realism if inter-reflections are taken into
account. Since this requires visibility calculation be-
tween faces of the geometry, inter-reflections are not
handled by our scheme yet. It will take several gener-
ations of GPUs and further algorithmic improvements
until this vision will be reality.

7. ACKNOWLEDGEMENTS
The high dynamic range environment maps used in
this paper were made by Paul Debevec [Deb98].
Textiles shown were created with the prepositioning
and cloth simulation methods described in [Fuh03b,
Fuh03a, Gro03].

8. REFERENCES

[Aga03] Agarwal, S., Ramamoorthi, R., Belongie, S., and
Jensen, H. W. (2003). Structured importance sampling of
environment maps.ACM Trans. Graph., 22(3):605–612.

[Coo04] Coombe, G., Harris, M. J., and Lastra, A. (2004).
Radiosity on graphics hardware. InGI ’04: Proceed-
ings of the 2004 conference on Graphics interface, pages
161–168. Canadian Human-Computer Communications
Society.

[Cro77] Crow, F. (1977). Shadow algorithms for computer
graphics.j-COMPGRAPHICS, 11(2):242–248.

[Deb98] Debevec, P. (1998). Rendering synthetic ob-
jects into real scenes: bridging traditional and image-
based graphics with global illumination and high dy-
namic range photography. InSIGGRAPH ’98: Proceed-
ings of the 25th annual conference on Computer graphics
and interactive techniques, pages 189–198. ACM Press.

[Fuh03a] Fuhrmann, A., Gross, C., and Luckas, V. (2003a).
Interactive animation of cloth including self collision de-
tection.Journal of WSCG, 11(1):141–148.

[Fuh03b] Fuhrmann, A., Gross, C., Luckas, V., and Weber,
A. (2003b). Interaction-free dressing of virtual humans.
Computers & Graphics, 27(1):71–82.

[Gre86] Greene, N. (1986). Environment mapping and
other applications of world projections.IEEE Comput.
Graph. Appl., 6(11):21–29.

[Gro03] Gross, C., Fuhrmann, A., and Luckas, V. (2003).
Automatic pre-positioning of virtual clothing. InPro-
ceedings of the Spring Conference on Computer Graph-
ics, pages 113–122.

[Has03] Hasenfratz, J.-M., Lapierre, M., Holzschuch, N.,
and Sillion, F. (2003). A survey of real-time soft shadows
algorithms. InEurographics. Eurographics, Eurograph-
ics. State-of-the-Art Report.

[Hei99] Heidrich, W. and Seidel, H.-P. (1999). Realis-
tic, hardware-accelerated shading and lighting. InSIG-
GRAPH ’99: Proceedings of the 26th annual conference
on Computer graphics and interactive techniques, pages
171–178. ACM Press/Addison-Wesley Publishing Co.

[Kau04] Kautz, J., Lehtinen, J., and Aila, T. (2004). Hemi-
spherical rasterization for self-shadowing of dynamic ob-
jects. InProceedings Eurographics Symposium on Ren-
dering 2004.

[Kel97] Keller, A. (1997). Instant radiosity. InSIGGRAPH
’97: Proceedings of the 24th annual conference on Com-
puter graphics and interactive techniques, pages 49–56.
ACM Press/Addison-Wesley Publishing Co.

[Kol03] Kollig, T. and Keller, A. (2003). Efficient illumi-
nation by high dynamic range images. InEGRW ’03:
Proceedings of the 14th Eurographics workshop on Ren-
dering, pages 45–50. Eurographics Association.

[Ost04] Ostromoukhov, V., Donohue, C., and Jodoin, P.-
M. (2004). Fast hierarchical importance sampling with
blue noise properties.ACM Transactions on Graphics,
23(3):488–495. Proc. SIGGRAPH 2004.

[Pha04] Pharr, M. (2004). Ambient occlusion.Game De-
velopers Conference (GDC) 2004.

[Pur02] Purcell, T. J., Buck, I., Mark, W. R., and Hanra-
han, P. (2002). Ray tracing on programmable graphics
hardware.ACM Trans. Graph., 21(3):703–712.

[Ram01] Ramamoorthi, R. and Hanrahan, P. (2001). An ef-
ficient representation for irradiance environment maps. In
SIGGRAPH ’01: Proceedings of the 28th annual confer-
ence on Computer graphics and interactive techniques,
pages 497–500. ACM Press.

[Ree87] Reeves, W. T., Salesin, D. H., and Cook, R. L.
(1987). Rendering antialiased shadows with depth maps.
SIGGRAPH Comput. Graph., 21(4):283–291.

[Sat04] Sattler, M., Sarlette, R., Zachmann, G., and Klein,
R. (2004). Hardware-accelerated ambient occlusion com-
putation. In Girod, B., Magnor, M., and Seidel, H.-P.,
editors,Vision, Modeling, and Visualization 2004, pages
331–338. Akademische Verlagsgesellschaft Aka GmbH,
Berlin.

[Sze04] Szecsi, L., Sbert, M., and Szirmay-Kalos, L.
(2004). Combined correlated and importance sampling
in direct light source computation and environment map-
ping. Computer Graphics Forum (Eurographics 04),
23(3).

[Wal03a] Wald, I., Benthin, C., and Slusallek, P. (2003a).
Interactive global illumination in complex and highly oc-
cluded environments. InEGRW ’03: Proceedings of the
14th Eurographics workshop on Rendering, pages 74–81.
Eurographics Association.

[Wal03b] Wald, I., Purcell, T. J., Schmittler, J., Benthin, C.,
and Slusallek, P. (2003b). Realtime ray tracing and its
use for interactive global illumination. InEurographics
State of the Art Reports.

[Wil78] Williams, L. (1978). Casting curved shadows on
curved surfaces. InSIGGRAPH ’78: Proceedings of the
5th annual conference on Computer graphics and inter-
active techniques, pages 270–274. ACM Press.

Figure 6: The left image was rendered with standard OpenGL. The center image was illuminated by an irradiance
map. The right image was rendered with our algorithm taking self-shadowing into account. The resolution was
421x711 pixel and 128 smoothed shadows were used. We achieved four frames per second. The model consists of
107K triangles.

Figure 7: The left image was rendered with 64 light sources and 8 lights per pass at 21 FPS. The middle image was
rendered with 64 light sources, shadow smoothing and 4 lights per pass at 8 FPS. The right image was rendered
with 192 light sources and 8 lights per pass at 6 FPS.

Figure 8: Some sample frames taken from a real-time animation and rendering of cloth.

Paving Procedural Roads with Pixel Shaders

Jörn Loviscach

Hochschule Bremen
Flughafenallee 10

28199 Bremen, Germany

jlovisca@informatik.hs-bremen.de

ABSTRACT
Modern graphics hardware can be used to create procedural geometry. Our proposal details an optimized
method to form roads and similar 3D objects by cookie-cutting them from slightly oversized polygons. The
roads follow spline-like curves on a plane. The curves and their offset variants are cast into an approximated,
implicit description. This can efficiently be evaluated within a pixel shader to discard pixels that are part of the
oversized polygons but not part of the roads. Our method guarantees smooth geometry and smooth texturing.
To achieve comparable results with roads formed from polygons in the usual way requires level-of-detail or
similar mechanisms which not only complicate development and scene management, but also add load on the CPU.

Keywords
driving simulator, implicit curve, offset curve, pixel shader, clipping

1 INTRODUCTION
Roads are a prominent feature of virtual reality and
gaming applications such as driving simulators. Many
roads follow curved paths, in particular circles and spi-
rals [AAS01], which are rendered with a large number
of polygons. If this is not done, both the lateral borders
of the roads and their textures such as medians show
objectionable angles, see Figure 1.

Typical applications use large numbers of roads. To
prevent a serious drop in the frame rate, these may not
be rendered with a high polygons count. Thus, the
number of polygons used has to be reduced for less
visible or invisible roads or parts of them. This not
only leads to additional development effort but also
requires visibility estimation and a more sophisticated
scene management to be done on the CPU.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee, provided that no copies are made or distributed for profit
or commercial advantage and that all copies bear this notice
and the full citation on the first page. To otherwise copy or
republish, to post on servers or to redistribute to lists, a prior
specific permission and/or a fee are required.

Conference Proceedings ISBN 80-903100-7-9
WSCG ’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

Figure 1. A conventionally built road shows
angular artifacts (upper image). Our method

yields smooth shapes and textures (lower image).
The insets show the polygons used.

The main contribution of this paper is an efficient im-
plicit description of fat planar curves: a centerline plus
a family of offset curves. This implicit description is
used to cookie-cut roads from large polygons using a
pixel shader. These roads possess tangent continuous
shape and texturing.

The input to our method is a set of anchor points—
each equipped with a tangent direction—that repre-
sents the centerline (mostly marked by a median) of
the road. Every two consecutive anchor points deter-
mine a road segment, which is to be treated separately.
We assume that each segment lies in a plane. This is at
least approximately valid for roads with slowly vary-
ing grade. Furthermore, we assume that no segment
is strongly bent horizontally, so that its centerline can
be parameterized using the projection onto the straight
line that connects the two anchor points, see Figure 2.

W

L

Figure 2. A road is divided into segments defined
by start and end points on its centerline together

with tangent directions.

Every road segment is covered with a quadrangle (to
be rendered as two triangles under DirectX) computed
from the road’s width and the spline-like curve that
forms the central line. A pixel shader is used to dis-
card the pixels of the quadrangle that do not belong to
the road. To this end, the clip instruction of the HLSL
shading language is used. It translates to the texkill
instruction of DirectX pixel shader assembler. Further-
more, the pixel shader assigns texture coordinates to
the pixels. A mapping x 7→ (u,v) is employed that en-
sures smoothness along every single road segment as
well as tangent continuity at the transition from one
segment to the next, see Figure 3.

All computations are offloaded from the CPU to the
graphics hardware, excluding a short initialization rou-
tine to build vertex and index buffers. For optimiza-
tion, the computation of all quantities that vary linearly
is moved from the pixel shader into the vertex shader
of the same (and only) rendering pass.

The proposed method does a substantial amount of
work in the pixel shader. Roads close to the viewer
incur a high computational cost, but are perfectly free
from angular-looking defects. Distant roads, however,
lead to only a small computational cost because they

v = 0.0

v = 0.2

v = -0.2

u =
 0.0

 u
= 1.0

u =
 0.3

Figure 3. World space coordinates are converted
to coordinates (u,v) along and across the road.

These serve to define both geometry and texturing.

consist of few pixels in screen space. A large percent-
age of invisible segments of the road will be discarded
already at the vertex level through frustum clipping.
Only a low number of polygons is needed to construct
the roads using the shader. Thus, the efficiency for dis-
tant roads is close to that of level-of-detail or frustum
culling approaches.

This paper is structured as follows: In Section 2 we
outline related work; Section 3 describes the formula-
tion of roads as fat curves. How these can be evaluated
using a graphics chip is covered in Section 4. Section 5
presents and discusses results; Section 6 gives a sum-
mary and points out directions for further research.

2 RELATED WORK
Vertex-based procedural creation of geometry on
graphics cards has been studied much in recent years.
For instance, it can be found in the curved-PN-triangle
subdivision offered by current ATI graphics cards
[Vla01]. Bolz and Schröder [Bol03] propose a vertex-
based method to evaluate subdivision surfaces.

Due to increasing computing power and improved
functionality, pixel-based instead of vertex-based pro-
cedural creation of geometry is now becoming a viable
option. Some works have already addressed this topic.

Hirche et al. [Hir04] render per-pixel displacement
maps on the graphics chip. To this end, they extrude
prisms from the triangles of a mesh. They render
these prisms with a complex pixel shader, which em-
ploys ray casting to evaluate the displacement map us-
ing four samples per ray. Kanai and Yasui [Kan04]
evaluate per-pixel positions and normals of subdivi-
sion surfaces in a pixel shader and use the results to
fill a vertex buffer to render the surface from. Lovis-
cach [Lov04] uses curved fins along the silhouette of
a mesh to smooth the outline visually. The fins are
painted by a pixel shader onto quadrangles that are ex-

truded from the silhouette of the mesh inside a vertex
shader.

Rose and Ertl [Ros03] draw wire frames onto sim-
plified polyhedra. ATI’s demo “Ruby: The Double
Cross” [ATI04] employs pixel shaders to procedurally
generate the ATI logo from lines and circles. This
method does not actually produce geometry, but comes
close in spirit.

In order to construct roads with a pixel shader, we use
a parameterization that is related to offset curves: v = 0
is the centerline of the road; a non-zero v leads to an
offset curve. Offset curves are a classic topic of com-
puter graphics; for surveys see [Elb97] and [Mae99].

Most of the work done on offset curves is concerned
with explicit representations. In contrast to that, we
are interested in the inverse mapping from world space
to parameter space, which may be compared to an
implicit representation of offset curves. This can for
instance be achieved with the distance function that
maps every point to its distance to the original curve,
a mapping that can be used, for instance, to find the
medial axis transform.

Pottmann et al. [Pot02] study local quadratic approxi-
mations of the squared distance to a curve in the Frenet
frame. They employ this approximation to generate
offset curves with active splines. However, it does not
seem straightforward to use these results here, in par-
ticular due to the non-global nature of the approxima-
tion.

3 ROADS AS FAT CURVES
For simplicity we only show the construction for the
2D case in which the central line starts at the origin
(x,y) = (0,0) and ends at (1,0), see Figure 4. All
other cases can be reduced to this by rotation and uni-
form scaling. Let the tangent direction at the origin
be parallel to (1,a)T and that at the end be parallel to
(1,b)T.

Then we can construct the centerline as the graph
of a function y = f (x) with the following properties:
f (0) = 0 = f (1), f ′(0) = a, and f ′(1) = b. We choose
f to be the cubic function that fulfills those require-
ments:

f (x) := x(1− x)2a− x2(1− x)b

Given a point (x,y) near the curve, we want to find ap-
proximate values for the nearest position on the center-
line (parametrized by x) and the signed distance from
the centerline. Call these two values (u,v). The point
(x,y) is a point on the road if and only if 0≤ u≤ 1 and
−W/L ≤ v ≤W/L, where W is half the road’s width

and L the distance between its anchor points (before
scaling). Furthermore, (u,v) serve as curved texture
coordinates on the road.

We assume that a, b, and y are close to zero so that
there are no problems concerning the uniqueness of a
nearest point on the curve. In Section 5 we will show
how large these values may be chosen in practice.

To convert (x,y) to (u,v), we employ a basic idea from
the theory of offset curves [Elb97]: The vector from
(x,y) to the nearest point on the central line has to be
perpendicular to a tangent vector to the curve, see Fig-
ure 4: (

x−u
y− f (u)

)
·
(

1
f ′(u)

)
= 0

This leads to

x−u+(y− f (u)) f ′(u) = 0. (1)

y

f(u)

u 1 x

(x, y)

v

Figure 4. (x,y) is converted to (u,v) using the
nearest point (u, f (u)) on the curve.

We are not going to solve Equation 1 (which in general
is of degree five) precisely, but rather use it as a guid-
ance to construct an approximately equal object with
precisely identical properties regarding start point, end
point, initial and final direction.

Note that f (u) ≈ 0 for a curve which is only weakly
bent. Furthermore, f ′ can be computed using a and b.
This yields an approximation u1 of u in Equation 1:

x−u1 + y((3u2
1−4u1 +1)a+(3u2

1−2u1)b) = 0 (2)

This equation typically possesses two different solu-
tions in u1. We pick the solution close to x. This so-
lution is guaranteed to exist for y, a, and b sufficiently
close to zero. It can be written

u1 =
2γ√

β 2−4αγ −β
, (3)

where

α := 3y(a+b), β :=−1−(4a+2b)y, γ := x+ya.
(4)

We write the solution of the quadratic equation in the
untypical form of Equation 3 to prevent a division by

zero when y = 0 and hence α = 0. Note that β < 0 if
the bending is weak and the width is small enough.

The points (x,y) with u1 = 0 form the line through the
start point (0,0) perpendicular to the tangent of the
curve at that point: From u1 = 0 follows x = −ay.
Similarly, the points (x,y), for which u1 = 1, form a
the line through the end point (1,0) perpendicular to
the tangent of the curve there.

A simpler approximation with the same properties
would be

u2 =
x+ ya

1+(a−b)y
.

However, it turns out that this approximation—
concerning its overall shape—does not perform well
for strongly curved paths.

Now v remains to be computed. If we had solved
Equation 1 precisely, the signed distance v could be
found through the dot product of a normalized vector
perpendicular to the curve and the difference vector
between the point (x,y) on the plane and the nearest
point (u, f (u)), see Figure 4:

v =

(
x−u

y− f (u)

)
·
(
− f ′(u)

1

)
√

f ′(u)2 +1
(5)

Due to the dot product, this equation is robust under
a small shift along the curve. Thus, it seems reason-
able to use this equation in our framework with u1 in
place of u. This completes an efficient algorithm to
convert a point (x,y) near the curve to curved coordi-
nates (u1,v).

Whereas the mapping (x,y) 7→ (u1,v) is only approxi-
mate, it possesses the same features as the exact solu-
tion of Equation 1: On the lines u1 = 0 and u1 = 1 the
mapping equals the exact solution, what is crucial for
the continuous transition from one road segment to the
next.

On top of that, the transition from one segment to the
next is not only continuous, but also tangent contin-
uous. To prove tangent continuity, one can compute
the gradient of v with respect to x and y at u1 = 0 and
u1 = 1 for arbitrary v using basic mathematics. It turns
out that the gradient equals (−a,1)T/

√
a2 +1 and

(−b,1)T/
√

b2 +1, respectively. All lines v = const
must run perpendicular to the gradient field. There-
fore, they have a slope of a and b, respectively, at
u1 = 0 and u1 = 1, what proves tangent continuity.
This property of the construction does neither depend
on the details of f nor on the approximation used
to find u1, as long as f (0) = 0 = f (1), f ′(0) = a,
f ′(1) = b, u1 = 0 corresponds to x =−ay, and u1 = 1
corresponds to x = 1−by.

4 HARDWARE ACCELERATION
In the prototype, we have implemented the method us-
ing the following steps:

• Preprocessing:

– Given a sequence of anchor points along the
median of the road to be built, compute the
initial and final slopes a and b for every seg-
ment using a Catmull-Rom spline that inter-
polates the anchor points. (The slope could
also be defined arbitrarily.)

– Create vertex and index buffers that de-
scribe one quadrangle per road segment.

• For every frame:

– Draw the terrain.
– Draw the quadrangles defined in the prepro-

cessing step. Use shaders on them both to
form the road through pixel clipping and to
map a texture onto it.

Each quadrangle is chosen such that it covers the cor-
responding road segment completely with not much
excess, see Figure 5. To create quadrangles with min-
imum area reduces rendering time. This construction
employs T-junctions (see inset in the lower part of Fig-
ure 1), which may be objectionable in other circum-
stances. For a discussion see Section 5.

In order that the segments fit together, two of the sides
of a quadrangle have to run through the start and end
points, respectively, of the centerline, perpendicular
to the corresponding tangents, see Figure 5. The two
other sides of the quadrangle are parallel to the straight
line y = 0 that connects the start and the end point of
the centerline. To position these two sides, we look
for extremal values of f on [0,1] by solving the equa-
tion f ′(u) = 0, which in general is quadratic. If, for
instance, there is a maximum at u = u+, the upper side
has to be shifted upward to y = f (u+)+W/L.

y

f(u+)W/L

1 x

Figure 5. Every road segment is covered by a
quadrangle.

Note that this shape saves the test whether 0≤ u1 ≤ 1,
because this is automatically true for any point on the

quadrangle: Along one of its sides u1 equals 0, along
one other side it equals 1. Thus, only −W/L ≤ v ≤
W/L remains to be checked to determine if a point lies
on the road.

For each of the four vertices of such a quadrangle we
store the following attributes in the vertex buffer:

• 3D position

• xy position in the rotated and scaled system ac-
cording to Section 3

• a, b, and the distance L between the anchor points

• uStart, uRange

The distance L is needed to adapt the road width
(which is transmitted as a constant parameter), be-
cause the xy position is scaled to x ∈ [0,1]. The values
uStart and uRange are used to shift and rescale u, the tex-
ture coordinate along the road. Both are determined
from arc length such that the textures of the road seg-
ments fit together seamlessly.

The data a, b, L, uStart, and uRange are identical for all
vertices of one quadrangle. Therefore, we use the Ver-
tex Stream Frequency Divider offered by DirectX 9.0
to save memory bandwidth for this subset of the vertex
attributes.

The value α , β , and γ of Equation 4 depend linearly on
the position of a pixel inside a triangle. For efficiency,
we use a vertex shader to compute them per vertex,
and rely on the automatic linear interpolation applied
by the graphics chip to all values that are transmitted
from the vertex shader to the pixel shader. The pixel
shader then evaluates Equations 3 and 5.

For the implementation we chose Managed Di-
rectX 9.0c using the language C# and Microsoft’s Ef-
fect framework with HLSL. The vertex and the pixel
shader compile to 23 and 35 instructions, respectively,
of Shader Model 2.0. All computations are done using
16 bit floating point precision instead of the regular
32 bit floating point precision without visually objec-
tionable roundoff errors.

In a typical virtual reality or gaming setting, the geom-
etry of buildings and terrains can be much more angu-
lar than that of roads: Most buildings possess rectan-
gular forms by construction; terrains can be covered
with complex textures that help to hide large polygons.
Smooth roads may, however, not be combined with a
coarsely-tessellated terrain in a straightforward man-
ner: The roads would be cut off in angular patterns.

To prevent this, the terrain in the vicinity of the road is
composed of large level polygons, see Figure 6. An-
other possibility would be to introduce ditches. We

render the terrain before the roads and leave a visually
unnoticeable small height gap between the road and
the terrain below to prevent z-fighting.

Figure 6. Intersections between the roads and the
terrain may reveal the coarse tessellation of the

latter (top right). Hence, we create level geometry
along the roads (bottom).

5 RESULTS. DISCUSSION
Even for relatively large values of a, b, and W/L the
approximate mapping (x,y) 7→ (u1,v) yields useful re-
sults, and the quadrangle fits closely, see Figure 7. In
our experiments, we found no visually objectionable
deviations as long as |a| ≤ 1 and |b| ≤ 1, and further-
more |W/L| ≤ 0.3 if a and b are of different sign and
|W/L| ≤ 0.2 if they are of same sign. This range al-
lows strongly curved segments, see Figures 8 and 9.

In situations with strong bending such as that of Fig-
ure 9 the viewer may realize that the u1 coordinate
used for texturing deviates from arc length parameter-
ization. This difference could be diminished through
a corrective term. With typical road textures, however,
this is not necessary.

To fit the quadrangles tightly around the road, we
employ geometry with T-junctions. Thus, roundoff
may lead to pixel-wide gaps between two quadrangles.
However, in our experiments such defects did not turn
up. One may also argue that the number of vertices
could be cut by half by joining every two neighboring
vertices on each side along the road. But this would
enlarge the area of the quadrangles and thus lead to
more invocations of the pixel shader. Furthermore, as
described in Section 4, every vertex contains the val-
ues of x and y in its local coordinate frame. A shared

Figure 7. The parameterization of a road segment
(a = 0.7, b =−0.3, W/L = 0.2) and the quadrangle
used for rendering show that the approximation in
Eq. 2 does not lead to easily recognizable errors.

Figure 8. Strongly bent curves such as for a = 1,
b = 1 must not be too wide. Here, W/L = 0.2,

which is the allowable maximum for these values
of a and b.

vertex would have to be equipped with two sets of
these data—one for the previous quadrangle, one for
the next. It is hard to see how the shader could switch
between both sets.

For the speed benchmarks we used an Nvidia
GeForce FX 6800 graphics card in a PC equipped with
an Intel Pentium-4 processor running at 2.5 GHz. The
rendering was done in 1280× 1024 full screen mode
without vertical synchronization.

Because roads are typically viewed under a very
oblique angle, textures have to be filtered anisotropi-
cally. In our experiments, a setting of 4 for the maxi-
mum degree of anisotropy proved to be sufficient, see
Figure 10.

To study the scaling behavior we used a base scene, see
Figure 11, as a building block to create seven scenes

Figure 9. A quarter circle (a = 1, b =−1,
W/L = 0.2) is approximated with a peak error of

25 percent, which, however, is not immediately
apparent.

Figure 10. To avoid noticeable blurring, we set the
maximum anisotropy level of texture filtering to 4.
The inset on the left shows the portion outlined on

the right with levels 1, 2, and 4 (top to bottom).

of different complexity ranging from one copy of the
base scene to 25× 25 copies arranged side by side in
a rectangular pattern. The road of the base scene is
composed of 97 segments. In addition, we created a
terrain consisting of 2868 triangles, rendered before
the road. We used a field of view of 45◦ and a far
plane distance of 1.5 times the longer side length of
the base terrain.

To compare the shader-based solution with a purely
polygonal construction, we used the software package
Maxon Cinema 4D to create a Catmull-Rom spline
curve from the anchor points. (Note that the center-
line of the road generated by our method is no such
curve, but a visually close approximation.) The spline
was extruded into a road, which was stored inside an
.x mesh, imported and rendered inside our software
prototype.

To have a basis for comparison, we generated a
set of five differently tessellated versions using the

Figure 11. The base scene for the benchmark
comprises a road defined by 97 anchor points and

tangents.

curvature-adaptive setting of Cinema 4D with thresh-
old angles of 1◦, 2◦, 5◦, 10◦, and 20◦, respectively,
which led to polygonal versions of the road consisting
of 5374, 2972, 1392, 772, 444, and 256 triangles, see
Figure 12. Only the highest one of these resolutions
could warrant that the shape and the texture of the road
looked perfectly smooth from viewpoints such as that
of Figure 12.

Figure 12. To compare the cookie-cutting method
with other approaches, we used five different

tessellations at threshold angles 1◦, 2◦, 5◦, 10◦, and
20◦ (from top to bottom).

Whereas per-pixel procedural geometry in itself is
more expensive than standard polygons, the proposed
approach may outperform roads rendered from poly-
gons in scenes with high complexity, see Figure 13.
This is mainly due to the strongly reduced amount of
polygons to be discarded during view frustum clip-
ping. To achieve a similar effect, a purely polygon-
based approach may switch to the “5◦” or a coarser
version based on distance (level of detail) or use some
sort of hierarchical frustum culling.

Time (ms)
per Pass

1 100 200 300 400 500 600 700 800
0

2

4

6

8

10

12

Number of Copies

Terrain
Only

Shader

1°

2°

20°
10°
5°

Figure 13. The benchmarks compares the
rendering times for our shader-based method,
standard renderings with varying degrees of
tessellation, and the terrain without the road.

In principle, our solution should also benefit greatly
from early-z optimization. If the terrain is drawn be-
fore the roads, the graphics chip would be able to cull
all pixels of roads that are hidden beneath terrain ge-
ometry. This could reduce the workload of the pixel
shader drastically. However, currently the cookie-
cutting approach (i. e., use of the texkill instruction
in the pixel shader) will disable early-z optimization
of typical graphics cards [Rig02, Nvi04].

6 CONCLUSION. OUTLOOK
We have presented a method to generate roads and
similar 3D objects procedurally with a pixel shader.
This approach generates smooth shapes and textures
with little effort for initial setup and no runtime scene
management overhead. In contrast to that, level-of-
detail switching would have to involve countermea-
sures against popping artifacts or intersections be-
tween coarse versions of roads and the terrain.

For roads close to the viewer, the shader-based method
leads to a perfect look but adds a noticeable compu-
tational load on the graphics chip. For distant roads
and scenes of high complexity, the performance ap-
proaches that of the standard method of tessellating
objects into fine triangles. Given the fast performance
growth of graphics chips as opposed to that of CPUs,
this may also become true for scenes of medium com-
plexity in the near future.

Most applications of our method will need to combine
the curved roads with intersections etc. The latter can
be built using standard polygon-based geometry. The
transition between such a crossing and a road cookie-
cut from polygons can be constructed easily because
the road conforms to precise boundary conditions con-
cerning width and direction.

It is straightforward to add sidewalks to the method.
One can use a quadrangle shifted upward by the side-
walk’s height and cookie-cut this at the correspond-
ing v values. The size of the quadrangle used can be
adapted. However, sidewalks need curbs. Their sur-
face is not contained in a plane, so that a different
method than the one described here is needed if they
are to be generated procedurally.

We have treated only level roads. If its grade varies
only slowly, a road may be constructed from segments
that form small angles to each other in the vertical di-
rection. In addition to curvature in the vertical direc-
tion one may also try to reproduce such features as
superelevation, which means a rotation about the cen-
terline.

It seems plausible that smoothly bent tubes can be gen-
erated by a pixel-based method that is similar to the
one described. However, such a method would have
to employ billboard-type pseudo-geometry, which al-
ways faces the viewer. Furthermore, it would have to
address shading, too. To this end, normal vectors can
easily be derived from the curved coordinates.

7 ACKNOWLEDGMENTS
The author wishes to thank two of the anonymous
reviewers for providing detailed comments, which
proved very helpful for clarification.

8 REFERENCES
[AAS01] American Association of State Highway and

Transportation Officials. A Policy on Geometric De-
sign of Highways and Streets. AASHTO, 2001.

[ATI04] ATI. Making of Ruby, http://www.ati.com/
developer/SIGGRAPH04/ MakingOfRuby Slides.pdf,
2004.

[Bol03] Bolz, J., Schröder, P. Evaluation of Subdivision Sur-
faces on Programmable Graphics Hardware. Submit-
ted for publication, http://www.multires.caltech.edu/
pubs/GPUSubD.pdf, 2003.

[Elb97] Elber, G., Lee, I.-K., Kim, M.-S. Comparing Off-
set Curve Approximation Methods. IEEE Computer
Graphics and Applications 17(3), pp. 62–71, 1997.

[Hir04] Hirche, J., Ehlert, A., Guthe, S. Hardware Acceler-
ated Per-Pixel Displacement Mapping. Proc. of Graph-
ics Interface 2004, pp. 153–158, 2004.

[Kan04] Kanai, T., Yasui, Y. Per-Pixel Evaluation of Para-
metric Surfaces on GPU. Surface Quality Assessment
of Subdivision Surfaces on Programmable Graphics
Hardware. Proc. Int’l Conf. on Shape Modeling and
Applications 2004, pp.129-136, 2004.

[Lov04] Loviscach, J. Sillhouette Geometry Shaders. In: En-
gel, W., ed., ShaderX3: Advanced Rendering With Di-
rectX and OpenGL, Charles River, pp. 49–56, 2004.

[Mae99] Maekawa, T. An Overview of Offset Curves and
Surfaces, Comp. Aided Design 31, 165–173, 1999.

[Nvi04] Nvidia GPU Programming Guide, Ver-
sion 2.2.0, http://developer.nvidia.com/object/
gpu programming guide.html, 2004.

[Pot02] Pottmann, H., Leopoldseder, St., Hofer, M. Approx-
imation with Active B-Spline Curves and Surfaces.
Proc. Pacific Graphics 02, pp. 8–25, 2002.

[Rig02] Riguer, G., Performance Optimization Tech-
niques for ATI Graphics Hardware with DirectX
9.0, Revision 1.0, http://www.ati.com/developer/
dx9/ATI-DX9 Optimization.pdf, 2002.

[Ros03] Rose, D., Ertl, T., Interactive Visualization of Large
Finite Element Models, Workshop on Vision, Mod-
elling, and Visualization VMV ’03, pp. 585–592, 2003.

[Vla01] Vlachos, A., Peters, J., Boyd, C., Mitchell, J. L.
Curved PN triangles. Proc. 2001 Symp. on Interactive
3D Graphics, pp. 159–166, 2001.

 Real-time 3D Camera Tracking for Industrial
 Augmented Reality Applications

Gabriele Bleser Yulian Pastarmov Didier Stricker

Koblenz-Landau University
Universitätsstraße 1

56070 Koblenz, Germany

Fraunhofer IGD
Fraunhoferstraße 5

64283 Darmstadt, Germany

Fraunhofer IGD
Fraunhoferstraße 5

64283 Darmstadt, Germany
{gbleser, ypastarm, stricker} @ igd.fhg.de

ABSTRACT

In this paper we present a new solution for real-time 3D camera pose estimation for Augmented Reality (AR)
applications. The tracking system does not require special engineering of the environment, such as placing
markers or beacons. The required input data are a CAD model of the target object to be tracked, and a calibrated
reference image of it. We consider the whole process of camera tracking, and developed both an autonomous
initialization and a real-time tracking procedure. The system is robust to abrupt camera motions, strong changes
of the lighting conditions and partial occlusions. To avoid typical jitter and drift problems the tracker performs
feature matching not only in an iterative manner, but also against stable reference features, which are dynami-
cally cached in case of high confidence. We present experimental results generated with help of synthetic
ground truth, real off-line and on-line image sequences using different types of target objects.

Keywords
Computer vision, real-time marker-less camera tracking, automatic initialization, augmented reality

1. INTRODUCTION
Augmented Reality (AR) opens new perspectives for
a lot of application areas [Azum95], such as mainte-
nance of machines, design, medicine [Bock03,
Wesa04], or cultural heritage [Vass02]. Nevertheless
one major difficulty of AR is the user-tracking,
which is often unstable or requires special infrastruc-
ture in the environment, and thus limits severely the
application. Computer vision based methods provide
the best accuracy, and represent the currently most
developed approach. They rely on 2D/2D or 2D/3D
correspondences between features (interesting points,
edges, regions) of the image frames. This can be ei-
ther artificially designed and positioned patterns
(marker-based tracking) [Thom97] or natural charac-
teristics of the scene (markerless tracking) [Lauc00,
Poll99]. For industrial application, the preparation of
the scene with markers is not economically viable, so

that only marker-less solutions are accepted.
There are generally two approaches to this problem.
The global image-based approach computes a 2D
transformation, which registers the current frame as a
whole on a reference pattern. Stricker [Stri01] uses
the Fourier-Mellin Transform to retrieve an Euclid-
ian transformation between the incoming frame and
one from a set of calibrated reference images. The
current pose is deduced from this transformation as-
suming the camera being fixed to a tripod and the
viewer being far away from the scene. An advantage
of the registration on reference images is that no er-
ror is accumulated over time (drift).
The local model-based approach fully solves the 3D
problem estimating the current pose with 6 DOF. It is
very similar to the marker-based approach searching
for 2D/3D correspondences by using natural features
instead of artificial ones. An interesting approach is
presented in [Lepe03]. To avoid jitter and drift dur-
ing tracking, he merges the information of subse-
quent frames with that of off-line calibrated reference
images. Genc [Genc02] provides useful criteria of
stable features. Comport [Comp03] uses edge fea-
tures instead of points.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

WSCG 2005 conference proceedings, ISBN 80-903100-7-9
WSCG’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

Interesting developments have been made in the field
of feature extraction during the last years. Classical
methods like KLT tracker [Shi94] or Harris detector

0 0.5 1
0

0.5

1
FFT Koeff.
Eigen Space
SIFT

0 0.5 1
0

0.5

1
Fourier
Eigen Space
SIFT

 (a) (b)
Figure 1: Precision-recall-plots showing the behavior of different descriptors concerning Gaussian blur
and Euclidian transformations: (a) 10 degrees rotation, 1.1 scaling and (b) 30 degrees rotation, 1.4 scal-
ing.
[Harr88] with correlation assume small frame-to-
frame difference and restrict the searching region of
a feature in the near neighborhood of its previous
location. Therefore they fail in case of wide base-
line. SIFT [Lowe99] has been developed for that
particular purpose. The so-called SIFT-keys are
Euclidean invariant, robust against small affine and
3D projective transformations, and linear lighting
changes. Moreover they can be stored and matched
efficiently without the related images or patches.

2. APPROACH
The approach presented here provides a full solu-
tion of 3D pose estimation without any restrictions
on camera motions or the scene configuration.
Changes of the lighting conditions are also handled
in a reasonable range. Our method consists in 3D-
model-based tracking with SIFT features "lying" on
a predefined CAD model of a target scene object.
The system initializes autonomously and recali-
brates itself in case of tracking failure. It is de-
signed for small environments and because of its
robustness, speed and fast automatic (re-
)initialization, it is particularly usable in industrial
processes. The approach is similar to Lepetit’s one,
but the feature extraction is different and enables to
reduce the amount of offline data and to use a sin-
gle reference image. The feature matching is done
not only in iterative manner, but also against the
features of the reference image in order to avoid
drift. To be independent of occlusions, new features
are taken into account by back-projecting them
onto the CAD model. We thus generate in a dy-
namic way new 2D/3D correspondences after suc-
cessful pose estimation and can handle large
changes of the features.

3. INITIALIZATION
The initialization method yields the initial camera
pose within a global reference coordinate system
using one calibrated “bootstrap” reference frame. It
is based on the matching of the features and pro-
vides proper results even if the initial pose is rela-

tively far away from that related to the reference
image.
Only a minimal preparation is required. It consists
in taking one photograph of the target object and
calibrating it manually. Extrinsic parameters are
computed by choosing at least four correspondent
points on the 3D model and the snapshot.
When the tracking system starts, the initialization
procedure is invoked receiving one calibrated ref-
erence frame, a CAD model of the target object and
the incoming frame as input. Firstly it performs
feature extraction from the reference frame and
back-projects all interesting points on the 3D model
to obtain 3D coordinates. The back-projection is
done by sending rays from the related camera posi-
tion through the image plane and computing their
intercept points with the 3D model. The intersec-
tion test is implemented with OpenSG, which em-
ploys bounding volume hierarchies for efficient ray
tracing. All features that lie on the target object
surface are kept ready for (re-)initialization during
the whole system run-time. Now we have a refer-
ence set of 2D/3D corresponding points and fea-
tures describing their local appearances within the
reference image. The following steps consist in
firstly detecting and matching features from the
incoming frame with those of the reference image,
removing spurious matches by applying geometric
constraints and afterwards estimating the initial
pose from the resulting 2D/3D correspondences if
there are enough (usually more than 10). These
steps are processed for each incoming frame until
the initial pose could be determined adequately. If
the initialization has been successful, the features
and corresponding 2D and 3D points of the current
frame are added to the reference data set, whereat
those, which have not been matched, are back-
projected from the initial pose to obtain 3D coordi-
nates. This technique dynamically extends refer-
ence data for further (re-)initializations whereas the
dynamically added reference features resemble cur-
rent lighting conditions and camera parameters bet-
ter than the bootstrap reference frame.

 (a) (b) (c)
Figure 2: Example of automatic initialization: (a) shows the reference frame, (b) the incoming frame.
Note, that the viewpoints as well as the lighting conditions are quite different. The incoming frame is aug-
mented by the matched feature points (blue) and the axis of the world coordinate system projected from
the calculated pose. A synthetic image generated from the textured CAD model shows the correct
projection of the coordinate axis (c). This allows for optical verification of the calculated pose. The match-
ing yielded 17 point correspondences. 10 were accepted by RANSAC running 50 iterations.

Initial Feature Matching
Unlike iterative feature tracking, the initial match-
ing between features of the reference image and the
incoming frame cannot profit from temporal coher-
ence. The initial camera pose can be relatively far
away from that related to the reference frame. So
there exists no initial guess of the current pose and,
consequently, no meaningful assumption about
feature displacements or the 2D location of the tar-
get object within the current frame. The whole
incoming frame has to be processed in terms of
feature extraction solving the subsequent matching
as problem with quadratic costs. Moreover, a
drastic change of lighting conditions often occurs in
praxis. Ideally, viewpoint and illumination insensi-
tive feature extraction and characterization methods
yielding small and distinctive descriptors are re-
quired for the tracker initialization. Scale-invariant
features can be identified by looking for local op-
tima of pyramidal difference-of-Gaussian functions
in scale-space [Lowe99]. We took this approach for
feature detection and performed a simple test com-
paring the robustness of different local descriptors
in terms of "precision" and "recall" at the end of
which we chose the most appropriate one for fea-
ture characterization in our initialization procedure.
The test consists in extracting scale-invariant points
from two images, - whereat the second image was
synthetically generated from the first, applying dif-
ferent Euclidian transformations and adding Gaus-
sian noise of standard deviation 10 – characterizing
there local point neighborhoods by the different
descriptors, finding matches based on simple
Euclidean vector distance in combination with a
threshold and obtaining precision-recall-curves by
varying this threshold.
Precision is defined as the rate between the number
of correct matches and the number of returned
matches. It is the opposite of the outlier rate. Recall

is defined as the number of correct matches against
the number of possible matches.
We tested three different descriptors. The first one
characterizes interesting points by applying the
Fourier transformation to their local fixed-sized
point neighborhoods and choosing few Fourier co-
efficients (FFT Koeff) [Spie00]. The second one
describes them as coordinates within a low dimen-
sional coordinate system (Eigen space), spanned by
the Eigen vectors of the covariance matrix of a
training set [Turk91]. Lepetit [Lepeti03] uses this
approach for tracker initialization, whereat the Ei-
gen-space is computed offline for the set of refer-
ence images. The last descriptor uses an orientation
histogram of the image patch centering the point for
characterization (SIFT). Furthermore, the size of
the local neighborhood is adapted to the pyramid
level, in which the point has been detected, and the
histogram is given relative to the major gradient
orientation. The resulting plots (see Fig. 1) show
the overall Euclidian invariance of the SIFT keys
and made our decision to choose SIFT for initial
feature matching. Unlike Eigen features a further
advantage of SIFT is its independency from a train-
ing set. SIFT features are computed autonomously
and therefore support dynamical generation of ref-
erence data, if the camera pose is highly correct.
For key generation we use as described in Lowe's
paper, a 4x4 subsampling of the local point
neighborhood and consider 8 discrete gradient ori-
entations. So the resulting vector contains 128 ele-
ments and can be stored and matched efficiently
without the related image.
Feature matching follows a simple criterion. A 2D
point a of the reference set matches a 2D point bi of
the incoming frame, if the Euclidian distance be-
tween the related descriptors Da and Dbi is minimal
and an additional rule is fulfilled. Let Dbj be the

descriptor related to point bj with the second near-
est Euclidian distance to Da:

 || (1) ||D -D || t ||D - D
ji baba ⋅<

 [] 10 t K∈
The threshold (e.g. t = 0.6) sees that badly defined
matches are discarded immediately. This includes
interesting points on periodic image textures. If
multiple matches occur, we choose the one with the
smallest Euclidian distance and discard the others.
Now we have a set of 2D/2D correspondences be-
tween the incoming frame and the reference set.
Since the latter also contains 3D coordinates for
every interesting 2D feature, we easily obtain
2D/3D correspondences by connecting every 2D
point of the incoming frame with the 3D coordinate
related to its matching reference point.

Initial Pose Estimation
To obtain a well-conditioned set of 2D/3D corre-
spondent points for pose estimation, we filter the
correspondences retrieved from the matching by
applying geometric constraints. We use the
RANSAC algorithm by employing the projection
matrix as geometric model [Hart00]. The projection
matrix is calculated linearly from four sample cor-
respondences by either using the original POSIT
algorithm or the extension for coplanar model
points according to the configuration of the sample
set [DeMe92]. We obtain good results and not more
than 50 RANSAC iterations were sufficient. Hav-
ing robustly removed all outliers, the current pose
is linearly estimated from all remaining 2D/3D
correspondent points mi ↔ Mi. To obtain the final
pose, we optimize the reprojection errors over cam-
era rotation R and translation T using the linear
estimation as initial guess:

 (2) ∑ −
i

2,
iiT,R

||mm||min

mi’ is the projection of Mi from the current pose
and R is parameterized by a rotation axis and an
angle.

Results
Figure 2 shows an example of our autonomous ini-
tialization method. The markers fixed to the target
object have been occluded during initialization and
have no influence on the procedure. Tracker ini-
tialization succeeded for the first incoming frame,
although the initial pose was relatively far away
from that related to the reference frame especially
concerning the distance from the target object.
Moreover the lighting conditions are quite differ-
ent.

4. TRACKING
Abrupt motions and drastic changes of lighting
conditions are typical for AR applications and do
not only make initialization but also iterative track-
ing difficult. The paradigm of temporal coherence,
which is the underlying principle for most tradi-
tional feature tracking methods basing on correla-
tion, is often not fulfilled. For that reason we de-
cided to treat the problem of iterative tracking simi-
lar to that of tracker initialization, i.e. as a matching
problem with quadratic costs. To speed up the
tracker we do not process the whole incoming
frame in terms of feature extraction, but only a
fixed-sized image region, which follows the projec-
tion of the target object within the image. Because
of the latter, most features we loose by regarding
not the whole image do not lie on the model surface
anyway and would be useless for pose estimation.
So if the size of the tracking region isn’t chosen too
small, the tracking procedure doesn’t suffer from
this technique but works far more efficiently.

enough noyes

Current Pose big

small

Feature Extraction

Pose Estimation

Back-projection

Error

3D Model
Reference Data
(confident 3D
Points, Features)

Initialization

Incoming
Frame

Previous
Pose

Cropping

Image Region

Feature
Matching

Features

Previous 3D Points,
Features

2D/3D correspondences

New 3D Points

Figure 3: The principles of our tracking proce-
dure are: processing only a relevant region of
the incoming frame in terms of feature extrac-
tion, matching its features not only against those
of the previous frame but also against reference
features with confident 3D points to avoid drift,
back-projecting new features after robust pose
estimation to obtain corresponding 3D coordi-
nates for the next iteration and automatically
invoking the initialization procedure in case of
tracking failure.

Figure 3 shows a global overview of the tracking
procedure. It always focuses two successive frames,
consisting in the current frame and the previous one
with its calculation results. It has additional access
to the 3D model and reference data similar to fea-
tures with confident 3D coordinates, which come
from initialization. At every switch from initializa-
tion to tracking, the frame, for which the initial
pose could be calculated adequately (consecutively
called “initial frame”), is given to the tracking
module as previous frame and is taken for calculat-
ing the 3D position of the tracking region. If the
tracking fails because of few matches or a badly
defined pose concerning residual error during pose
estimation, we invoke the initialization procedure
for automatically re-initializing the tracker. To deal
with appearing and disappearing points, our ap-
proach bases on constant back-projection onto the
CAD model. A successfully calculated pose is al-
ways employed to back-project new features for
obtaining 3D coordinates, thus handling changes
concerning occlusions or light differences.

The Tracking Region
During initialization we have no guess, where the
projection of the target object is located within the
initial frame. Although all matches, which do not
lie on the target object surface, will have to be dis-
carded again we have to process the whole image
concerning feature extraction. Throughout iterative
tracking we can make the assumption that the loca-
tion of the target object does not change signifi-
cantly between successive frames. As we know the
previous pose as well as the 3D model, we get the
previous location simply by projecting the model
from that pose. We do not consider something like
a convex hull of the projection but only a fixed-
sized image region which mainly includes the target
object. Furthermore we take into account that the
target object is not necessarily textured equally well
in all parts. We make the image region to contain
the richly textured parts that deliver many features.
The realization of these ideas is simple. The center
of the tracking region is related to a 3D coordinate
on the target object surface, which is projected into
the current frame from the previous pose. The
fixed-size rectangular tracking region is then sim-
ply cropped from the incoming frame centering this
projection and in that connection follows the pro-
jection of the object. We automatized the process of
dynamically finding a good 3D center of the track-
ing region after every (re-)initialization. During the
first iteration of the tracking procedure we know all
features and corresponding 3D coordinates of the
initial frame. We simply choose the 3D center of
the tracking region as one of those 3D coordinates

optimizing the overall number of features, which
are included in the resulting image region. So if the
size of the tracking region is chosen smaller than
the current projection of target object, we get the
region with most features inside even though.

Feature Matching
We match the SIFT features of the incoming frame
not only with those of the previous one but also
with those of the reference data set. This provides
confident 3D coordinates and significantly in-
creases the stability and precision of the tracker by
avoiding drift. Let the interesting points and related
features and 3D coordinates at time t-1 be:

{ }
{ }
{ }1t

n
1t

0
1t

1t
n

1t
0

1t

1t
n

1t
0

1t

M,,MM

D,,DD

m,,mm

−−−

−−−

−−−

=

=

=

K

K

K

The reference data set (mref, Dref, Mref) is defined in
the same way. For each descriptor in the current
frame Dti we choose the one in either set Dt-1 or Dref
that minimizes the Euclidian distance and fulfils
equation (1). Now we have some matches between
the corresponding 2D points:

 or ji 1tt mm −↔ ji reft mm ↔
As correctly matched image points are different
projections of the same 3D point we associate Mti
with the known 3D coordinate of its match Mt-1j or
Mrefj. Obviously it is desirable to have as much
matches as possible with reference features.

Pose Estimation
Similar to initial pose estimation we obtain the cur-
rent pose by first filtering the 2D/3D correspon-
dences with the RANSAC algorithm and afterwards
optimizing the reprojection errors of the remaining
correspondences over the current camera rotation
Rt and translation Tt. During iterative tracking the
2D/3D correspondences from matching are better
conditioned and therefore RANSAC mainly con-
verges after few iterations. Concerning nonlinear
optimization we made two little changes in com-
parison with the initial pose estimation. Firstly, we
take the pose of the previous frame as initial guess.
Second, we use the robust TUKEY estimator
[Rous87] for optimization. This estimator assigns a
special weight [0...1] to each correspondence and
thereby varies its influence on pose estimation. Dis-
tant outliers are weighted by zero and therefore
have no influence.

20 40 60 80 100

-18

-16

-14

-12

-10

-8

-6

-4

-2

Ground truth
Our approach

20 40 60 80 100
-26

-24

-22

-20

-18

-16

-14

-12

-10

-8

20 40 60 80 100
170

180

190

200

210

220

Figure 4: These plots show the precision of our method on a synthetic image sequence concerning the
three coordinates of camera translation. The dots represent ground truth. Note that the reconstructed
camera trajectory neither suffers from drift nor from jitter.

So equation (2) becomes

∑

 −ρ

i

2,
iiTUKEYT,R

mmmin
tt

where ρTUKEY is the weighting function. Due to the
former RANSAC filtering, TUKEY weights mainly
stay within the upper quarter of the legal interval.
But the employment of this estimator provides a
more continuous camera trajectory, as the weight
calculation partly depends on the previous pose.

5. EVALUTATION
We applied our method to synthetic and real data
using different types of target objects like simple
and more complex, planar and non-planar as well
as highly and poorly textured ones. Following vali-
dation criteria are established: precision, robustness
and speed. For optical verification of the current
pose, the incoming frame is augmented with the
axis of the world coordinate system as well as the
tracked feature points. Synthetic image sequences,
generated from a CAD model, provide ground truth
for exact verification in terms of precision.

Synthetic Images
From a textured CAD model (see Figure 2 (c)) we
rendered a 100 frames sequence with quick camera
movements knowing extrinsic camera parameters
for each frame except for a digitalization error. Ap-
plying our method to the synthetic images, which
do not suffer from noise or radial distortion, and
knowing intrinsic camera parameters exactly, we
obtained very good results concerning precision
(see Figure 4). The reconstructed camera transla-
tion exhibits an average Euclidian error of not more
than 0.87 cm from the correct position without
showing any drift or jitter. The maximum distance

has been measured with 3.2 cm mainly resulting
from the z coordinate. We also measured the aver-
age reprojection error over four vertices of the
CAD model with 1.24 pixels, whereat 2.83 was the
maximum value.

Off-line Video Sequences
With a low-end USB web cam we captured a real
image sequence wearing a HMD with the camera
being fixed at it and thus simulating industrial prac-
tice. Results are shown in Figure 5 (a–f) and argue
for the robustness of our method against partial
occlusions (a, f) and changes of lighting conditions
(b) meanwhile providing a large field of activity (c-
e). We also tested our method using a package box
as mainly planar target object (see Figure 5 (g-i))
and a BMW armrest as poorly textured one (see
Figure 5 (j-l)).

Live Video
We applied our method to 320x240 images from
both a USB web cam and a Firewire camera. Al-
though the latter yields higher quality images in
terms of noise and radial distortion, we obtained
comparably stable results. With the different pa-
rameters (SIFT, size of tracking region, RANSAC
iterations) being optimized for stability the system
runs at real-time (19 frames/sec).

6. CONCLUSION
We presented a real-time 6 DOF camera tracking
system, which includes an autonomous initializa-
tion procedure. It is designed for small environment
tracking and works with different types of target
objects the only restriction being, that a CAD
model is available. We use 3D model information
for constant back-projection of new features to be
independent of partial occlusions. We perform fea-

ture matching against both the previous frame and
confident reference data, thus increasing the stabil-
ity of the tracker and avoiding jitter and drift. The
system proves to be robust against sharp camera
movements and changes of lighting conditions,
which are typical for AR.
Future work includes the enhancement of pose es-
timation by also taking epipolar constraints be-
tween 2D/2D correspondences into account. Fur-
thermore we want to put some effort on the
improvement of feature extraction, especially by
working on affine invariant representations of the
image patches [Baum00, Miko02] and by searching
for more efficient descriptors [Ke04].

7. REFERENCES
 [Azum95] Azuma, R. A Survey of Augmented

Reality. In Computer Graphics SIGGRAPH
Proc., pp. 1-38, 1995

 [Baum00] Baumberg, A. Reliable feature matching
across widely separated views. In Proc. CVPR,
pages 774-781, 2000

[Bock03] Bockholt, U., Bisler, A., Becker, M.,
Müller-Wittig, W.K. and Voss, G. Augmented
Reality for Enhancement of Endoscopic Inter-
ventions. In Proc. IEEE Virtual Reality Confer-
ence, pp. 97-101, 2003

 [Comp03] Comport, A.I., Marchand, E., and
Chaumette, F. A real-time tracker for marker-
less augmented reality. In Proc. Second IEEE
and ACM International Symposium on Mixed
and Augmented Reality, Tokyo, Japan, pp. 36-
45, 2003

[DeMe92] DeMenthon, D. and Davis, L.S. Model-
based object pose in 25 lines of code. In Euro-
pean Conference on Computer Vision, pp. 335-
343, 1992

[Genc02] Genc, Y., Riedel, S., Souvannavong, F.
and Navab, N. Markerless tracking for aug-
mented reality: A learning-based approach. In
Proc. International Symposium on Mixed and
Augmented Reality, 2002

[Harr88] Harris, C. and Stephens, M.J. A combined
corner and edge detector. In Proc. Fourth Alvey
Vision Conference, Manchester, pp. 147-151,
1988

[Hart00] Hartley, R. and Zisserman, A. Mutiple
View Geometry in Computer Vision. Cam-
bridge University Press, 2000

[Ke04] Ke, Y. and Sukthankar, R. PCA-SIFT: A
More Distinctive Representation for Local Im-
age Descriptors. In CVPR, 2004

[Lauc00] McLauchlan, P. A Batch/Recursive Al-
gorithm for 3D Scene Reconstruction. In Proc.
CVPR, 2000

[Lepe03] Lepetit, V., Vacchetti, L., Thalmann, D.
and Fua, P. Fully Automated and Stable Regis-
tration for Augmented Reality Applications. In
Proc. Second IEEE and ACM International
Symposium on Mixed and Augmented Reality,
2003

[Lowe99] Lowe, D.G. Object recognition from
local scale-invariant features. In Proc. of the In-
ternational Conference on Computer Vision
(ICCV), Corfu, pp.1150-1157, 1999

[Miko02] Mikolajczyk, K. and Schmid, C. An af-
fine invariant interest point detector. In ECCV,
2002

[Poll99] Pollefeys, M., Koch, R. and Van Gool, L.
Self-Calibration and Metric Reconstruction in
spite of Varying and Unknown Internal Camera
Parameters. In International Journal of Com-
puter Vision, pp. 7-25, 1999

[Rous87] Rousseeuw, P. and Leroy, A. Robust Re-
gression and Outlier Detection. Wiley, 1987

[Shi94] Shi, J. and Tomasi, C. Good features to
track. In IEEE Conference on Computer Vision
and Pattern Recognition, Seattle, Washington,
pp. 593-600, 1994

[Spie00] Spiess, H. and Ricketts, I. Face Recogni-
tion in Fourier Space. In Vision Interface, Mon-
real, pp. 38-44, 2000

[Stri01] Stricker, D. Tracking with Reference Im-
ages: A Real-Time and Markerless Tracking
Solution for Out-Door Augmented Reality
Applications. In Proc. of VAST, 2001

[Thom97] Thomas, G.A., Jin, J., Niblett, T. and
Urquhart, A. A versatile camera position meas-
urement system for virtual reality TV-
production. International Broadcasting Conven-
tion , IEEE Conference Publication, pp.284-
289, 1997

 [Turk91] Turk, M. and Pentland, A. Eigenfaces for
Recognition. In Journal of Cognitive Neurosci-
ence, Vol. 3, No. 1, pp. 71-86, 1991

 [Vass02] Vlahakis, V., Ioannidis, N., Karigiannis,
J., Tsotros, M., Gounaris, M., Stricker, D.,
Gleue, T., Dähne, P. and Almeida, L. Ar-
cheoguide: An Augmented Reality Guide for
Archaeological Sites. In: IEEE Computer
Graphics and Applications Vol. 22, No. 5, pp.
52-60, 2002

[Wesa04] Wesarg, S., Firle, E., Schwald, B.,
Seibert, H., Zogal, P. and Roeddiger, S. Accu-
racy of Needle Implantation in Brachytherapy
Using a Medical AR System - a Phantom Study.
In SPIE Medical Imaging Symposium, pp. 341-
352, 2004

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(a) (b) (c)

Figure 5: Results of our tracking procedure using different types of target objects (planar/non-planar,
highly/poorly textured, simple/complex).

Detection of Facial Landmarks from Neutral, Happy,
and Disgust Facial Images

Ioulia Guizatdinova and Veikko Surakka

Research Group for Emotions, Sociality, and Computing
Tampere Unit for Computer-Human Interaction

Department of Computer Sciences
University of Tampere

FIN-33014 Tampere, Finland

ig74400@cs.uta.fi
Veikko.Surakka@uta.fi

ABSTRACT
Automated analysis of faces showing different expressions has been recently studied to improve the quality of
human-computer interaction. In this framework, the expression-invariant face segmentation is a crucial step for
any vision-based interaction scheme. A method for detecting facial landmarks from neutral and expressive facial
images was proposed. In present study, a particular emphasis was given to handling expressions of happiness and
disgust. The impact of these expressions on the developed method was tested using dataset including neutral,
happiness and disgust images. The results demonstrated a high accuracy in detecting landmarks from neutral
images. However, the expressions of happiness and disgust had a deteriorating effect on the landmark detection.

Keywords
Image processing, face segmentation, detection of local oriented edges, Gaussian, facial landmarks, human-
computer interaction.

1. INTRODUCTION
In the past decades there has been a considerable
interest in improving all aspects of human-computer
interaction (HCI). One way to achieve intelligent HCI
is making computers to interact with user in the same
manner as it takes place in human-human interaction.

Humans naturally interact with each other through
verbal (i.e. speech) and nonverbal (i.e. facial
expressions, gesture, vocal tones, etc.) sign systems.
It is argued that during human-human interaction only
a small part of the conveyed messages is verbally
communicated, and the greatest part is nonverbally
coded. Considering nonverbal communication, it is
possible to say that facial expressions occupy about a
half of the transmitted signals. In the context of user-

friendly HCI, a face is an important source of
information about the user to be analyzed by the
computer.

Automated analysis of a computer user’s face has
recently become an active research field in the
computer vision community. Different vision-based
schemes for intelligent HCI are currently being
developed. The ability of a computer to detect,
analyse and, finally, recognize a user’s face has many
applications in the domain of HCI.

The analysis and recognition of facial expressions in
the context of HCI are elements of interaction design
called affective computing [Jen98]. The main idea of
the affective computing is that the computer detects
the user’s affective state and takes an appropriate
action, for example, offers assistance for the user or
adapts to the user’s needs. Proper detection of the
changes in the user’s facial cues is a precondition for
the computer to take any emotionally or otherwise
intelligent socially interactive actions towards the
user.

The Facial Action Coding System (FACS) [Ekm78]
is widely used to analyse visually observable facial
expressions. FACS has been developed for objective
analysis of any changes in the facial appearances.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WSCG 2005 conference proceedings, ISBN 80-903100-7-9
WSCG’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

According to the FACS, a muscular activity
producing changes in facial appearance is coded in
the terms of action units (AU). Certain specific
combinations of AUs have been frequently suggested
to represent seven prototypical facial displays:
neutral, happiness, sadness, fear, anger, surprise, and
disgust.

It is known that reliable person identification and
verification are important cornerstones for improving
security in various contexts of information society. A
natural means of identifying person that gives a close
resemblance to the way how humans recognize
persons is analysing a person’s face.

Face identification has two important advantages.
First, it requires a minimal interaction with a person,
for example, compared with such biometrics as
prompted speech or fingerprints. Second, it is
impossible to lose or forget a face as it might happen
with passwords or key-cards.

In this framework, automated detection of a face and
its features is considered to be an essential
requirement for any vision-based HCI scheme
[Don99, Wis97]. However, due to such factors as
illumination, head pose, expression and scale, facial
features vary greatly in their appearance. It is shown
that facial expressions are particularly important
factors affecting the automated detection of facial
features [Yac95]. Nowadays the problem of effective
and expression-invariant face detection and
segmentation still remains unsolved.

In our previous study we have proposed a method for
detecting facial landmarks from neutral and
expressive facial images [GuiS]. The developed
approach has combined a feature-based method for
face segmentation [Sha02] and a profound knowledge
on how different facial muscle activations modify the
appearance of a face during emotional and social
reactions [Par04, Sur98].

Experimented findings have revealed that detection
of landmarks from the lower part of a face was
especially affected by expressions of happiness and
disgust. In particular, detection of the nose and mouth
produced the greatest number of detection errors. We
assumed that these expressions modify the lower face
so that it becomes difficult to differentiate lower face
landmarks like nose and mouth. For this reason the
present aim was to analyse an accuracy of landmark
detection from images of happiness and disgust to
corroborate the previous findings.

2. FACIAL LANDMARK DETECTION
The method for detection of facial landmarks
consisted of three stages: image preprocessing, image

map constructing and orientation matching [GuiS].
These stages are described below.

2.1. Image preprocessing
First, an image was transformed into the 256-grey-
level-scale format. Then, a recursive Gaussian
transformation was used to smooth the grey-level
image [Gol00]. Image smoothing reduced a search
space for detecting facial features (i.e. eliminated
noise edges and removed small details) [Can86].

In the following stages of the landmark detection, the
smoothed grey-level images were used to detect
candidates for facial landmarks. The non-smoothed
grey-level images allowed us to analyse the detected
candidates in details. In that way, the amount of
information to be processed was significantly
reduced.

2.2. Image map constructing
The local high-contrast oriented edges were used as
basic features for constructing edge maps of the
image [Ryb98]. Apart from previous studies [Sha02],
we decreased a number of edge orientations to
construct edge maps of the image. In particular, we
used 62 ÷ and 1410 ÷ edge orientations (see Fig.1).
Decreasing a number of edge orientations allowed us
to reduce sufficiently the computational complexity
of the method.

The oriented edges were extracted by convolving the
smoothed image with a set of ten convolution kernels.
Each kernel was sensitive to one out of ten chosen
edge orientations. For each pixel, the contrast
magnitude of a local edge was estimated with
maximum response of ten kernels at this pixel
location. The orientation of a local edge was
estimated with orientation of a kernel that gave the
maximum response. The whole set of ten kernels
resulted from differences between two oriented
Gaussians with shifted kernels.

2

3

4

5

6

7
8

9

0
1

10

11

12

13

14

15

Figure 1. Orientation template,
°⋅= 5.22iiϕ , 150 ÷=i .

iϕ

After the local oriented edges had been extracted,
they were filtered by a contrast. The threshold for
contrast filtering was determined as an average
contrast of the whole smoothed image.

Then, the extracted oriented edges were grouped into
edge regions presumed to contain facial landmarks.
Edge grouping was based on neighbourhood
distances between edges and was limited by a number
of possible neighbours for each oriented edge. The
optimal thresholds for edge grouping were
determined using a small set of expressive images of
the same person. The optimal thresholds represented
landmark candidates as regions of connected edges
that were well separated from the rest of edges.

Once the limits of edge regions had been detected,
these regions were analysed more precisely. The
procedures of edge extracting, contrast thresholding
and edge grouping were applied to the non-smoothed
image within the limits of the extracted edge regions.
The threshold for contrast filtering was determined as
a double average contrast of the non-smoothed
image.

In the end, the primary image map consisted of edge
regions representing candidates for facial landmarks.
The centres of mass determined the locations of the
landmark candidates. In the next stage, the landmark
candidates were analysed according to their
orientation description and matched with an
orientation model.

2.3. Orientation matching
The orientation portraits of the landmark candidates
were constructed on the basis of their local
orientation description. The analysis of the
orientation portraits revealed four important findings.

First, local oriented edges extracted within regions of
eyebrows, eyes, nose and mouth had a characteristic
density distribution. Thus, the orientation portraits of
these landmarks had two dominant horizontal
orientations. The results of the present study
corroborated our previous findings [Sha02].

Second, we found that prototypical facial expressions
did not affect the distribution of the oriented edges in
the regions of facial landmarks [GuiS]. The
orientation portraits of facial landmarks still had the
same structure including two dominants
corresponding to horizontal orientations (see
Appendix 1a).

Moreover, for the regions of eyes and mouth the
number of edges corresponding to horizontal
orientations was more than 50% larger when
compared to a number of edges corresponding to
other orientations. All edge orientations were
represented by non-zero number of the edges.

Third, the average orientation portraits of facial
landmarks revealed the same structure including two
horizontal dominants (see Fig.2, Appendix 2) [GuiS].

Fourth, noise regions extracted from the expressive
images had an arbitrary distribution of the oriented

Figure 2. Orientation portraits of facial landmarks averaged over prototypical facial displays.

N
u

m
b

er
o

f
ed

g
es

p
er

o
ri

en
ta

ti
o

n

Edge orientations

()a

0

100

200

300

400

500

0

100

200

300

400

500

0

100

200

300

400

500

0

100

200

300

400

500

Edge orientations

Left eye

Right eye

Nose

Mouth

()b

edges and often had orientations represented by zero
number of edges (see Appendix 1b).

The knowledge on clear-cut distinction between
orientation portraits of facial landmarks and noise
regions allowed us to verify the existence of a
landmark on the image. To do that, the orientation
portraits of facial candidates were matched with an
orientation model of facial landmarks.

2.3.1. Orientation model
The characteristic orientation model for detecting
facial landmarks consisted of ten possible edge
orientations, namely, edge orientations ranging from

°45 to °135 and °225 to °315 in step of °5.22 .

The following rules defined the structure of the
orientation model: (a) horizontal orientations are
represented by the biggest number of edge points; (b)
a number of edges corresponding to each of the
horizontal orientations is more than 50% bigger than
a number of edges corresponding to other
orientations taken separately; and (c) orientations can
not be represented by zero-number of edge points.

The candidates that did not correspond to the
orientation model were removed from the final image
map. In such a way, the procedure of orientation
matching filtered the regions containing landmarks
from the noise.

The detected candidates for facial landmarks were
further classified manually into one of the following
groups: noise or facial landmark (i.e. eye-eyebrow,
nose and mouth).

3. DATABASES
To evaluate the accuracy of the proposed method we
used the Pictures of Facial Affect (PFA) database
[Ekm76] and the Cohn-Kanade Face (CKF) database
[Kan00].

The PFA database consisted of 110 frontal-view
images of 14 individuals (i.e. 6 males and 8 females)
representing neutral and six prototypical facial
expressions of emotions: happiness, sadness, fear,
anger, surprise and disgust. On average, there were
about sixteen pictures per expression. The size of the
images was preset into 250 by 300 pixels.

The CKF images were originally coded using single
AUs and their combinations. In according to
translation rules defined in the Investigator's Guide to
the FACS manual [Ekm00], the images were
relabelled into the emotional prototypes. The images
corresponding to the prototypes of happiness and
disgust were selected. Thus, there were 172 images:
65 neutral images, 65 images of happiness and 42
images of disgust expression. All the images were
normalized to contain only a facial part of the
original image. Either of the datasets included faces
with facial hair and glasses. All the images were
resized into 250 by 480 pixel arrays.

The PFA database was used to select the optimal
thresholds for edge grouping and to construct the
landmark orientation model [GuiS]. In present study,
the CKF database was used to test the accuracy of the
method in detection of facial landmarks specifically
from the images showing happiness and disgust.

Figure 3. (a) original facial image; (b) extracted local oriented edges (black dots); (c) primal edge
map represents candidates for facial landmarks (white regions) and their mass centers (crosses);

(d) final edge map represents the detected facial landmarks.

(b) (a) (c) (d)

4. RESULTS
Figure 3 gives an example of edge map composed of
the local oriented edges extracted from the expressive
facial images. Thus, local edges of °÷° 13545 and

°÷° 315225 defined in step of °5.22 constituted the
edge map of the happy image shown on Figure 3b.
Figure 3c demonstrates the edge map after contrast
thresholding and grouping extracted edge points into
the candidates for facial landmarks. Figure 3d
illustrates the final image map that included only the
candidates having orientation portraits well matched
with the orientation model.

The average number of the candidates per image of
the primary edge map was 7.46. The results revealed
that variations in facial expressions did not affect
significantly the average number of the candidates
per image. The average number of candidates per
image was reduced to 3.71 for the final edge map.
Such a fact allows us to claim that the procedure of
orientation matching reduced the number of landmark
candidates by 50%. Figure 4 illustrates the decrease
in the number of candidates per image averaged over
neutral, happy, and disgust images.

The accuracy of the proposed method was calculated
as a ratio of the number of detected landmarks to the
number of images used in testing. As it can be seen
from Table 1, the developed method achieved a
sufficiently high accuracy of 95% in detecting all four
facial landmarks from the neutral images. As it can be
seen from the table, both eyes are represented as a
single column since these landmarks had equal
detection accuracy.

However, the results showed that the expressions of
happiness and disgust had a marked deteriorating
effect on detecting facial landmarks. It is noteworthy
that the detection of nose and mouth was more
affected by facial expressions than the detection of
eyes.

Three types of detection errors caused the decrease in
detection accuracy. Figure 5 gives examples of such
errors. The undetected facial landmarks were
considered to be the errors of the first type. Such

errors occurred when a facial landmark was rejected
as a noise region after orientation matching. In
particular, the nose was the most undetectable facial
landmark (see Fig. 5a).The incorrectly grouped
landmarks were regarded as the errors of the second
type. The most common error of the second type was
grouping regions of nose and mouth into one region
(see Fig. 5b). The errors of the third type were the
misdetected landmarks that occurred when the noise
regions were accepted as the facial landmarks (see
Fig. 5c).

5. CONCLUSIONS
The method for detecting facial landmarks from both
neutral and expressive facial images was presented
and described. The method revealed an average
accuracy of 95% in detecting four facial landmarks
from neutral facial images.

However, the detection of facial landmarks from
happy and disgust facial images produced a large
number of detection errors. Thus, the expressions of
happiness and disgust attenuated the average (i.e.
over all regions) detection accuracy to 75% and of
62%, respectively. Especially the detection of nose
and mouth were affected by both expressions of
disgust and happiness. These expressions deteriorated
the detection of nose and mouth to 50% for
happiness. For the disgust expression the detection of
nose and mouth deteriorated to 57 and 59,
respectively. The present results corroborated our
earlier findings that facial expressions have a marked
deteriorating effect on the landmark detection

 Eye Nose Mouth Average

Neutral 98 92 92 95

Happiness 100 50 50 75

Disgust 67 57 59 62
Neutral &
Expressive 88 66 67 78

Table 1. Average accuracy (%) of the landmark
detection

C
an

d
id

at
es

p
er

im
ag

e

0

2

4

6

8

10
Primary edge map Final edge map

Neutral Happiness Disgust

Figure 4. Average number of candidates per image before and after orientation matching.

algorithms.

In summary, the accuracy of the landmark detection
from neutral images was comparable with a detection
accuracy of the known feature-based and colour-
based methods though it is lower than neural
network-based methods. The algorithms developed
for landmark detection were simple and fast enough
to be implemented as a part of systems for face
and/or facial expression recognition.

The detection of facial landmarks from expressive
images, especially from happy and disgust images
needs to be improved. This is especially important in
order to make a computer differentiate between
positive expressions of emotions, for example,
smiling and some negative expressions like disgust.
To detect and differentiate between positive and
negative user emotions, it is the very minimum
prerequisite for affective HCI. This kind of an
improvement of the method is also a precondition for
recognizing facial identity of a user as well.

6. ACKNOWLEDGMENTS
This work was financially supported by the Finnish
Academy (project number 177857), the Finnish
Centre for International Mobility (CIMO), the
University of Tampere and the University of Tampere
Foundation.

7. REFERENCES
[Can86] Canny, J. A computational approach to edge

detection. IEEE Trans. on Pattern Analysis and
Machine Intelligent 8, No.6, pp.679–98, 1986.

[Don99] Donato, G., Bartlett, M., Hager, J., Ekman,
P., and Sejnowski, T. Classifying facial actions.
IEEE Trans. on Pattern Analysis and Machine
Intelligent 21, No.10, pp.974–989, 1999.

[Ekm76] Ekman, P., and Friesen, W. Pictures of
facial affect. Consulting Psychologists Press, Palo
Alto, California, 1976.

[Ekm78] Ekman, P., and Friesen, W. V. Facial
Action Coding System (FACS): A technique for
the measurement of facial action. Consulting
Psychologists Press, Palo Alto, California, 1978.

[Ekm00] Ekman, P., Friesen, W., and Hager, J. Facial
Action Coding System (FACS). UTAH: A Human
Face, Salt Lake City, 2002.

[Gol00] Golovan, A. Neurobionic algorithms of low-
level image processing. in Second All-Russia
Scientific Conference Neuroinformatics-2000
conf.proc., vol. 1, pp.166-173, 2000.

[GuiS] Guizatdinova, I., and Surakka, V. Detection
of facial landmarks from emotionally expressive
and neutral facial images. IEEE Trans. on Pattern
Analysis and Machine Intelligent, submitted.

[Jen98] Jennifer, H., and Picard, J. Digital processing
of affective signals. in IEEE ICASSP’98
conf.proc., Seattle, 1998.

[Kan00] Kanade, T., Cohn, J.F., and Tian, Y.
Comprehensive database for facial expression
analysis. in AFGR’00 conf.proc., Grenoble, p.46,
2000.

[Par04] Partala, T., and Surakka, V. The effects of
affective interventions in human-computer
interaction. Interacting with Computers, 16,
pp.295-309, 2004.

[Ryb98] Rybak, I. A model of attention-guided
invariant visual recognition. Vision Research 38,
No.15/16, pp.2387-2400, 1998.

[Sha02] Shaposhnikov, D., Golovan, A.,
Podladchikova, L., Shevtsova, N., Gao, X.,
Gusakova, V., and Gizatdinova, Y. Application of
the behavioural model of vision for invariant
recognition of facial and traffic sign images.
Neurocomputers: Design and Application 7, No.8,
pp.21-33, 2002.

Figure 5. Examples of the detection errors: (a) undetected nose; (b) incorrectly grouped nose and
mouth; (c) detected noise region.

(b) (a) (c)

[Sur98] Surakka, V., and Hietanen, J. Facial and
emotional reactions to Duchenne and non-
Duchenne smiles. International Journal of
Psychophysiology 29, pp.23-33, 1998.

[Wis97] Wiskott, L., Fellous, J-M., Kruger, N., and
von der Malsburg, C. Face recognition by elastic
bunch graph matching. IEEE Trans. on Pattern

Analysis and Machine Intelligent 19, No.7,
pp.775-779, 1997.

[Yac95] Yacoob, Y., Lam, H-M., and Davis, L.
Recognizing faces showing expressions. in
IWAFGR’95 conf.proc., Zurich, pp.278-283,
1995.

Appendix 1. Orientation portraits of (a) landmarks with characteristic edge distribution, and
(b) noise regions with arbitrary edge distribution.

0

100

200

0

100

200

0

100

200

Noise

Noise

Noise

N
u

m
b

e
r

o
f

e
d

g
e

s
p

e
r

o
ri
e

n
ta

ti
o

n

Edge orientations

0

100

200

0

100

200

0

100

200

Right eye Happiness

Nose Anger

Mouth Surprise

N
u

m
b

e
r

o
f

e
d

g
e

s
p

e
r

o
ri
e

n
ta

ti
o

n

Edge orientations

()a

()b

Appendix 2. Average orientation portraits for facial landmarks. The columns represent four facial
landmarks and rows represent seven prototypical facial displays.

Neutral

Sadness

Fear

Anger

Surprise

Disgust

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

N
u
m

b
e
r

o
f
e
d
g
e
s

p
e
r

o
ri
e
n
ta

ti
o
n

Edge orientations

Left Eye Right Eye Nose Mouth

Happiness

100

100

100

100

100

100

100

200

200

200

200

200

200

200

Multi-mesh caching and hardware sampling

for progressive and interactive rendering

Gabriel Fournier Bernard Péroche

L.I.R.I.S : Lyon Research Center for Images and Intelligent Information Systems

CNRS / INSA de Lyon / Université Lyon 1 / Université Lyon 2 / Ecole Centrale de Lyon
Bâtiment Nautibus, 8 boulevard Niels Bohr

69622 Villeurbanne Cedex, FRANCE

gabriel.fournier@liris.cnrs.fr bernard.peroche@liris.cnrs.fr

ABSTRACT
We present a framework for progressive and interactive rendering with soft shadows and indirect illumination of a

triangulated scene. Our method is a multi-pass algorithm that separates the rendering of each main component of

radiance in order to update the image as fast as new samples are computed. Those radiance samples are computed at

the vertices of multiple recursively subdivided meshes, allowing fast hardware interpolation between the samples.

These radiance samples are computed using irradiance values cached in multiple meshes. These meshes separate

the direct irradiance from each light source and the indirect one. Using multiple meshes gives us the ability to better

reuse samples and to better adapt the sampling density than if a unique mesh was used. We also propose to quickly

compute accurate soft shadows and indirect irradiance using the graphics hardware for visibility determination.

Keywords
global illumination, irradiance caching, progressive rendering, interactive rendering, graphics hardware, area light

source

1 INTRODUCTION

Real time realistic rendering on a standard PC, with

area light sources and indirect illumination, is still a

major challenge in computer graphics. In this paper,

we suggest a framework and a few tricks that should

bring us closer to this goal. Our approach allows pro-

gressive and interactive realistic rendering on a sin-

gle office PC of a triangulated scene lit by area light

sources. We chose to favor interactivity over image

quality, but our progressive rendering algorithm makes

the image tends towards full quality when the user

lingers in the same area. Our method does not need

a long preprocessing. It can provide fair quality im-

ages in a few seconds, hence it can be useful for image

preview while designing a scene.

Our approach is a multi-pass method. We separate the

rendering of the main radiance components: direct dif-

fuse, direct specular and indirect diffuse. These ra-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Conference proceedings ISBN 80-903100-7-9
WSCG’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency - Science Press

diances are computed at the vertices of multiple pro-

gressively refined meshes, using a different mesh for

each part of the radiance. To compute these radiances,

we use an irradiance sample cache. This cache is also

made of multiple progressively refined meshes. We

use different meshes to store the direct irradiance of

each light source, and the indirect irradiance. This new

approach allows us to limit the number of computed

samples by reusing already computed ones. Irradiance

samples are computed using the hardware for visibility

determination.

After a few words on the ideas that led us to our solu-

tion (Section 2), we will give a quick overview of our

method (Section 3). Then we will describe with more

details our multi-mesh caching framework (Section 4),

how we propose to sample irradiance to fill our cache

(Section 5) and how this cache is rendered through

multiple passes (Section 6). We will give some results

(Section 7) that we will discuss (Section 8).

2 PREVIOUS WORK

Our approach rests on well-known techniques: irra-

diance caching, progressive refinement and use of a

triangular mesh for hardware interpolations, uncou-

pling of rendering and lighting computations, storage

of illumination samples in an object-space hardware-

rendered mesh, and hardware irradiance sampling. All

these techniques will be developed in the next subsec-

tions.

Irradiance and radiance caching
Computing high quality indirect irradiance samples

for each pixel of an image is very costly. Fortunately,

indirect irradiance changes very slowly over a surface.

Irradiance caching, introduced by Ward et al. [War88],

takes advantage of this property by interpolating in-

direct irradiance between a few fully computed and

cached samples.

Zaninetti et al. extended this method proposing light

vectors [Zan98]. Instead of caching irradiances, they

took into account the BRDF of the objects and stored

radiances, allowing glossy objects to be rendered.

Noticing that direct, indirect and caustic components

of radiance have different frequencies, they sampled

and cached each one separately. In their method, ren-

dering is a two pass process. First a seed of samples

is generated, then the scene is rendered using those al-

ready computed samples to interpolate radiance in be-

tween. With this technique, samples are cached in a

kd-tree and interpolations are computed using a vari-

ous number of samples. Those interpolations eventu-

ally lead to noisy radiance values. The major problem

of this method when trying to implement an interactive

renderer, is that radiance samples are view dependent,

hence they cannot be re-used from frame to frame.

To overcome this difficulty, Crespin and Péroche

[Cre04] extended the light vectors cache and used a

five dimensional cache where light vectors are com-

puted and cached for many viewing directions. While

rendering, light vectors are interpolated according to

the viewer’s position. However, none of these caching

methods is able to provide interactive rendering, and

they all require a costly first pass.

Progressive rendering
Progressive rendering algorithms make it possible to

bypass a long preprocessing. This comes at a cost:

the first rendered images are only coarse approxima-

tions, but they may provide useful information to the

user who is no more required to wait. The light vec-

tors method caches samples in an object space struc-

ture. Another solution is to work in the image space.

This way, Painter and Sloan [Pai89] proposed to par-

tition the image as a 2D-tree whose leaves are recur-

sively subdivided according to the number of pixels

they cover and the variance of the samples they con-

tain.

The idea of working in the image space was taken up

by Pighin et al.[Pig97]. They create a triangulation of

the image from a set of samples taken around the dis-

continuities so that these discontinuities can correctly

be rendered. The generated triangles are quickly ren-

dered using the graphics hardware that interpolates be-

tween the samples. This technique is not interactive

but it allows a quick preview of a scene.

The Tapestry method proposed by Simmons and

Séquin [Sim00] provides interactivity through the use

of a 2D and a half mesh. This mesh is projected

onto a sphere around the observer: this way, full re-

computation of the image can be avoided when the ob-

server moves only a little. Nevertheless, geometric and

lighting discontinuities remain fuzzy at the beginning

of the rendering process.

Rendering and sampling uncoupling

To reach interactivity, Walter et al. [Wal99] pro-

posed to separate illumination sampling from render-

ing. The sampling process computes light samples

and stores them in a render cache, while the render-

ing process uses those samples to generate the cur-

rent one. The render cache keeps old samples from

the previous frame that are reprojected in the current

frame by the rendering process. Nonetheless, this im-

age based method suffers from artefacts when the user

views some part of the scene that has never been ren-

dered before.

To overcome the render cache artefacts, Tole et al.

[Tol02] proposed to compute and store shading val-

ues in the object space, more precisely at the vertices

of a progressively refined mesh. Their shading cache

is gradually filled while a process renders the image

using the graphics hardware. This method does not

suffer from reprojection artefacts. Even if the illumi-

nation is coarsely computed, the scene geometry and

textures are rendered at full quality providing the user

much more pleasant images than the render cache.

This method uses a unique mesh to approximate ra-

diance from different sources, leading to unnecessary

sampling and limited re-use of already computed sam-

ples. Our method is greatly inspired by this last one,

but as explained in the upcoming sections, we use

more than one mesh to overcome the shading cache

limitations.

Dmitriev et al. [Dmi02] also reach interactivity by

separating the rendering of hardware computed direct

lighting from the rendering of indirect lighting com-

puted by path tracing. Photons are stored at the ver-

tices of a dense mesh of the scene. Photons are packed

around a pilot photon that has a path close to theirs.

When the scene is modified, pilot photons are traced

again through the scene to detect changed areas that

need resampling.

Hardware sampling
Graphics hardware is getting more and more pro-

grammable at each new generation, allowing new us-

ages of GPUs. Purcell et al. [Pur02] showed that it

is possible to interactively ray trace images using the

GPU to compute ray triangles intersections. Global il-

lumination can also be computed with the photon map

algorithm [Jen96] using the GPU as proposed by Pur-

cell et al. [Pur03]. Those methods use fragment pro-

grams and render to texture functionality of current

hardware but are not really faster than the same algo-

rithms implemented on a CPU.

Larsen and Christensen [Lar04] make a more useful

usage of both the CPU and the GPU, giving each one

some work. Their method separates the rendering of

direct and indirect illumination. Direct illumination

is computed by the hardware. Indirect illumination

is computed using a photon map. Photons are traced

on the CPU whereas the final gathering step is made

on the GPU. This method reaches interactivity but ac-

cording to the authors results, indirect illumination is

very sparsely sampled.

3 OVERVIEW OF OUR METHOD
The framework we propose makes use of the irradi-

ance cache idea. Like Zaninetti and al. [Zan98], we

store each irradiance component separately. Like Tole

and al. [Tol02], our sample cache is built on the ge-

ometrical mesh. This irradiance cache is filled with

hardware sampled direct and indirect irradiances. The

cached irradiance values are used to progressively and

adaptively build and refine a radiance mesh. Final im-

ages, displayed to the user, are rendered through mul-

tiples passes, mixing radiances with the object colors.

(Fig. 1) gives an overview of our framework that will

be explained with more details in the next sections.

Figure 1: Overview of our framework

4 MULTI-MESH CACHING
Our strategy to reach interactivity is to compute as few

radiance samples as possible. With this aim in view,

we need to re-use samples from frame to frame and

interpolate between samples in the same frame. More

than that, we want to re-use part of already computed

samples. While computing indirect irradiance, the di-

rect one is needed. Hence, we chose to split direct and

indirect irradiance computations and storage in order

to be able to use the direct irradiance to compute the

indirect one.

Splitting irradiance and radiance
We want to progressively compute and render samples.

A recursively subdivided triangular mesh allows us to

easily refine the sampled radiance field and to quickly

update the image using the graphics hardware. The

traditional object space cache approach is a unique ir-

radiance cache that mixes direct and indirect irradi-

ance, limiting their re-use and leading to unnecessary

sampling. To overcome those limits, we chose to use

more than one cache mesh. Moreover, we want to dis-

tinguish irradiance (energy incoming from any direc-

tions) from radiance (energy emitted in a particular di-

rection). Irradiance is long to compute but can be re-

used as long as the scene does not change, while radi-

ance is fast to compute using cached irradiance values

(see Fig. 2). We currently use:

• one direct irradiance mesh for each light source

• one indirect diffuse irradiance mesh

• one direct diffuse radiance mesh

• one direct specular radiance mesh

All those meshes are built over the same geometrical

mesh. When a triangle is subdivided, it is always split

in four, its edges being split in half.

We store in separate meshes the direct irradiance of

each light source. This allows us to save computations

when the direct irradiances of different light sources

do not have the same discontinuities. In a given area,

only the meshes whose irradiance contains disconti-

nuities are refined. We use another mesh for indirect

irradiance that has far less sharp discontinuities than

the direct ones. The irradiance meshes can be seen

as illumination maps. The direct ones contain direct

shadows, while the indirect one contains color bleed-

ings and indirect shadows. The mesh representation is

more suited to store soft shadows as sharp discontinu-

ities lead to deeper subdivision, but it is nevertheless

able to handle sharp shadows of point light sources.

What we need to render is the radiance emitted by the

seen objects that reaches the eye of the observer. Ra-

diance can be divided in two parts: direct radiance and

indirect one. Using a separable BRDF model, direct

radiance can also be split in two parts: the diffuse one

and the specular one. The diffuse part of direct ra-

diance does not change when the user moves. Thus

it can be computed once, cached in the vertices of a

mesh and re-used for many different frames. We use

a mesh to progressively compute the specular part of

direct radiance for each frame, starting from scratch

when the observer moves. Indirect radiance is very

long and difficult to compute if all kinds of light paths

are taken into account. We currently only take into

account indirect diffuse radiance that can be directly

computed, on the fly while rendering, from indirect

diffuse irradiance, so we don’t use another mesh for

indirect irradiance.

Figure 2: From irradiance to radiance

From irradiance to radiance
We chose the modified Phong BRDF [Laf94] for its

simplicity and its energy conservation property, but

other separable BRDFs could be used. The radiance at

point x incoming from direction
→

ωr we need to com-

pute and display is

Ld(x,
→

ωr) =

∫
Ω

fd(x,
→

ωr,
→

ωi)L(x′,
→

ωi)cosθ dω (1)

Ls(x,
→

ωr) =

∫
Ω

fs(x,
→

ωr,
→

ωi)L(x′,
→

ωi)cosθ dω (2)

where fs and fd are the diffuse and specular compo-

nents of each object BRDF.

In the direct irradiance mesh, we store for each light

source ls of area S the irradiance

Ed(x, ls) =

∫
ls

L(x′,
→

ωi)cosθ cosθ′
dS

r2
(3)

The visibility of the light source is taken into account

in the computation of Ed(x, ls). Using the modified

Phong BRDF, diffuse direct radiance can easily be

computed from the irradiance cached for each light in

the irradiance mesh:

Ldd(x,
→

ωr) =
1

π

∑
lights

Ed(x, ls) (4)

To compute the specular part of the direct radiance we

should integrate:

n+2

2π
cosnα L(x′,

→

ωi)cosθ (5)

over the solid angle sustained by each light source,

where n is the specular exponent and α the angle be-

tween the perfect specular reflection of the light source

center and the outgoing direction
→

ωr. This would be

too costly for interactive rendering. We want to re-use

already computed samples, so we use the irradiance

stored in the irradiance mesh for each light source and

multiply it by the specular part of the BRDF evaluated

at the center of the light source:

Lds(x,
→

ωr) =
∑

lights

(
n+2

2π
cosnα Ed(x, ls)) (6)

This simplification comes down to replacing area light

sources with point light sources for specular radiance

estimation. The resulting errors can be misplaced and

wrong shaped specular highlights.

Sampling all the components of indirect irradiance is

currently too costly, we only sample a part of diffuse

indirect irradiance: light paths that diffusely bounce

only once between the light source and the point of in-

terest. Paths with two bounces could easily be added

using the one-bounce indirect irradiance being com-

puted; longer paths can often be neglected since in a

directly lit scene, their contributions are very small.

This method is biased but provides visually satisfying

images. Diffuse indirect irradiance is approximated

using the diffuse direct radiance:

Ei(x) =

∫
Ω

Ldd(x
′,

→

ωi)cosθ dω (7)

To compute the diffuse indirect radiance, we just com-

pute:

Lid(x) =
1

π
Ei(x) (8)

Mesh subdivision
The first image displayed is rendered using radiance

and irradiance that are only computed at the vertices

of the radiance meshes roots. These roots are in fact

the geometrical mesh elements of the scene. The radi-

ance meshes are then progressively refined to take into

account radiance discontinuities. Each time a radiance

is computed, irradiance values are fetched, for each

light source, in the corresponding irradiance meshes.

When those values are not available or cannot be con-

fidently interpolated, the irradiance meshes are sub-

divided. The radiance meshes refinement guides the

direct irradiance meshes ones. We will explain in the

next subsections how our meshes are subdivided.

4.3.1 Radiance mesh subdivision criteria

Each mesh element is a triangular patch. A radiance

patch may be subdivided only if it lies over more than

one pixel. To decide if a mesh element should be sub-

divided, each of its edges is split into two equals parts.

Two radiances are evaluated at its middle: one is com-

puted and the other is interpolated. If the computation

and the interpolation give a close result, the edge will

not be subdivided any more. When at least one edge

of a triangle has been subdivided because it contains

a discontinuity, the triangle is split into four triangles.

This avoids visible T-vertices, since triangles on both

sides of the subdivided edge will be split. A size crite-

rion is required in order not to miss small radiance dis-

continuities: triangles are subdivided until they cover

a small number of pixels. Once triangles have been

subdivided enough to meat the size criterion without

finding any discontinuities, the unnecessary subdivi-

sions are undone to save memory space.

4.3.2 Noticeable color differences
To compare interpolated and sampled radiances at the

middle of an edge, we need a criterion that takes into

account the user perception. The maximum unnotice-

able difference between the two values depends on the

radiance of the rendered pixel on screen, the user vi-

sual system, the monitor settings and its environment.

Modeling this whole chain is by itself a research area;

we wanted something simple. The problem we ran on

was that a lot of useless mesh subdivisions occurred

in dark areas of the scene. On our monitor, we can-

not distinguish a black (0x000000) patch from a lighter

black (0x0A0A0A) one. Our algorithm has to take this

fact into account. Supposing the user, the environ-

ment and the monitor do not change, we experimen-

tally generate a map that associates a maximum un-

noticeable difference value for a set of radiances. To

compare interpolated and sampled radiance, we first

process these values with the tone mapping algorithm

to get an idea of the color values that will be rendered

on the screen. Then we compute the difference and

compare it with the corresponding value in our map.

A real visual model would give far more accurate val-

ues but at the expense of a high computation cost. Our

solution gives acceptable results at almost no cost.

4.3.3 Priorities
To provide the best quality images in the shortest time,

the radiance mesh elements are given subdivision pri-

orities. These priorities depend on the radiance differ-

ence between the element vertices and on the element

visible size: a high contrast over an element is a good

hint for radiance discontinuities and the bigger an el-

ement is, the more chance it has to contain disconti-

nuities. We use the visible size of the triangle because

we don’t want to subdivide hidden triangles. The mesh

can be seen as a set of quad-trees, each quad-tree be-

ing built over a triangle of the geometrical mesh. The

priorities are computed at the leaves of the quad-trees

and are spread to their root. The priority of a node is

the maximum of its sons priority. This way, given a

geometrical mesh triangle, we can quickly find its ra-

diance element leaf that requires to be subdivided first.

To decide which geometrical triangle will be subdi-

vided, we could sort the elements or use a hit and test

method as in [Tol02]. Sorting is too slow and the hit

and test method requires many tests. Instead, we de-

veloped the following algorithm. We start the subdi-

vision process with a big triangle which has a quite

high priority. Then we randomly pick a triangle; if the

picked triangle has a higher priority than the last subdi-

vided one, we switch to the picked one, otherwise we

keep refining the same triangle until its priority falls

under the priority of the next randomly picked trian-

gle.

4.3.4 Irradiance mesh subdivision
The subdivision of the direct irradiance meshes is

guided by the subdivision of the radiance mesh de-

scribed before. Each time a direct radiance value needs

to be computed, the irradiance of each light source

is fetched in the irradiance mesh. If the direct irra-

diance mesh is not subdivided enough to provide the

requested value, it is subdivided at this time. The irra-

diance mesh subdivision is limited by the subdivision

of the radiance one, thus an element will not be indef-

initely subdivided.

Diffuse indirect radiance and diffuse indirect irradi-

ance are directly linked (equation 8). As the radiance

is computed to be displayed, we use the same view

dependent criteria that was used to subdivide the radi-

ance meshes.

5 SAMPLING
Our mesh-based progressive rendering approach is

very sensitive to noise. Noisy samples may lead to

needless subdivisions of the meshes. To quickly ren-

der high quality images, we need to compute high

quality irradiance values to fill our irradiance caches.

As told earlier, we sample direct irradiance from each

light source and indirect irradiance separately. Tra-

ditionally, ray tracing was used to collect irradiance.

Area light sources were sampled using hundreds of

rays to determine their visibility from the point to

shade. Indirect irradiance was collected by sampling

an hemisphere built over the point to shade. These

methods provide good results but are often too slow

to be useful in interactive rendering on a single CPU.

Furthermore those methods monopolize the CPU and

make no use of the GPU. Using the GPU as a SIMD

coprocessor to compute ray object intersections is fea-

sible but at a high cost: ray packing and asynchronous

results handling. Our idea is to use the GPU in a more

regular way.

Area light sources sampling
We propose to take advantage of the efficient visibil-

ity determination capacity of the graphics hardware to

obtain a high quality estimation of the irradiance of an

area light source at a given point. We render the scene

observed from the point to shade, clipping the viewing

frustum to a small frustum that fully includes the area

light source.

Assuming that the light sources are isotropic, their ra-

diance is the same all over their surface. We need to

compute equation (3). Our method uses a fragment

program to compute accurate values: cosθ and the

solid angle of the pixel are evaluated for each pixel.

To sum the fragment program output values repre-

sented and stored as floats in a pixel buffer, we use two

pixel buffers to progressively reduce the image until all

the values are accumulated in a small enough image

(16x16) that can be quickly read back to the CPU.

When the scene is rendered from the point to shade,

the whole scene does not need to be sent to the GPU,

since only a few triangles in the viewing frustum can

occlude the light source. We use a grid to store the

scene triangles. Computing the exact intersection of

the frustum and the grid could be quite time consum-

ing, so we chose to approximate the frustum with a

carefully chosen bounding cone and each grid cell

with a bounding sphere. To know if the cone inter-

sects a grid cell, only one test is required: does the

grid cell center belongs to the bounding cone? (see

Fig. 3). This method is conservative, a few grid cells

are being falsely detected as crossed by the frustum,

but none are forgotten.

Figure 3: Area light source sampling

Indirect irradiance sampling
Sampling indirect irradiance through an hemisphere

using a ray tracing method is far more time consum-

ing than sampling the direct one. More rays are needed

and those rays are not as coherent as those sent when

sampling direct irradiance over an area light source.

This makes CPU SIMD optimizations like those pro-

posed by Wald et al. [Wal01] less efficient. As for

sampling direct irradiance, we chose to use the graph-

ics card high visibility determination capacity.

As said earlier, we currently only take into account in

our indirect irradiance computations light paths with

one diffuse bounce. To gather this indirect irradiance,

as Larsen and Christensen [Lar04], we chose to ren-

der the scene only once on a plane. Using a field of

view of 160 degrees, we forget only 2% of the in-

coming radiance. Rendering the whole diffuse radi-

ance mesh would be very costly and useless. If the

scene is sampled using a 128x128 image, small trian-

gles in the radiance mesh won’t be visible. We chose

to send an undersampled version of the radiance mesh

to the GPU to increase speed. This coarse version of

the direct diffuse radiance mesh has to be built for the

whole scene before starting to sample indirect radiance

since any part of the scene could indirectly contribute

to the indirect radiance of a visible geometrical mesh

element. The energy is collected in the image by sum-

ming it with two pbuffers as we did for direct irradi-

ance. Again, the value of each pixel has to be weighted

with the solid angle covered by the pixel and with the

cosθ term of the irradiance formula. This time, the

solid angle of field of view is constant so the weight of

each pixel can be precomputed and stored in a texture.

6 MULTI-PASS RENDERING

Generating an image with our method is done through

multiple rendering passes. In a first pass, we only ren-

der the geometrical mesh using an identifier (a 32 bits

address, or an index in an array) for each triangle as

color. The generated image is read back to the CPU.

This is costly, but this allows us to compute the visible

size of each triangle and to build the set of the visible

triangles. The occlusion query extension could have

been used to avoid the read back, but to get the exact

number of visible pixels of each triangle, two render-

ing passes would have been needed: the first one to

initialize the z-buffer, the second one to count visible

pixels.

Using the visible triangles set as input, the second

pass generates two images containing the material re-

flectance properties of each triangle. We split in two

images the diffuse and specular properties. These ma-

terial reflectance properties are the diffuse or specular

colors of each triangle times their diffuse or specular

reflectance coefficient. Those two images can be gen-

erated in a single pass using multiple output buffers or

packing the two images in a single output texture.

With the number of visible pixels computed in the first

pass, we update the priority of each radiance mesh el-

ement. This radiance mesh can be rendered in a third

pass. Actually, two passes are needed to render the dif-

fuse and the specular direct radiance meshes, and one

more pass is needed to render the diffuse indirect irra-

diance one whose irradiances are transformed on the

fly in radiances according to equation (8).

A final pass is needed to merge all the material prop-

erties images and the radiance ones. This last pass is

very fast, it requires to render only a single quad tex-

tured with the five images computed in the preceding

passes. According to the number of texture units avail-

able on the graphics card, more than one pass may be

needed. The fragment program used in this last pass

includes a tone mapping algorithm to convert the radi-

ance of each pixel into a displayable color.

This image decomposition may seem costly, but it al-

lows to progressively update the image almost as fast

as new samples are computed. When the user keeps

looking at the same frame, the mesh subdivision thread

works at full speed. Each time a radiance mesh ele-

ment is subdivided, the four triangles created are ren-

dered on the image corresponding to the subdivided

mesh (direct diffuse, direct specular or indirect dif-

fuse). The final pass that recombines all the radiance

components and the object reflectance is applied at

constant time rate to update the image displayed to the

user.

7 RESULTS
We tested our method on a P4 2.5 GHz - 768MB of

RAM - Nvidia 256MB QuadroFX3000. The following

results are computed on a small scene of 7000 triangles

with one area light source. About fifteen seconds are

required to compute the coarse direct radiance mesh.

During this time a constant indirect radiance value is

used while direct radiance is progressively subdivided.

Then, direct and indirect radiance meshes are simul-

taneously refined and the image is progressively up-

dated.

The first rendering pass that requires a read back to the

CPU of the rendered triangles identifier is the costliest.

Working with a 640x480 image requires 40ms. The

material reflectance property and radiance rendering

passes are faster: about 12ms each. The final pass that

merges the luminance and material reflectance images

is also fast: 10ms. Globally, 100ms are required to

obtain an image using already computed samples.

On our test scene, the coarse direct radiance mesh used

to compute the indirect one contains 9200 samples. To

obtain the image (Fig. 4) 26000 direct and 9000 indi-

rect samples are required. The total number of com-

puted samples is linked to the subdivision criteria.

The direct irradiance sampling requires two phases:

rendering the objects that might be in the point to area

light source frustum and summing the irradiance of

each pixel. The current read back limits make the sec-

ond phase the costliest one (about 70% of the total

time). Using a 64x64 image to sample direct irradi-

ance requires about 0.9ms. Sampling the light source

with a ray tracer with the same density requires 32ms.

With a ray tracer, less rays are needed since non uni-

form sampling (that provides less banding artifacts)

can be used. Ray tracing with 16x16 rays requires

2.6ms, which is the cost of hardware sampling using a

128x128 image. Hardware sampling is a lot faster than

ray tracing and it frees the CPU that can be used for

other tasks, like mesh subdivision, while samples are

computed. Indirect irradiance sampling is a bit longer

as all the scene is sent to the GPU. 9ms are required

for each sample using a 256x256 pixels image.

8 DISCUSSION AND FUTURE WORK

We think our method has interesting advantages over

similar ones. It does not require preprocessing as pho-

ton map based methods do. Sampling radiances at the

vertices of a mesh avoids the costly interpolations of

light vectors methods or the density estimations of the

photon map. Our caching method, splitting irradiances

and radiances, allows more re-use of already computed

values. Our area light source sampling method, that

uses different meshes to progressively compute each

light source shadow, limits the number of computed

samples to a minimum. We chose not to sample direct

radiance using traditional interactive GPU based meth-

ods (shadow maps or shadow volumes) that might be

faster, but would not allow to store the computed radi-

ance in RAM for use in the indirect radiance compu-

tations. Our sampling method is not yet able to pro-

duce real time soft shadows nor real time indirect il-

lumination, but it is a lot faster than ray tracing based

methods. Upcoming GPU extensions might allow us

to keep the direct radiance on the GPU board avoiding

the GPU to CPU transfer bottleneck.

The strong link between the caches and the geometry

can be criticized for its lakes of freedom in the scene

representation, but this is the key for interactive speed.

The major problem of our solution is its memory cost.

Rendering large scene containing very tessellated ob-

jects is a problem since we construct our meshes over

the geometrical one. A solution we are working on

is the construction of the radiance meshes on the ob-

ject bounding boxes, building cubemaps to render the

objects radiances. Other currently missing features

we are working on include specular reflections, caus-

tics and dynamic scene handling. We anticipate that

our use of different meshes should help us to notice

Figure 4: (a) Final image (b) Direct radiance samples (c) Indirect radiance image and samples

changes in dynamic scene irradiance, allowing us to

quickly update our irradiance caches. The use of a vi-

sual model to guide our mesh subdivision is another

research area we want to explore.

9 CONCLUSION
Real time rendering of large scenes with soft shadows,

indirect illumination and caustic is not achieved yet.

We think our multi-mesh method is an interesting step

towards this goal. The fast increase in performance

and functionality of GPUs will offer us new possibil-

ities. In our mind, porting to the GPU existing CPU

algorithms does not take full advantage of the graph-

ics hardware. GPUs are fast for geometry rasterization

and interpolations; its limited programming and mem-

ory model are quickly evolving, we have to foresee

new algorithms to exploit those upcoming capacities

to compute shadows and global illumination.

References
[Cre04] Crespin, R., and Péroche, B. Lights Vectors for

a Moving Observer. In 12-th International Conference
in Central Europe on Computer Graphics, Visualization
and Computer Vision (WSCG), Plzen , Czech Repub-
lic, pages 99–96, Plzen , Czech Republic, 2-9 february
2004. University of West Bohemia.

[Dmi02] Dmitriev, K., Brabec, S., Myszkowski, K., and
Seidel, H.P. Interactive global illumination using se-
lective photon tracing. In Rendering Techniques 2002:
13th Eurographics Workshop on Rendering, pages 25–
36, June 2002.

[Jen96] Jensen,H.W. Global illumination using photon
maps. In Eurographics Rendering Workshop 1996,
pages 21–30, June 1996.

[Laf94] Lafortune, E.P., and Willems, Y.D. Using the Mod-
ified Phong BRDF for Physically Based Rendering.
Technical Report CW197, Leuven, Belgium, 1994.

[Lar04] Larsen, B.D., and Christensen, N. Simulating pho-
ton mapping for real-time applications. In Eurographics
Symposium on Rendering, jun 2004.

[Pai89] Painter, J., and Sloan, K. Antialiased ray tracing by
adaptive progressive refinement. In Computer Graph-
ics (Proceedings of SIGGRAPH 89), volume 23, pages
281–288, July 1989.

[Pig97] Pighin, F.P., Lischinski, D., and Salesin, D.H. Pro-
gressive previewing of ray-traced images using image
plane discontinuity meshing. In Eurographics Render-
ing Workshop 1997, pages 115–126, June 1997.

[Pur02] Purcell, T.J., Buck, I., Mark, W.R., and Hanrahan,
P. Ray tracing on programmable graphics hardware.
ACM Transactions on Graphics, 21(3):703–712, July
2002.

[Pur03] Purcell, T.J., Donner, C., Cammarano, M., Jensen,
H.W., and Hanrahan, P. Photon mapping on pro-
grammable graphics hardware. In Graphics Hardware
2003, pages 41–50, July 2003.

[Sim00] Simmons, M., and Séquin, C.H. Tapestry: A dy-
namic mesh-based display representation for interactive
rendering. In Rendering Techniques 2000: 11th Euro-
graphics Workshop on Rendering, pages 329–340, June
2000.

[Tol02] Tole, P., Pellacini, F., Walter, B., and Greenberg,
D.P. Interactive global illumination in dynamic scenes.
ACM Transactions on Graphics, 21(3):537–546, July
2002.

[Wal01] Ingo Wald, Philipp Slusallek, Carsten Benthin, and
Markus Wagner. Interactive rendering with coherent
ray tracing. Computer Graphics Forum, 20(3):153–164,
2001.

[Wal99] Walter, B., Drettakis, G., and Parker, S.. Interac-
tive rendering using the render cache. In Eurographics
Rendering Workshop 1999, pages 19–30, June 1999.

[War88] Ward, G.J., Rubinstein, F.M., and Clear, R.D. A
ray tracing solution for diffuse interreflection. In Com-
puter Graphics (Proceedings of SIGGRAPH 88), vol-
ume 22, pages 85–92, August 1988.

[Zan98] Zaninetti, J., Serpaggi, X., and Péroche, B. A
vector approach for global illumination in ray tracing.
Computer Graphics Forum, 17(3):149–158, 1998.

Interactive Ray Tracing of Trimmed Bicubic Bézier
Surfaces without Triangulation

Markus Geimer Oliver Abert

Institute for Computational Visualistics
University of Koblenz-Landau

Universitätsstraße 1
 D-56070 Koblenz, Germany

mgm@uni-koblenz.de abert@uni-koblenz.de

ABSTRACT

By carefully exploiting the resources of today's computer hardware, interactive ray tracing recently became
reality even on a single commodity PC. In most of these implementations triangles are used as the only
geometric primitive. However, direct rendering of free-form surfaces would be advantageous for a large number
of applications, since robust tessellation of complex scenes into triangles is a very time-consuming process.
Additionally, scenes consisting of free-form surfaces require less memory and provide a much higher precision
resulting in less rendering artifacts.

In this paper, we present our implementation of an efficient and robust algorithm for rapidly finding
intersections between rays and trimmed bicubic Bézier surfaces. Using SIMD instructions provided by many of
today's CPUs, we perform the intersection test of a packet of four rays with a single Bézier surface in parallel.
An optimized bounding volume hierarchy provides good initial guesses needed for fast convergence of the
Newton iteration, which forms the core of our intersection algorithm. As a result, we demonstrate that it is
feasible to render complex scenes of several thousand Bézier surfaces at video resolution with interactive frame
rates on a single PC.

Keywords
Interactive Ray Tracing, Bézier Surfaces, Trimming

1. INTRODUCTION
Free-form surface representations such as splines,
NURBS, or subdivision surfaces provide a simple
but still powerful way of describing three-
dimensional geometrical objects for use in computer
graphics applications. Unlike triangle meshes, which
are the second commonly used way of defining 3D
shapes, they are able to describe curved surfaces
exactly. Therefore, free-form surfaces form the
foundation of most CAD systems used in the
industry today.

If the models should be displayed in an interactive
setting, however, free-form surfaces are currently
tessellated into triangles as well, since this is the only
primitive that can be handled by today’s rasterization
hardware. For this kind of applications it would
therefore be desirable to render free-form surfaces
directly.

Direct rendering of free-form surfaces instead of
triangle meshes has a number of advantages.
Obviously, the time-consuming overhead of
triangulating the surfaces can be avoided. Secondly,
due to the smaller number of primitives the costs for
additional preprocessing needed for most rendering
algorithms, e.g. building up acceleration data
structures, are also reduced. Moreover, representing
objects as free-form surfaces requires less memory,
which can be a limiting factor for complex scenes. In
addition, rendering free-form surfaces directly
provides a much higher precision resulting in less
rendering artifacts. For example, cracks between
adjacent surfaces due to different tessellation
parameters can be completely avoided.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WSCG 2005 conference proceedings ISBN 80-903100-7-9
WSCG’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

Figure 1. The Chessboard from different view
points. Note that due to the direct rendering of
free-form surfaces, the objects remain curved,
even from the shortest viewing distance.
Finally, free-form surfaces are often used in
conjunction with trimming curves that cut out parts
of the surface in the parametric domain. Robust
tessellation of free-form surfaces with trimming
curves is a non-trivial task with a high computational
cost.

In contrast to current rasterization hardware, ray
tracing is capable of rendering every primitive for
which the intersection between a ray and the surface
can be calculated [Whi80a]. Nevertheless, it has the
reputation of being a very time-consuming rendering
algorithm. However, recently it has been shown that
it is possible to achieve interactive frame rates even
on a single commodity PC by carefully exploiting the
resources of today’s CPUs [Wal01a].

In this paper, we present the details of our
implementation of the intersection test between a ray
and a trimmed bicubic Bézier surface in the context
of an interactive ray tracing system. While we do not
introduce any new intersection algorithm, we rather
show that a significant speed-up can be achieved by
carefully optimizing a well-known intersection
technique. As a result, we demonstrate that it is
feasible to render complex scenes of several
thousand Bézier surfaces at video resolution with
interactive frame rates on a single PC.

Although we currently restrict ourselves to bicubic
Bézier surfaces, our approach may be extended to
support other parametric surfaces as well. In
addition, more general spline surfaces such as
NURBS can be converted into Bézier patches
[Roc89a].

2. PREVIOUS WORK
Ray tracing at interactive frame rates has been first
presented by [Muu95a]. Later, [Par99a] described a
full-featured interactive ray tracing system running
on a shared-memory supercomputer that is able to
handle arbitrary geometry, including parametric
surfaces (e.g. NURBS). However, they had to use
expensive high-end hardware to achieve this goal.
By contrast, [Wal01a, Wal01b] presented a highly
optimized ray tracer running on a cluster of

commodity PCs, paying careful attention to data
layout, coherence, and caching issues. In addition,
their system extensively uses SIMD instructions
provided by most of today’s CPUs to trace packets of
rays in parallel, thereby achieving a speed-up of
more than an order of magnitude compared to other
well-known ray tracers. Meanwhile, the employed
algorithms have been further improved [Wal04a].
However, this ray tracer is restricted to triangles as
the only geometric primitive.
In the last 25 years, a variety of algorithms has been
proposed to calculate the intersections between a ray
and parametric surfaces of different kinds. One
common approach is to use a multivariate Newton
iteration. This method has the advantage of being
general enough to handle any parametric surface, but
requires a good initial value to ensure correctness
and fast convergence.
For example, [Swe86a] refine the control meshes of
B-spline surfaces until they closely approximate
them. Then, the intersection of the ray and the
control mesh is used as the initial value of the
following Newton iteration. By contrast, [Mar00a]
employ a hierarchy of bounding volumes enclosing
disjoint regions of NURBS surfaces to yield a
suitable initial value.
Another numerical approach for Bézier surfaces is
called Bézier Clipping [Nis90a]. This algorithm tries
to iteratively identify regions of the patch that are
known not to be intersected by the ray, thereby
restricting the parameter domain where intersections
can occur. This approach is also used by [Wan01a],
who combine Bézier Clipping with Newton iteration.
Additionally, they exploited the coherence of
neighboring rays to speed up the calculation. Never-
theless, all approaches mentioned above were far
from interactive.
Recently, [Ben04a] presented their implementation
of a subdivision method, which refines the control
meshes of the surfaces on-the-fly and calculates an
approximate intersection point using a triangle mesh
generated from the control points. Depending on the
model and the number of refinement steps, they
achieve up to 5.5 fps at video resolution on a single
PC. Nevertheless, the number of refinement steps has
to be the same for all surfaces to avoid cracks
between adjacent patches.

3. SYSTEM OVERVIEW
Before going into the details of our implementation
of the intersection test between a ray and a bicubic
Bézier surface, we present a brief overview of the
underlying interactive ray tracing system.
Similar to [Wal01a], we use SIMD instructions
found in many of today’s CPUs to trace packets of

four rays in parallel. This applies to both the traversal
of an acceleration data structure as well as the actual
intersection calculations. However, instead of
targeting only at a single CPU architecture, we have
implemented our ray tracing system on top of a
SIMD abstraction layer that allows us to write
platform-independent SIMD code (see [Gei03a] for
details). Currently, Intel’s SSE [Int04a] and
Motorola’s AltiVec [Mot99a] instruction sets are
supported, as well as a special mode that uses the
FPU to emulate the specified functionality.
In order to achieve a good rendering performance, it
is crucial to reduce the total number of intersection
calculations to a minimum. Therefore, we employ a
hierarchy of axis-aligned bounding boxes that is
iteratively traversed in depth-first order [Smi98a].
Although other acceleration data structures are
usually considered to be faster in the context of ray
tracing, we have found that this approach is well
suited for a SIMD implementation and also adapts
well to our intersection algorithm presented below.
Currently, our ray tracing system is restricted to
static scenes, allowing only interactive walk-
throughs. However, it could be easily extended to
support dynamic scenes with hierarchical movements
as well using the ideas presented in [Lex01a] and
[Wal03a].
Because ray tracing naturally lends itself to a parallel
implementation, our system is no exception. At
present, we support rendering with multiple threads,
which allows us to take advantage of multiprocessor
PCs as well as Intel’s HyperThreading technology
[Int04b].

4. OUR APPROACH
Instead of using complex algorithms, we rather take a
“brute force” approach. While this doesn’t seem to
be very clever at first sight, it has been shown that a
carefully optimized implementation can easily out-
perform more complex algorithms on current CPU
architectures (e.g. [Wal01a] or [Ben04a]).
Our intersection algorithm combines many known
techniques to achieve a fast computation of the
intersection point of a ray and bicubic Bézier patches
as well as the corresponding surface normals. Similar
to [Mar00a], we employ a hierarchy of axis-aligned
bounding boxes to find a suitable initial guess needed
for the Newton iteration that is used to calculate the
intersection point. In the following subsections, we
will describe the core components of our approach.

Preprocessing
As a first step, the scene description file is read
(currently, the IGES format is partially supported)
and converted into a binary data file that can then be
processed by the actual rendering application.

During this preprocessing, we convert the trimming
curves originally represented as B-splines into
piecewise cubic Bézier curves for use with our
trimming algorithm and build up the bounding
volume hierarchy that is used to speed up the
intersection calculation.
Compared to other bounding volume hierarchies, on
the lowest level our bounding boxes do not surround
entire scene objects (i.e. Bézier surfaces) or even lists
of objects. Instead, we create them for small, disjoint
regions of the individual surfaces. On the one hand,
this leads to tighter bounds, thereby reducing the
number of unnecessary intersection calculations. On
the other hand, we are able to get better initial
guesses for the Newton iteration used to calculate the
actual intersection point.
Therefore, we recursively subdivide each Bézier
surface into a larger number of subpatches and
calculate their corresponding control points using
de Casteljau’s algorithm. Due to the convex hull
property of Bézier surfaces, we can use these control
points to determine an axis-aligned bounding box for
each subpatch.
At present, we alternately subdivide the surfaces
resp. subpatches at the mean of the parameter domain
in u and v direction, until the generated patches are
reasonably flat or a predefined maximum subdivision
depth has been reached. These two parameters can be
easily controlled by the user. Unfortunately, they are
scene dependent and must be chosen with care. For
our test scenes, we have found that a maximum
subdivision depth of 4-6 is already sufficient.
Since our Bézier surfaces are subdivided into small,
disjoint regions by the bounding volume hierarchy,
the individual subpatches can be classified during
preprocessing to improve the rendering performance
of trimmed surfaces. For each region that is known to
be enclosed by a trimming curve (i.e. considered not
to be part of the patch), we can immediately discard
the corresponding subpatch as well as its associated
bounding box, thereby avoiding any intersection
calculation. By contrast, for regions that are known
to lie completely inside the patch, the trimming test
can be skipped during rendering. Otherwise, at least
one trimming curve cuts out a part of the region and
we have to perform the entire trimming calculation.
As we use the original Bézier surface for the actual
intersection test, the control points of the subpatches
are only needed for creating the bounding boxes and
the aforementioned classification, so they can be
discarded immediately afterwards.
Finally, the bounding volume hierarchy is created
from the bounding boxes of the remaining
subpatches using the top-down approach presented
by [Gol87a].

Patch Representation and Data Layout
A bicubic Bézier surface is given by its 16 control
points and can be represented in matrix form through

TVNCPNUvuS]][][][][[),(= .

Here, the 4x4 matrix][CP stores the control points,
[N] contains the Bernstein polynomial coefficients,
and]1[][23 uuuU = resp.]1[][23 vvvV = .
Obviously, the inner product]][][[][NCPNP =
can be computed in advance.
We store the 16 vector components of [P] as SIMD
data in an array (see Figure 2). The first three
elements of each SIMD variable store the X, Y, and
Z component of the corresponding matrix element,
whereas the last component remains unused. With
this approach, each Bézier surface can be represented
by exactly 16 * 4 * sizeof(float) = 256 bytes.

X 21 0Z21Y21

X 31 0Z31Y31

X 44 0Z44Y44

X 34 0Z34Y34

P11

P21

P31

P34

P44

Z11Y11X 11 0 CP00

CP01 CP02 CP03

CP10
CP11 CP12

CP13

CP20 CP21
CP22 CP23

CP30
CP31 CP32

CP33

Figure 2. Patch representation: The matrix][P
computed from the control points CPij is stored
column-major in an array of SIMD variables,

leaving one component of each element unused.
Storing the patch data as a structure-of-arrays, i.e.
storing the same components of four control points
together in a single SIMD variable, would reduce the
memory requirements by 64 bytes per surface, but
during our experiments we have found that this data
layout results in a significantly slower evaluation
algorithm due to the necessary shuffling of data.
Moreover, the fourth component of each element in
our SIMD data array can be used to store additional
patch information, e.g. a pointer to the associated list
of trimming curves.
As already mentioned before, the subpatch data
structure does not contain any control point
information. Here we only store the parameter
domain of the patch, the classification flag indicating
whether it has to be trimmed or not, and the pointer
to the original Bézier surface. For alignment reasons,
we pad this data structure to a total size of 32 bytes.
For each bounding box, we store the minimum and
maximum coordinate value along each axis, a pointer
to the associated geometry (i.e. a subpatch), and the
skip pointer used during the traversal of the
hierarchy. This data structure also occupies 32 bytes.

2

4 5

P1

6 7 8 9

P2

3

1

B-Boxes 1 2 34 5 6 7 8 9

Subpatches

P1 P2Surfaces
Figure 3. Data layout: During preprocessing, the
example hierarchy shown at the top is converted
into the internal representation (a set of arrays)

shown at the bottom.

Rendering Core
As already stated in section 3, our rendering core
traces packets of four rays in parallel using SIMD
instructions. First, each ray packet generated by the
camera iteratively traverses the bounding volume
hierarchy to restrict the number of intersection
candidates. Here, if any ray of the packet hits a
bounding box, the entire packet has to continue the
traversal of its children.
Since the leaf nodes of our hierarchy correspond to
small surface regions and not to an entire Bézier
patch, this approach does not only restrict the number
of intersection candidates, but also the parametric
domain where intersections may occur. Provided that
a proper hierarchy has been created, the center of the
enclosed parametric domain can then be used as an
initial guess for a Newton iteration that calculates the
actual intersection point between the ray and the
surface. Of course, this can also be done for four rays
in parallel using SIMD instructions.

4.3.1 Intersection Test
The core of the intersection test is similar to the
approach presented by [Mar00a] who solved the
problem for NURBS surfaces but without targeting
interactivity.
We represent each ray by two orthogonal planes
P1 = (N1,d1) and P2 = (N2,d2) where the iN are
orthogonal vectors of unit length, perpendicular to
the ray direction D . The id are given by

ONd ii o−= . Here, O denotes the origin of the
ray. To find the intersection point between the ray

and a parametric surface S(u,v) , we have to solve
for the roots of

+⋅
+⋅

=
22

11

),(
),(

),(
dvuSN
dvuSN

vuR .

Several numerical methods exist that could be used
to target this problem. We have chosen the classical
approach of Newton iteration for several reasons:
First, it converges quadratically if the initial guess is
close to the actual root, which can be assured by our
bounding volume hierarchy. Secondly, the surface
derivatives exist and are very easy to compute. And
last but not least, this algorithm is well suited for an
implementation using SIMD instructions.
Basically, Newton’s method is a Taylor series which
is truncated after the first derivative. As we are
solving a two-dimensional problem, the Newton step
is defined as

),(1

1

1
nn

n

n

n

n vuRJ
v
u

v
u

⋅−

=

 −

+

+ ,

where J is the Jacobian matrix of R which is given
by

⋅⋅
⋅⋅

=
),(),(
),(),(

22

11

vuSNvuSN
vuSNvuSN

J
vu

vu .

Here, Su and Sv denote the partial derivative in the
corresponding parametric direction. The inverse of
the Jacobian can be efficiently computed using the
submatrices ijJ of J that remain when the i th row

and the j th column are removed:

−

−
⋅=−

1121

12221

)det(
1

JJ
JJ

J
J .

We continue the iteration until one of three criteria is
met: An intersection between the ray and the surface
is found, if and only if we are closer to the root than
some user defined threshold ε

ε<),(nn vuR .

Otherwise, the iteration continues until either this
threshold criterion is met, the next iteration takes us
further away from the root, i.e.

),(),(11 vnvn vuRvuR >++ ,

or a maximum number of iterations has been
performed.
Unfortunately, since we employ SIMD instructions
to calculate four intersections at once, the iteration
can be stopped only if all rays of a packet meet any

of these criteria. However, this is still more than
three times faster than computing the intersections
sequentially.

4.3.2 Evaluation
The Newton iteration often needs to evaluate surface
points as well as partial derivatives for given
parameter values (u,v) . In this section we present a
way how these can be computed efficiently.
Basically, we have to compute the product of three
matrices. That is

TvvvPuuuvuS]1][][1[),(2323= .

A naive implementation would simply compute the
two matrix products, which consists of 60
multiplications and 45 additions (][P contains three-
dimensional vectors!), ignoring the operations
needed to compute of][U and][V . However, as the
surface evaluation is used very often, it is necessary
to optimize it as much as possible.
First of all, the equation above can be rewritten as

∑
=

=
4

1
]][][[),(

i
ii VPUvuS ,

where [Pi] denotes the i th column of [P] and [Vi]
the i th row of][V . Note that [Vi] represents only a
single floating-point.

Given the parameters),(vu , we can then evaluate a
point),(vuS on the surface using the following C-
like pseudo code fragment:

u2 = u * u
u3 = u * u2
f = 1
s = 0
i = 15
while (i >= 0) {
 t = p[i--]
 t = t + u * p[i--]
 t = t + u2 * p[i--]
 t = t + u3 * p[i--]
 s = s + t * f
 f = f * v
}
return s

This code is pretty straightforward to implement
using SIMD instructions, thereby calculating four
surface evaluations in parallel. Moreover, we can
easily take advantage of the combined multiply-add
instructions provided by some CPU architectures
(e.g. PowerPC). Furthermore, by performing loop-
unrolling, additional unnecessary operations can be
eliminated (for example the last two statements in the
loop for the first iteration).

Scene # Patches # Trims #B-Boxes Memory
consumption

Preprocessing
time (min)

Average
Framerate

Teapot 32 - 2736 150 kB 0:01 6.4 fps

Cessna 1555 - 53216 3.2 MB 0:03 4.2 fps

Chessboard 16182 - 227794 15.6 MB 0:13 6.7 fps

VW Polo 11576 38556 448500 28.3 MB 5:26 5.1 / 3.4 fps*

Table 1. Statistics for our test scenes (*=trimming disabled/enabled)
The computation of both partial derivatives can be
executed even faster. For example, the derivative in
u direction is

T
u VPuuvuS]][][0123[),(2= .

If we apply the same optimizations as presented
above, the calculation of both partial derivatives
simplifies to 33 multiplications and 33 additions
each.

4.3.3 Trimming
For surface areas that have been classified to need
trimming during the preprocessing step, an
additional 2D point-in-curve test is performed after
an intersection has been found. Currently, this is
done sequentially for the (up to) four intersection
points, as we do not employ any SIMD instructions
for trimming yet.
In addition, we currently perform this point-in-
curve test for all trimming curves associated to the
original Bézier surface and not only for those parts
that are relevant for the examined region (i.e. the
subpatch containing the intersection point).
In our implementation, we use the point
classification approach presented by [Nis90a].
However, instead of using Bézier Clipping to
subdivide the trimming curves into three segments
if they cannot be clearly classified, we again take a
brute force approach by splitting the curves at

5.0=t and recursively test both segments.

4.3.4 Shading
Finally, all valid intersection points are shaded for
display. At present, we support the simple Phong
shading model [Bui75a]. This is also done using
SIMD instructions, calculating the color of up to
four intersection points in parallel. Here, additional
rays for calculating shadows, reflections or
refraction may be generated.

5. RESULTS
In this section we present some timings of our ray
tracing system for a couple of test scenes of varying
complexity (see Table 1 for the numbers and Figure
4 for renderings), measured on a dual processor

PowerMac G5 running at 2 GHz using only a single
rendering thread. All images are generated at a
fixed screen resolution of 512x512 pixels using
simple Phong shading. Note that all scenes are lit
by a single point light source, except for the
Chessboard which is lit by three point lights.
Our ray tracing system based on the algorithms
presented above is able to render the Utah Teapot
consisting of 32 Bézier patches at an average frame
rate of 6.4 fps, whereas the more complex Cessna
and Chessboard scenes can be rendered at 4.2
frames/s and 6.7 frames/s respectively.
To compare our results to the approach presented
by [Ben04a], we additionally rendered the Teapot
model at a screen resolution of 640x480. Here, the
frame rate drops to 5.5 fps due to the larger number
of pixels. This frame rate is comparable to their
result for a subdivision depth of 0 (i.e. directly
rendering the control mesh), already taking into
account that we use a different test platform that is
approx. 35 percent faster. Nevertheless, as the
number of refinement steps usually has to be higher
in order to obtain a good rendering quality, our
method easily outperforms the subdivision
approach for this model. For example, when using
only four refinement steps, our implementation is
already twice as fast.

In contrast to the other test scenes, the VW Polo is
the only model that contains trimming curves. Here,
the large number of trims comes from the
conversion of the original B-splines into piecewise
cubic Bézier curves. It should also be noted that
most of the preprocessing time is spent for reading
the IGES file (~15%) and for the classification of
the generated subpatches (~78%). However, the
preprocessing code is fairly unoptimized at the
moment.

As can be seen from Table 2, the classification of
the patches works quite well for the Polo model.
Trimming calculations need to be performed only
for a small fraction of the generated patches during
rendering, as most subpatches can be categorized in
advance.

Figure 4. Renderings of our test scenes: Utah Teapot, Cessna, Chessboard, and VW Polo (with trimming).
With trimming disabled, the Polo can be displayed
at an average frame rate of 5.1 frames per second.
After trimming is enabled, the average frame rate
drops to 3.4 fps. On the one hand, this can be
explained by the fact that trimming is currently
performed sequentially for the intersections found.
On the other hand, we still perform a lot of unnec-
essary trimming calculations, as the point-in-curve
test is executed for all trimming curves associated
to the original Bézier patch and not only for those
parts that are relevant to the examined subpatch.

Subpatches (total) 496827 100.0%

Without trims
With trims
 Totally in
 Need trimming
 Discarded

70523

426304
241480

33987
150837

14.2%

85.8%
48.6%

6.8%
30.4%

Table 2. Number of subpatches and their
classification for the VW Polo model.

For comparison, we also rendered a tessellated
model of the VW Polo consisting of 326159
triangles using a modified version of our ray tracing
system, achieving an average frame rate of 4.8 fps.
Although this is still faster than ray tracing the
Bézier-based model, one should keep in mind that
comparable models used for design reviews in the
industry today usually consist of several million
triangles that easily occupy gigabytes of memory.
As memory access has been shown to be a limiting
factor for ray tracing [Wal01a], direct rendering of
bicubic Bézier surfaces can already be a valuable
alternative to triangle-based approaches, especially
for large models.

6. FUTURE WORK
Since our interactive ray tracing system for
trimmed bicubic Bézier surfaces is still at an early
stage of development, there is much room for
improvements left, both in terms of rendering
performance and image quality.
Currently, we are working on a distributed version
of our rendering system, running on a cluster of

heterogeneous PCs. First results indicate that the
performance scales almost linearly with the number
of processors, as could be expected.
In addition, the trimming code can be improved in
different ways. As already stated before, the
trimming curves can be split up in such a way that
for each subpatch only the relevant parts have to be
tested. Secondly, it would be interesting to examine
if the usage of SIMD calculations can also speed up
the trimming calculations. And finally, efficient
handling of the special case of line segments may
further improve performance.
Moreover, the creation of our bounding volume
hierarchy could be improved by using a more
sophisticated heuristic to guide the subdivision of
the Bézier patches (e.g. taking the curvature of the
surface into account) instead of using the simple
flatness criterion.
As already stated in the introduction, our system is
currently restricted to bicubic Bézier surfaces.
Extending the presented approach to Bézier patches
of arbitrary degree is relatively easy to implement.
Thinking even further, it would be interesting to
investigate more complex surface descriptions such
as B-splines or NURBS.
Finally, the next step in terms of image quality will
be to add support for the typical ray tracing effects
like shadows, reflections, and refractions.

7. CONCLUSION
Recently, it has been shown that it is possible to ray
trace complex scenes at interactive frame rates even
on a single commodity PC. Currently, however,
almost all of these implementations use triangles as
the only geometric primitive.
In this paper, we have presented the details of our
ray tracing system that is capable of directly
rendering trimmed bicubic Bézier surfaces. We
have shown that by carefully optimizing the
implementation of a well-known intersection
technique using SIMD instructions provided by
many of today’s CPUs, it is feasible to render this
kind of free-form surfaces at interactive frame rates
as well.

Our results indicate that direct ray tracing of Bézier
surfaces is already a valuable alternative to triangle-
based approaches, especially for complex models.
Moreover, we also suggested a number of possible
improvements to further increase the achievable
frame rate, which will make this method even more
competitive.

8. ACKNOWLEDGEMENTS
We would like to thank all the people that have
contributed to this paper, in particular Matthias
Biedermann and Thorsten Grosch for many helpful
discussions and their comments on preliminary
versions, as well as Arne Claus for modeling the
Cessna and Chessboard scenes. In addition, we
would like to thank the reviewers for their
suggestions to improve this paper. Special thanks
also go to the Volkswagen AG for providing the
data of the Polo model and granting permission to
use it in this publication.

9. REFERENCES
[Ben04a] Benthin, C., Wald, I., and Slusallek, P.

Interactive Ray Tracing of Free-Form Surfaces.
ACM Afrigraph, pp.99-106, 2004.

[Bui75a] Bui-Tuong, P. Illumination for Computer
Generated Pictures. Com. of ACM 18, No.6,
pp.311-317, 1975.

[Gei03a] Geimer, M., and Müller, S. A Cross-
Platform Framework for Interactive Ray
Tracing, Proc. of GI Graphiktag, pp.25-34,
2003.

[Gol87a] Goldsmith, J., and Salmon, J. Automatic
Creation of Object Hierarchies for Ray Tracing.
IEEE CG&A 7, No.5, pp.14-20, 1987.

[Int04a] Intel Corp. IA-32 Architecture Software
Developer’s Manual. 2004.

[Int04b] Intel Corp. Hyper-Threading Technology.
http://www.intel.com/technology/hyperthread/

[Lex01a] Lext, J., and Akenine-Möller, T. Towards
Rapid Reconstruction for Animated Ray
Tracing. EUROGRAPHICS Short
Presentations, pp.311-318, 2001.

[Mar00a] Martin, W., Cohen, E., Fish, R., and
Shirley, P. Practical Ray Tracing of Trimmed
NURBS Surfaces. JGT 5, No.1, pp.27-52, 2000.

[Mot99a] Motorola, Inc. AltiVec Technology
Programming Interface Manual. 1999

[Muu95a] Muuss, M. J. Towards Real-Time Ray-
Tracing of Combinatorial Solid Geometric
Models. Proc. BRL-CAD Symposium, 1995.

[Nis90a] Nishita, T., Sederberg, T.W., and
Kakimoto,M. Ray Tracing Trimmed Rational
Surface Patches. Computer Graphics 24, No.4,
pp.337-345, 1990.

[Par99a] Parker, S., Martin, W., Sloan, P.-P. J.,
Shirley, P., Smits, B., and Hansen, C.
Interactive Ray Tracing. Sym. Interactive 3D
Graphics, pp.119-126, 1999.

[Roc89a] Rockwood, A., Heaton, K., and Davis, T.
Real-Time Rendering of Trimmed Surfaces.
Computer Graphics 23, No.3, pp.107-116,
1989.

[Smi98a] Smits, B. Efficiency Issues for Ray
Tracing. JGT 3, No. 2, pp.1-14, 1998.

[Swe86a] Sweeney, M., and Bartels, R. Ray
Tracing Free-Form B-Spline Surfaces. IEEE
CG&A 6, No.3, pp.41-49, 1986.

[Wal01a] Wald, I., Slusallek, P., Benthin, C., and
Wagner, M. Interactive Rendering with
Coherent Ray Tracing. Computer Graphics
Forum 20, No. 3, pp.153-164, 2001.

[Wal01b] Wald, I., Slusallek, P., and Benthin, C.
Interactive Distributed Ray Tracing of Highly
Complex Models. Rendering Techniques 2001,
pp. 274-285, Springer, 2001.

[Wal03a] Wald, I., Benthin, C., and Slusallek, P.
Distributed Interactive Ray Tracing of Dynamic
Scenes. IEEE Sym. on Parallel and Large-Data
Visualization and Graphics, pp.77-86, 2003.

[Wal04a] Wald, I. Realtime Ray Tracing and
Interactive Global Illumination. PhD thesis,
Saarland University, Saarbrücken, Germany,
2004.

[Wan01a] Wang, S., Shih, Z, and Chang, R. An
Efficient and Stable Ray Tracing Algorithm for
Parametric Surfaces. Journal of Information
Science and Engineering 18, pp.541-561, 2001.

[Whi80a] Whitted, T. An Improved Illumination
Model for Shaded Display. Com.of ACM 23,
No.6, pp.343-349, 1980

Realistic Solar Disc Rendering

Andrei Linţu Jörg Haber Marcus Magnor

MPI Informatik

Stuhlsatzenhausweg 85

66123 Saarbrücken, Germany

lintu@mpi-sb.mpg.de haberj@mpi-sb.mpg.de magnor@mpi-sb.mpg.de

ABSTRACT

This paper concentrates on rendering the solar disc considering Rayleigh scattering, Mie scattering,
absorption, and refraction. The atmosphere is modeled in layers, each layer having a set of individual
optical properties. Based on different atmospheric temperature profiles and climates, the solar disc is
rendered in realistic shape and color. In particular, we replicate optical phenomena such as the red and
the green flash, limb darkening, and refractive distortions of the solar disc.

Keywords

Photo-realistic rendering, scattering, solar disc, atmosphere, ray-tracing

1. INTRODUCTION

Computing a physically and visually correct re-
production of the colors of the sky dome around
the observer is an essential task for outdoor scene
renderings. Although some work has been done
on the simulation of the sky colors during day-
time [PSS99; NDKY96], nighttime [WJDS+01],
and twilight periods [HMS], realistic rendering of
the solar disc has received little attention in the
literature so far. In order to achieve realistic ren-
derings, the optical phenomena occurring in the
atmosphere need to be considered. Based on the
physical structure of the Earth’s atmosphere, this
paper reproduces solar disc appearances at sun-
rise/sunset in correct form and color. We take into
account Rayleigh scattering due to air molecules
as well as Mie scattering due to aerosols present
in the atmosphere, thus obtaining a realistic color
of the solar disc. To obtain the correct shape of

Permission to make digital or hard copies of all or part
of his work for personal or classroom use is granted
without fee provided that copies are not made or dis-
tributed for profit or commercial advantage and that
copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Conference proceedings ISBN 80-903100-7-9

WSCG’2005, January 31-February 4, 2005

Plzen, Czech Republic.

Copyright UNION Agency - Science Press

Figure 1: A sunset scenario in a polluted maritime
climate, few minutes before the Sun is setting.

the solar disc, we also model refraction, allowing
us to trace rays correctly through the atmosphere.

Based on the actual structure of a given input
atmosphere model, i.e. height-dependent temper-
ature profile and distribution of aerosols, we ob-
serve different colors and shapes of the solar disc.
The color of the disc varies with the climate, its
shape differs due to mirage phenomena. By ren-
dering the Sun taking different wavelengths into
account, chromatic aberration phenomena such as
the green flash or the red flash can be reproduced.

In the following Section we give a short overview
of previous work in the field of physically based
rendering methods of the solar disc and the at-

mosphere. After an introductory review of the
physics in Section 3, we give a system overview in
Section 4. We describe our approach on solar disc
rendering in Section 5. Results are presented in
Section 6, before we conclude and point to future
work in Section 7.

2. RELATED WORK

Realistic renderings of atmospheric phenomena
has been a well researched topic in the computer
graphics community. We review papers focusing
on solar disc rendering, as well as work on render-
ing the sky.

Some publications focus on physically correct
and realistic atmosphere simulations, for day-
time [PSS99], [NDKY96] as well as for night-
time [WJDS+01]. Also, a system for rendering the
atmosphere from a viewpoint situated in space is
presented by Nishita et al. [NSTN93].

These approaches concentrate on fast rendering
of the atmosphere, approximating the physics of
atmospheric light transport. A work focusing on
a physically correct simulation of the atmosphere
during twilight phenomena is presented in [HMS].

A different method focusing on the rendering of
the solar disc is presented by Bruton [Bru96]. In
his thesis, ray-tracing through the atmosphere is
performed using Lehn’s model [Leh85], and solar
disc appearance is simulated from diverse input
temperature profiles. However, this work consid-
ers only Rayleigh scattering due to air molecules.
Thus, different types of sunsets depending on cur-
rent aerosol distribution in the atmosphere cannot
be simulated.

One possible approach is to simulate the green
flash using an approach based on photon map-
ping [GSAM04; SGGC04], this work implements a
“Curved Photon Mapping” algorithm. Although
the obtained result is highly realistic, this ap-
proach is slow (due to the photon mapping al-
gorithm), and it lacks any dependence on climate
conditions.

In contrast, our approach concentrates on
combining the simplified parabolic model for
ray-tracing in the atmosphere presented by
Lehn [Leh85] and the climate dependent stratified
atmosphere model presented in [HMS] in order to
create a ray-tracing system which realistically re-
produces several possible sequences of the solar
disc at sunset or sunrise.

3. SUNSET SCIENCE

Our approach for rendering the solar disc is able to
faithfully reproduce a variety of optical phenom-

ena such as mirages and chromatic aberrations.
In the following, we give physical descriptions of
these phenomena.

3.1 Mirages

Mirages are caused by strong ray-bending due to
steep temperature gradients in the atmosphere.
According to the position of the mirrored images
relative to the original object, mirages can be clas-
sified into two main categories:

• inferior mirages: mirrored image below object

• superior mirages: mirrored image above ob-
ject

The inferior mirage occurs if a layer of hot air
is close to the ground, bending the grazing rays
upwards. It can be observed in deserts or above
asphalt pavings on sunny days. An example of
this mirage is presented in Figure 4, the so called
Omega sunset.

For the superior mirage to take place, the ob-
server has to be situated inside a layer of air with a
thermal inversion, i.e. there is a sudden increase in
temperature above the observer. The rays in this
duct intersect after traversing kilometers through
the atmosphere, creating the inverted image of a
distant object. In the case of the superior mirage,
the intersecting rays remain inside the inversion
layer. Thus superior mirages do not occur of as-
tronomical objects that are situated outside the
Earth’s atmosphere.

If the observer is above a thermal inversion layer
the just recently understood mock mirage can oc-
cur [You04]. In this case the intersecting rays can
escape the Earth’s atmosphere, the intersection
points being far away from the observer.

A large variety of mirages can occur. They are
highly dependent on the altitude of the observer.
In order to be able to see a solar disc mirage, at
least one temperature inversion layer has to be
present in the atmosphere at the time of obser-
vation. This inversion layer produces a sudden
change in the refraction index of the air, thus cre-
ating a mirage.

3.2 The Green Flash

This peculiar optical phenomenon consists of a
short green flash (lasting only a few seconds) that
can appear on top of the solar disc when the Sun
sets. It is due to the large variation of refraction
and induced dispersion close to the horizon.

There are several types of green flashes, each
one being associated with a mirage phenomenon.
The green color is mainly due to atmospheric dis-
persion which makes the red component of the

Figure 2: Photograph of a Green Flash Sequence
Photograph by Mario Cogo, www.intersoft.it/
galaxlux, used with permission

light spectra disappear first, followed by green,
blue, and violet during sunset. Another effect con-
tributing to the green flash is atmospheric extinc-
tion, which mainly consists of atmospheric scatter-
ing due to air molecules. In this case, the short-
est wavelengths are almost completely removed.
Therefore, it is sometimes possible to observe only
the green component of the light spectra for a few
seconds during sunset.

The green flash phenomenon depends also on
the adaptation of the human visual system dur-
ing observation. The high intensity of the solar
disc bleaches the red-sensitive photo-pigments on
the retina, thus allowing also yellow flashes to be
perceived as green.

In Figure 2 a sequence of photographs of this
phenomenon are presented. Figure 13 illustrates
a simulation generated using our system. An ex-
haustive explanation and bibliography of this phe-
nomenon can be found in [You04].

3.3 The Red Flash

Another type of mirage, which is harder to observe
than the green flash, is the red flash. The red
flash can occur due to a mock mirage, where it con-
sists of a round red “droplet” below the “cropped”
solar disc (see Figure 3), or as a consequence of an
inferior mirage, where it is visible as a red middle
region of the Omega sunset (see Figure 11).

Figure 3: Photograph of a Red Flash
Photograph by Mario Cogo, www.intersoft.it/
galaxlux, used with permission

Figure 4: Photograph of an Omega Sun
Photograph by Mario Cogo, www.intersoft.it/
galaxlux, used with permission

3.4 Limb Darkening

This phenomenon consists of the darkened outer
rim of the solar disc. It is due to the fact that light
from the center of the Sun traverses less gas of the
Sun’s photosphere where it is partially absorbed.

Limb darkening can be phenomenologically de-
scribed by

I

′(λ) = I(λ) ·
(

1 − u ·
(

1 −

√

1 −
d

2

r

2

))

,

where I is the solar irradiance, d is the distance
from the center of the Sun, r is the radius of the
solar disc, and u is the limb darkening coefficient
for the Sun, which is approximately 0.6 for visible
sunlight [Bru96].

We incorporate limb darkening in our system
in order to obtain realistic renderings of the solar
disc.

4. SYSTEM OVERVIEW

Our solar disc rendering system combines tracing
of parabolic rays through the atmosphere [Leh85;
Bru96] with an atmosphere model incorporating
different climate-dependent characteristics [HMS]
to reproduce both the correct shape of the solar

disc and its corresponding correct color. The used
atmosphere model incorporates the scattering and
absorption coefficients for Rayleigh scattering and
Mie scattering. The effects of different climate
types, air humidities, and atmosphere tempera-
ture profiles on the appearance of the solar disc at
sunset or sunrise are simulated.

Ray-tracing through the atmosphere is com-
puted using Lehn’s parabolic model for a light
ray traveling through an atmosphere layer [Leh85].
This model reduces the amount of computation
time otherwise required to solve the Eikonal PDE
for light rays traveling through the atmosphere.
To determine the distribution of the aerosols in
the atmosphere we use the OPAC software pack-
age [HKS98; Hes98].

As input to our simulations, in addition to the
required climate type and temperature profile, we
also specify observer height.

We now give a short, step by step description of
the used method:

• specify input: temperature profile, climate,
number of layers and observer height ;

• precompute the radius of curvature for the
parabolic ray approximations;

• compute solar disc shape – ray-trace through
the atmosphere model and compute the
length the rays travel through each layer;

• compute solar disc color – multiply the initial
intensity with the extinction factor;

5. SOLAR DISC RENDERING

In this section we describe the atmosphere model
and the ray-tracing mechanism used in our simu-
lations.

5.1 Extinction Coefficients

To determine the optical properties of the aerosols
present in the atmosphere, we use the pub-
licly available OPAC software package [HKS98;
Hes98]. Using this package we compute wave-
length-dependent aerosol absorption coefficients
σ

aerosol
a (λ), scattering coefficients σ

aerosol
s (λ), and

anisotropy factors g(λ) for the given input climate
type of an arbitrary aerosol composition and hu-
midity.

Values for the wavelength-dependent scattering
coefficient σ

air
s (λ) of air molecules are taken from

Nagel et al. [NQKW78]. Pure air does not signif-
icantly absorb visible light. Thus, the extinction
coefficient of air σ

air
e is assumed to be equal to the

scattering coefficient, σ

air
e (λ) = σ

air
s (λ).

i,minH

Hi,max

Li

Earth

aerosol layer

troposphere

stratosphere

aerosols + air molecules

air molecules

0 km

12 km

35 km

2−10 km

Figure 5: Cross section of the atmosphere model.
It is composed of an aerosol-containing region,
clear troposphere and stratosphere [HKS98]. For
the aerosol region the height is climate dependent.

5.2 Atmosphere Model

The atmosphere model used in our system is strat-
ified, consisting of atmosphere layers located geo-
centrically around the surface of the Earth.

The height of individual layers is chosen such
that approximately the same amount of molecules
is contained in each one of them. Our atmosphere
model reaches up to a height of Hmax = 35 km.
The number of molecules above this height can be
considered negligible. A schematic description of
the used model is depicted in Figure 5.

We discretize the atmosphere into a set of geo-
centric atmosphere layers Li, (i = 1, . . . , N). Each
layer Li has an individual upper and lower bound-
ary at height Hi,max and Hi,min, respectively. To
each layer Li we assign the relative humidity wi

and the following optical parameters:

• aerosol scattering coefficient σ

aerosol
s,i (λ)

and extinction coefficient σ

aerosol
e,i (λ) =

σ

aerosol
s,i (λ) + σ

aerosol
a,i (λ);

• Henyey-Greenstein scattering anisotropy co-
efficient gi(λ);

• isotropic scattering coefficient of air σ

air
s,i (λ);

• mean index of refraction ηi(λ) and indices of
refraction ηi,min(λ) and ηi,max(λ) correspond-
ing to Hi,min and Hi,max, respectively.

All these parameters are functions of the wave-
length λ and are evaluated for a discrete number
of wavelengths. A more detailed description of
the used layered atmosphere model can be found
in [HMS].

The simulations presented in this paper are typ-
ically computed using 300–30000 layers, depend-
ing on the input temperature profile. The num-
ber of input layers is dependent on the height of
the inversion layers. For a thermal inversion layer
close to the surface of the Earth, we need a fine
sampling of our atmosphere model in order to be

able to correctly simulate the corresponding mi-
rage, due to the exponential distribution of the
atmosphere layers.

The solar irradiance I0(λ) outside the atmo-
sphere, i.e. before the sun light reaches the ozone
layer, is computed from the solar spectrum data
measured by Kurucz [KFBT84] for wavelengths
from 200 nm to 1000 nm. We filter the solar ir-
radiance using the approach presented in [HMS],
accounting for wavelength-dependent absorption
in the ozone layer.

5.3 Temperature Profiles

Our simulations are based on temperature pro-
files of the atmosphere, the starting point being
the U.S. Standard Atmosphere [Bru96; You04].
In order to simulate different mirage phenomena,
several input height-temperature profiles differing
from the U.S. Standard Atmosphere are used. The
profile of the atmosphere is specified as the tem-
perature gradient at discretized heights.

5.4 Atmospheric Refraction

A model based on exact computation of refrac-
tion taking place in the atmosphere requires nu-
merically solving a PDE and is computationally
too expensive to be practically useful. The sim-
plest solution is to assume all rays traveling lin-
early through each layer. We chose to implement a
quadratic-error model developed by Lehn [Leh85].
This model assumes that the circular arcs repre-
senting the Earth’s surface, the light rays, and the
layer boundaries of the atmosphere model can be
locally approximated by parabolas.

Taking into consideration the specified atmo-
sphere temperature profile, climate and humidity
for the current rendering, parameters regarding
to the used model can be computed before the
actual ray-tracing process. For each layer Li we
precompute the wavelength-dependent radius of
curvature κi(λ) using

κi(λ) = −K · ηi(λ) ·
(Hi,max − Hi,min)

(ηi,max(λ) − ηi,min(λ))
,

where ηi(λ) is the mean index of refraction of air
in layer Li, and ηi,max(λ), ηi,min(λ) are the re-
fractive indices of air corresponding to the upper
and lower heights Hi,max and Hi,min. The value
for K depends on the initial parameters in the
ray-tracing process and can be found in Bruton’s
thesis [Bru96]. The rays are traced through the
atmosphere starting from the layer containing the
observer.

In Figure 6, the two possible cases of the inter-
section between the currently traced ray and the

boundaries of an atmosphere layer are depicted.
The expected trajectory of the ray is denoted as
Path 1. However, if a thermal inversion is present,
the ray can bend downwards following Path 2.

Hi, min

Hi, max

L i

Earth

Path 1

Path 2

Figure 6: Two possible ray paths through the at-
mosphere. Path 1 depicts the normal trajectory
of a ray traveling through layer Li. For a thermal
inversion present in Li, the ray trajectory may fol-
low the path indicated as Path 2.

The distance ∆γi(λ) that a light ray of wave-
length λ travels through layer Li is numerically
determined by

∆γi(λ) = 2 · κi(λ) · arcsin
(

d

2 · κi(λ)

)

(1)

with

d =

√

∆x

2 +
(

∆z −
∆x

2

2R

)2

.

The values for ∆x and ∆z are computed during
the ray-tracing process through the atmosphere
layers as described by Lehn [Leh85] and Bru-
ton [Bru96]. Based on the current optical parame-
ters during ray-tracing, for each layer Li a decision
is taken [Leh85; Bru96] whether Path 1 or Path 2
is chosen for the current ray (see Figure 6).

In order to accurately compute the indices of
refraction for each atmosphere layer based on the
input temperature profiles, we employ the formu-
las proposed by Ciddor [Cid96]:

ηh,w(λ) = 1 +
ρa

ρd

· (η̃d−1) +
ρv

ρw

· (η̃w−1) ,

where ρd is the density of dry air at 15 ◦C and
101325 Pa, ρw is the density of pure water vapor
at 20 ◦C and 1333 Pa, and ρa and ρv are the den-
sities of the dry air component and water vapor
component for the current conditions. The equa-
tions needed to calculate the air densities in the
above formula are given by Ciddor [Cid96]. To
compute the values for η̃d and η̃w, the following
equations are used [Cid96]:

η̃d(λ) = 1+

„

5792105.0

238.0185 − λ−2
+

167917.0

57.362 − λ−2

«

·10−8

η̃w(λ) = 1 + (295.235 + 2.6422 λ
−2

− 0.03238λ
−4 +

0.004028 λ
−6) · 1.022 · 10−8

.

5.5 Atmospheric Extinction

To accurately determine the color of each pixel in
the rendered images, we first compute the inten-
sity I(λ) of sun rays that reach the observer after
extinction in the atmosphere according to:

I(λ) = I0(λ) · ξγ(λ) , (2)

where I0(λ) is the solar irradiance filtered by ab-
sorption in the ozone layer and the extinction fac-
tor ξγ(λ) is given as:

ξγ(λ) = exp

(

−

∫

γ

(

σ

aerosol
e (λ) + σ

air
e (λ)

)

ds

)

.

The value for the extinction factor ξγ(λ) is nu-
merically determined by

ξγ(λ) = exp

−

N
X

i=1

“

σ
aerosol

e,i (λ) + σ
air

e,i(λ)
”

· ∆γi(λ)

!

,

(3)

where ∆γi(λ) denotes the path length through
layer Li, see Equation (1).

We take into account both multiple Rayleigh
scattering (by air molecules) and Mie scatter-
ing (by aerosols). Mie scattering is modeled us-
ing the well-known Henyey-Greenstein approxi-
mation [HG41]. For rendering the solar disc, the
phase angle (i.e. the angle between incident light
and scattering direction) in this approximation
can be considered equal to zero, since the diameter
of the solar disc is merely 0.5◦. As a consequence,
the extinction factor ξγ(λ) from Equation (3) is
modified as follows:

ξ
′

γ(λ) = exp

−

N
X

i=1

σ
mult

e,i (λ) · ∆γi(λ)

!

, (3’)

σ
mult

e,i (λ) = (1 − g(λ)) · σaerosol

e,i (λ) + σ
air

e,i(λ) .

Substituting ξ

′

γ(λ) for ξγ(λ) in Equation (2)
yields the final formula to compute the intensity
I(λ).

5.6 Gamma Correction

For the final rendering, we convert the sampled
spectral distribution into its corresponding color
in XYZ color space by convolution with the CIE
(1964) 10◦ color matching functions. Due to the
high dynamic range of intensities, we have to ap-
ply gamma correction to faithfully display our re-
sults. We thus transform from XYZ color space to
xyY color space and perform gamma-correction on
the Y-value:

Y′ = Y1/γ
,

Figure 7: Sunset in a polluted urban climate with
80% humidity.

where we use γ = 2.5 for the correction coefficient.
Finally, we convert back to XYZ and from XYZ to
RGB color space using the sRGB primaries from
CIE Rec. 709 and a D65 whitepoint. For details
of these spectral conversions see the textbooks by
Wyszecki et al. [WS82] or Hall [Hal89].

6. RESULTS

We have rendered a variety of sunset sequences for
different meteorological conditions using the ap-
proach presented in this paper. To obtain a large
diversity of solar disc renderings, various aerosol
distributions, air humidity values, and tempera-
ture profiles of the atmosphere have been used.

Figure 1 shows a sunset scenario for a polluted
maritime climate with 80% humidity. A polluted
urban climate with 80% humidity has been used
to simulate the sunset depicted in Figure 7. The
sunset reproduced in Figure 8 has been simulated
for a continental climate with 70% humidity. For
all of the above mentioned images, the colors of
the sky have been computed and rendered using
the approach presented in [HMS].

All images presented in this paper have been
generated using a discretization of Nλ = 8 wave-
lengths in the range from 380 nm to 720 nm. De-
pending on the number N of atmosphere lay-
ers used for the simulations and the resolution
of the generated images, computation times on a
2.4 GHz Pentium4 PC are in the range of a few
minutes for our unoptimized implementation.

Figures 9 and 10 show the effect of varying hu-
midity on the appearance of the solar disc at sun-
set or sunrise. With increasing air humidity the
solar disc becomes noticeably darker.

The consequences of a temperature inversion
layer close to the ground is depicted in Figure 11.
This is the so called Omega Sun, the form of the
solar disc being reminiscent of the Greek letter Ω.

Figure 8: Sunset for a continental climate with
70% humidity.

Figure 9: Sunset in continental climate for differ-
ent humidities. Top to bottom: 50%, 80%, and
95% humidity.

The red flash is simulated in Figure 12. An at-
mosphere containing a weak inversion layer is used
here to simulate a mock mirage for an observer sit-
uated at an altitude of 45 m above sea level.

In Figure 13, a green flash is replicated. The at-
mosphere is identical to the one used in Figure 12.
Here, however, the Sun is at a lower altitude. The
difference in altitude between successive render-
ings is below one arc-minute.

7. CONCLUSIONS

A system for realistic rendering of the solar disc
has been presented. Atmospheric optical phenom-
ena such as mirages, red and green flash, and limb
darkening are simulated based on physical laws
and meteorological conditions. In order to vali-
date the obtained results, one future research di-

Figure 10: Sunset in tropical maritime climate for
80% (top) and 90% (bottom) humidity.

Figure 11: The omega sun frequently occurs in
desert climates. A strong inversion layer right
above the ground causes this inferior mirage.

rection is to calibrate the rendered images with
real life photographs of sunsets. Furthermore, due
to the large variation in extinction of various cli-
mates, which are reflected in the high dynamic
range of our obtained results, an efficient tone
mapping operator should be developed.

Acknowledgements

The authors would like to thank Mario Cogo for
his kind permission to use his photographs of the
sun [Cog04]. The discussions had with Ivo Ihrke
are also highly appreciated. Thanks to Andrew T.
Young for sharing his comprehensive knowledge
about the Green Flash on his website [You04].

8. REFERENCES

[Bru96] Dan Bruton. Optical Determination of
Atmospheric Temperature Profiles. PhD thesis,
Texas A&M University, August 1996.

[Cid96] Philip E. Ciddor. Refractive index of air:
new equations for the visible and near infrared.
Applied Optics, 35(9):1566–1573, March 1996.

[Cog04] Mario Cogo. Astrophotography. available
from http://www.intersoft.it/galaxlux, 1996
- 2004.

[GSAM04] D. Gutierrez, F. Seron, O. Anson, and
A. Munoz. Chasing the Green Flash: a Global Il-
lumination Solution for Inhomogeneous Media. In

Figure 12: The red flash—a frequent mirage,
hardly observed because of the small hue differ-
ence between the color of the solar disc and that
of the flash.

Figure 13: The green flash resulting from a mock
mirage.

Spring Conference On Computer Graphics 2004,
pages 95–103, 2004.

[Hal89] Roy Hall. Illumination and Color in Com-
puter Generated Imagery. Springer, New York,
1989.

[Hes98] M. Hess. OPAC (Optical Proper-
ties of Aerosols and Clouds). available from
ftp://ftp.lrz-muenchen.de/pub/science/

meteorology/aerosol/opac/, 1998.

[HG41] Louis G. Henyey and Jesse L. Greenstein.
Diffuse Radiation in the Galaxy. Astrophysical
Journal, 93:70–83, 1941.

[HKS98] M. Hess, P. Koepke, and I. Schult. Opti-
cal Properties of Aerosols and Clouds: The Soft-
ware Package OPAC. Bulletin of the American
Meteorological Society, 79(5):831–844, May 1998.

[HMS] Jörg Haber, Marcus Magnor, and Hans-
Peter Seidel. From Dust to Dawn — Physically
based Simulation of Twilight Phenomena. ACM
Transactions on Graphics. to appear.

[KFBT84] R. L. Kurucz, I. Furenlid, J. Brault,
and L. Testerman. Solar Flux Atlas from 296 to
1300 nm. Technical report, NOAO, Sunspot, NM,
1984. available from http://kurucz.harvard.

edu/sun/fluxatlas/.

[Leh85] W. H. Lehn. A simple parabolic model
for optics of the atmospheric surface layer. Ap-
plied Mathematical Modelling, 9:447–453, Decem-
ber 1985.

[NDKY96] Tomoyuki Nishita, Yoshinori Dobashi,
Kazufumi Kaneda, and Hideo Yamashita. Dis-
play Method of the Sky Color Taking into Account
Multiple Scattering. In Proc. Pacific Graphics ’96,
pages 117–132. IEEE, 1996.

[NQKW78] M. R. Nagel, H. Quenzel, W. Kwet,
and R. Wendling. Daylight Illumination — Color-
Contrast Tables for Full-Form Objects. Academic
Press, New York, 1978.

[NSTN93] Tomoyuki Nishita, Takao Sirai, Kat-
sumi Tadamura, and Eihachiro Nakamae. Display
of The Earth Taking into account Atmospheric
Scattering. In James T. Kajiya, editor, Computer
Graphics (SIGGRAPH ’93 Conf. Proc.), pages
175–182. ACM SIGGRAPH, August 1993.

[PSS99] Arcot J. Preetham, Peter Shirley, and
Brian Smits. A Practical Analytic Model for Day-
light. In Computer Graphics (SIGGRAPH ’99
Conf. Proc.), pages 91–100. ACM SIGGRAPH,
August 1999.

[SGGC04] F. Seron, D. Gutierrez, G. Gutierrez,
and E. Cerezo. Visualizing Sunsets through In-
homogeneous Atmospheres. In Proceedings of
Computer Graphics International 2004(CGI 2004,
pages 349–356. IEEE Computer Society Press,
2004.

[WJDS+01] Henrik Wann Jensen, Frédo Durand,
Michael M. Stark, Simon Premoze, Julie Dorsey,
and Peter Shirley. A Physically-Based Night Sky
Model. In Computer Graphics (SIGGRAPH 2001
Conf. Proc.), pages 399–408. ACM SIGGRAPH,
August 2001.

[WS82] Günter. Wyszecki and Walter S. Stiles.
Color Science: Concepts and Methods, Quantita-
tive Data and Formulae. John Wiley & Sons, New
York, 2nd edition, 1982.

[You04] Andrew T. Young. A Green Flash
Page. available from http://mintaka.sdsu.edu/

GF/index.html, 1999 - 2004.

Coherent and Exact Polygon-to-Polygon Visibility

F. Mora, L. Aveneau, M. Mériaux
SIC, CNRS FRE 2731, SP2MI

Bd Marie et Pierre Curie, BP 30179
80962 Futuroscope Chasseneuil Cedex – France

{mora,aveneau,meriaux}@sic.univ-poitiers.fr

ABSTRACT

Visibility computation is a classical problem in computer graphics. A wide variety of algorithms provides solutions
with a different accuracy. However, the four dimensional nature of the 3D visibility has prevented for a long time
from leading to exact from-polygon visibility algorithms. Recently, the two first tractable solutions were presented
by Nirenstein, then Bittner. Their works give the opportunity to design exact visibility tools for applications that
require a high level of accuracy. This paper presents an approach that takes advantage of both Nirenstein and
Bittner methods. On the one hand, it relies on an optimisation of Nirenstein’s algorithm that increases the visibility
information coherence and the computation robustness. On the other hand, it provides an exact visibility data
structure as Bittner does, but also suited for non-oriented polygon-to-polygon visibility queries.
���������
	���

Exact visibility, CSG, Plücker space

1. INTRODUCTION
Visibility computation is a recurring problem in com-
puter graphics applications. A wide variety of algo-
rithms exists in the literature but they provide a dif-
ferent accuracy. This has led to a general algorithm
classification :

• Aggressive : the visibility is underestimated.
• Conservative : the visibility is overestimated.
• Approximate : both aggressive and conservative.
• Exact : the visibility is exactly computed.

Solutions for these first three categories are usually
fast. Most of them are designed in a context of visi-
bility culling [Coh03a]. In contrast, exact algorithms
require a significant computational effort, especially
for from-polygon or from-region visibility. This prob-
lem has been considered for a long time as intractable
due to the four dimensional nature of the visibility in
3D environment.����������������������� �"!$#��&%'��(��)�*!$+,�$�.-/!0�*%21���3/���4�5�$67!$+�+
�$�839!:���8�$6���-/���<;=�$��#56>�$�83?�������$�9!$+@�$�814+A!$���B���C�$�ED'���
���F($�*!0�G���4%H;
�)��-'��D'��6I�4�J3'���:KG�A%'�L%M��-9!:�F14�$3/���4� !:���
�/�0�N�"!�%'�5�$�O%P�A�B������Q'D'���L%R6I�$�O3P���$S/�T�$�O14�������U��14�A!$+
!�%PK�!0�G�*!0(��8!$�/%7��-9!:�V1���3/���4�WQ?�L!0�X��-/���X�/�0���A1��Y!0�9%���-'�
6ID'+A+�14�)�*!0�����$�.���Z��-'�,S/���B�[3/!$($��\^]_�T14�$3C`5�0��-/����;
������a
���O����3/D/Q'+��A��-ba����53?�$�B�c����������Kd�����,�$�e���O���L%'���B������Q/DP���
����+����B���4aC���LfCD/�)���4�g3'�����$�h��3?�414�)S/1i3?�U�����A�������$��!$�/%9j0�0�k!l6>�4��\

m ���'6>�����4�'14�n3'���C14���L%'���/($�
o�p'qhr.s�t:uwv�t�xGyLt$t0u{z:uwv
|Op/}�~@� �0t�td�Ca��d!0�PD/!0��`WxPyUuw�/�4Q'��D/!0��`X�'a?�ttd�
��+��4����a9}=�4�41*-<����3/D/Q'+��A1$\
}=��3C`G����(�-C�
�lr�o��lr5��(����/1�`"u=pP14���4�'14�������4���4\

Previous works attempt to compute a global and exact
visibility information, as Pellegrini [Pel93a] or Durand
[Dur02a] with the 3D visibility complex. But these
solutions are not practicable.
The first tractable algorithm was recently published by
Nirenstein [Nir02a]. It allows an exact computation
of the visibility from a polygon. At the same time,
Bittner[Bit02c] proposed another solution.
The exact visibility is not necessary for most applica-
tion. However, it has potential to improve high quality
rendering of complex scenes or realistic lighting ef-
fects. The works of Nirenstein and Bittner give the
opportunity to design efficient visibility tools encoding
an exact information.
This paper presents an exact visibility algorithm that
takes advantage of both Nirenstein and Bittner meth-
ods. It relies on Nirenstein algorithm but provides
in output a structured visibility information as Bittner
does. Moreover, it presents an optimisation of Niren-
stein algorithm that improves the visibility informa-
tion coherence. As a consequence, it gets a noticeable
property : By reducing the visibility result complexity,
the number of performed operations decreases, improv-
ing the robustness.
The second section explains the mathematical under-
lying and the general approach used by Nirenstein and
Bittner for exact visibility computation. The third one
gives an overview of the two existing algorithms and
underlines their differences. From this short study, the
section four presents our approach emphasising our

optimisation that provides a coherent visibility infor-
mation and improves robustness. At last, results are
given in the section five.

2. BACKGROUND
The two solutions proposed by Nirenstein and Bittner
both rely on the same approach. They solve the visibil-
ity problem between polygons by performing CSG op-
erations on polytopes (convex “volume”) in the Plücker
space. This section begins with a presentation of the
Plücker space where operates the solution. Next, it
gives an overview of the approach allowing exact visi-
bility computation from 3D polygons.

Plücker Space
The Plücker space [Som59a] is a five dimensional pro-
jective space P

5. It provides an elegant parametri-
sation for dealing with directed lines in R

3. Each
line l passing through the point (px, py, pz) and
next through (qx, qy, qz) is defined in P

5 by πl =

(π0, π1, π2, π3, π4, π5), with :

π0 = qx − px π3 = qzpy − qypz

π1 = qy − py π4 = qxpz − qzpx

π2 = qz − pz π3 = qypx − qxpy

Notice that (π0, π1, π2) is the direction of l and
(π3, π4, π5) encodes its location.
Next, let us consider the dual mapping within P

5 :
Each π ∈ P

5 can be associated with a dual hyperplane
hπ defined by :

hπ = {x ∈ P
5

| π3x0 + π4x1 + π5x2

+π0x3 + π1x4 + π2x5 = 0}

��� �����	��
��������
�����
��������

hπl
(x) = 0

πl1

πl2

πl3

�
l1l

hπl
(πl1) > 0

l2l

hπl
(πl2) = 0

�
l3l

hπl
(πl3) < 0

���� !#"%$'&)(+*,��-#$/.)"0��$1-243125��.-6��-72%8#$/9;:�<>=0?)$@"BA5C#3)=D$
(FEG8#$@"%$H3I"%$H2%8J"0$@$BKL�NM,$O"%$1-P2Q=D3IA4$OAFRS.)"+3)-T.)"0��$1-P24$OK
:���-J$U24.VC>3)A5AT3P-#.I2%8#$@"W(

l1
C>3IA5A4$OAT.P-X2%8J$U:�$@RS2Y.)R

l0 Z l2
��A7��->=���K>$1-P2[.-

l0
3)->K

l3
C>3)A5A4$OA

l0
.-X2%8#$

"0�� 8P2D\]EG8#$^9;:�<>=_?)$@"a`'3)CLCL��-# b.IR
l1 Z l2 Z l3 c ��:�:"%$OA5Cd$O=D24��eP$O:�f^:���$W3)gh.1eP$ Z .-i3P->KXgh$O:�. c 258#$UKh!J3):

8Pf>Ch$@"0CL:�3P-J$'.IR
l0
\

Given two lines l1 and l2 and their Plücker mapping
πl1 and πl2 , a crucial property is : l1 and l2 are incident

if and only if πl1 lies on the dual hyperplane of πl2

(and vice versa). If hπl1
(πl2) 6= 0, the sign of hπl1

(πl2)

determines the relative orientation of l1 and l2 as
illustrated on figure 1.

At last, each line in R
3 maps to a point in P

5 but each
point in P

5 does not map to a line in R
3. The mapping

of all real lines in P
5 forms a four-dimensional quadric

surface called the jlk m1npo�qsrQt@upv1qsrsw�x@r�y4z�npq .
Exact From Polygon Visibility Principle

2.2.1 Lines stabbing polygons
Previous definitions are useful to characterise the set
of lines stabbing convex polygons. In the Plücker
space, these lines are a connected subset of points on
the hypersurface. For computational convenience, it is
easier to deal with a polyhedral representation of this
subset by using the dual hyperplane mapping of each
polygon edges. The intersection of this polyhedral
structure with the Plücker hypersurface gives exactly
the set of lines stabbing each polygons. Such an
approach was already used by Teller [Tel92a] for
computing the anti-penumbra of an area light source
through a sequence of polygons.

Figure 2 illustrates a two triangles case since we are
in a context of polygon to polygon visibility. More
generally, if A and B are two polygons with n and m

edges e1, ..., en+m consistently oriented, all the lines l

passing through A then B satisfy :

∀ i ∈ [1..n + m], hπei
(πl) ≥ 0

This system of inequations is the hyperplane repre-

e1

e2

e3

e4

e5
e6

l

hπe6
(πl) ≥ 0hπe5

(πl) ≥ 0hπe4
(πl) ≥ 0

hπe3
(πl) ≥ 0hπe2

(πl) ≥ 0hπe1
(πl) ≥ 0

���� !#"%$a{(|*}��-#$OAYA4243)gLg>��-# ~2 c .~Cd.):�f# I.->A�(|EG8#$
9;:�<>=0?)$@"G`Y3)C>CL��-# �.IR�258#$�Cd.):�f# I.->A+$OK>)$OAQ��->Kh!>=D$OA
2%8#$^8f#Ch$O"0CL:N3P-#$^"%$OC>"%$OA4$I-P243125��.-�.)RT3bCh.P:Nf#24.)Cd$P\
�s24A���-P24$@"_A4$O=D24��.- c �N2%8V2%8#$79;:�<>=0?)$O"'8Pf#Cd$@"0A%!#"%RS3)=D$
��AQ258#$�A4$@2Q.)R�3):�:>:���-#$OA+A4243IgLgL��-J �2%8#$�2 c ./Ch.P:�fJ).->AD\

sentation of an unbounded polyhedron in the Plücker
Space. Both Nirenstein and Bittner add constraints to
obtain a closed polyhedron : a polytope. Of course
these additional constraints do not affect the intersec-
tion of the polyhedron with the Plücker hypersurface.
The polytope representation allows to limit computa-
tions to the zone of the Plücker hypersurface.

2.2.2 Occluders removal
Let PAB be the polytope that represents the set of lines
stabbing A and B. Figure 3 gives a 2D illustration
of the process that removes from PAB the set of lines
blocked by an occluder. This has to be applied to each
occluder. The remaining parts of PAB intersecting the
hypersurface are exactly the set of lines that stabs A

and B without stabbing any occluders. If no such a
part remains, A and B are not visible.

�� �
�� �
�
� �
	��

R
3

���

���
���

���
���

�

�
�

o1

o2

o3

hπo1

hπo2

⊕

⊕

⊕

⊕

⊕

⊕

���� !#"%$��(���3�� �/-U.J=�=�:�!>K#$O"
O
gL:�.J=_?JA�A4.`'$ e#��A5��!

gL��:���25��$OA;gh$@2 c $@$I- 2 c . Ch.P:�fJ).-#A A
3P->K

B
\"�	g#�FEG8#$

9;:�<>=0?)$@"�"0$OC>"%$OA4$1-2�3I25��.P-W.)R+:���-#$OA�A42�3)gLgL��-#
A
3)->K

B
3P-#K :���-#$OA7A4243IgLgL��-#

O
\$��=%����K#� (�E}.V"%$1`Y.OeP$

2%8#$'A%!>g>A4$O2B.)R+gL:N.#=0?)$OKU:���-J$1A Z PAB

��A�A%!>=�=D$OA5A5��eP$O:�f
A5CL:��N2Q��-�A%!>g&!�Ch.P:�fJ24.PCh$OA+!>A5��-J �258#$H8Pf#Cd$@"0CL:�3)-#$OAF3IA'!
A4.J=���3124$OK 24. 2%8J$.#=D=�:�!>K>$@"�$1K#)$OAD\(�	$)�TE 8J$aA%!>g*!
Ch.P:�fJ24.PCh$U=_.)"%"0$OA5Ch.->K>��-# a24.agL:�.J=0?)$OKi:���-#$OA���A�"%$+!
`Y.OeP$OK,\

3. EXISTING ALGORITHMS
Nirenstein and Bittner methods both rely on the ap-
proach explained in the previous section. However
these two algorithms were not designed for providing
the same visibility information. Moreover, they have
noticeable differences between their CSG operations
on polytopes.
Exact visibility requires a consequent computational
effort, using non trivial n-dimensional geometric algo-
rithms. An effective implementation of the process has
to be carefully considered.
In this section, a short overview of each algorithm is
given, including some comparisons on their processes.
Then, we justify our choices from this study.

Algorithms overview

3.1.1 Nirenstein’s algorithm
Nirenstein designed his algorithm to query if two poly-
gons were visible or not. First, an initial polytope
representing their stabbing lines is built. Next CSG
operations are computed in the Plücker space to re-
move the lines blocked by each occluder. This is the
same process as depicted by figure 3. Only the visible
parts of the initial polytope are preserved during the
process. However, this information is not organised
and is only maintained as a set of sub-polytopes. As
soon as the visibility or the invisibility is established,
they are all dropped.
Exact visibility computation is sensitive to the num-
ber of occluders that have to be removed. Nirenstein
makes a selection of the most effective occluders to
be removed first. The occluded lines set can be re-
moved using less occluders. This method minimises
the number of intersection computation to perform. As
a consequence, the algorithm termination is acceler-
ated.
Nirenstein uses his algorithm to compute Potentially
Visible Sets (PVS) for viewcells in 3D environment. In
this context, he develops a framework including several
optimisations that aim either to quickly find simple vis-
ibilities/invisibilities, or to choose an effective order for
removing occluders. On the one hand, ray sampling
handles trivial visibilities and finds effective occlud-
ers. On the other hand, a hierarchical subdivision of
the scenes is used. Visibility queries are first applied
to the cells of this hierarchy. Only visibility with poly-
gons inside visible cells have to be computed, whereas
invisible cells can be used as virtual occluders.

3.1.2 Bittner’s algorithm
The purpose of Bittner’s algorithm is different from
Nirenstein’s one. It was first developed in 2D [Bit01b]
and then extended to three dimensional environments.
It aims to encode all the visibilities with a scene from
a source polygon. This information is encoded and
structured by an occlusion tree [Bit98a]. Each leaf
represents either a visibility or an invisibility set (when
nothing can be seen). In particular, each in-leaf rep-
resents a set of lines that first stabs the same visible
polygon.
The occlusion tree construction implies to treat occlud-
ers in a front to back order. This assumes the scene
pre-processing to avoid overlapping occluders. For
each of them, the associated polytope is inserted into
the occlusion tree, from the root to the leaves, and is
tested against each node met. If the hyperplane stored
in a node splits the polytope, the algorithm continues
in both subtree with the two relevant fragments. If an
out-leaf is reached, the occluder is visible and the out-
leaf is replaced by its fragment elementary occlusion

tree. If an in-leaves is reached, the fragment elemen-
tary occlusion tree is merged to update the visibility
information.
Bittner also uses a hierarchical subdivision of the scene
to enhance the occlusion tree construction. At the end
of the process, the occlusion tree provides each part of
the geometry that can be seen from the source polygon.
Like Nirenstein, Bittner uses this information to com-
pute PVS for viewcells. He also gives an example of
virtual occluders extraction, valid from any viewpoint
on the source polygon.

Algorithms Implementation
As explained, computing exact visibility implies an
important computational effort. This can not be
trivially implemented. Some computational differ-
ences can be noticed between Nirenstein and Bittner
implementations :

Polytope construction
The hyperplane representation of a polytope can be
easily obtained from the Plücker mapping of polygons
edges. However the intersection tests require the vertex
representation. In any case, this can be achieved us-
ing an enumeration algorithm as in [Avi96a]. Such an
algorithm is used by Bittner. For two given polygons,
Nirenstein proposes in his thesis [Nir03a] a more effi-
cient solution, including explicitly the additional con-
straints to cap the unbounded polyhedron. In contrast,
the capping of the polyhedron in Bittner’s algorithm
requires more computation tests.

Intersection tests
Before splitting a polytope, intersection tests are made
with hyperplanes. A common test to both methods is
to compute whether polytope vertices fall in both half
spaces induced by a hyperplane. In addition, Niren-
stein implementation first makes a conservative test
using the bounding sphere of a polytope. Then, a re-
jection test is applied using the other hyperplanes of the
same occluder, as detailed in the next section. Contrary
to Bittner’s algorithm, this allows to limit the intersec-
tion computation to the zone of occluded lines.

Polytope splitting
The key for occluders removal is to compute the inter-
section of a polytope with a hyperplane. The imple-
mentation of Bittner computes implicit intersections.
This means that a splitting hyperplane is added to the
hyperplanes representation of a polytope, and all the
vertices are enumerated again.
Nirenstein computes explicitly intersections using an
algorithm similar to Bajaj and Pascucci’s one [Baj96a].
As a requirement to this algorithm, the full face lattice
of the polytope has to be computed. Nirenstein uses a
combinatorial face enumeration as in [Fuk94a]. This
is potentially more efficient since only the new ver-

tices are computed, whereas Bittner enumerates all the
vertices again.

Algorithms discussion
Our purpose is to compute a coherent and exact visi-
bility information between two polygons. This infor-
mation has to be structured to be available from the
two queried polygons. The more coherent the visibil-
ity information will be, the more efficient its use will
be.
Bittner’s algorithm is interesting because it provides
a structured visibility information. However this in-
formation is oriented since it is significant from the
source polygon. As a consequence, it is not suited
for non-oriented polygon-to-polygonvisibility queries.
We can notice that the occlusion tree construction can
be restricted between two polygons. But it would still
encodes the occluder fragments only visible from one
polygon.
The computational part of the Nirenstein algorithm
seems to be more efficient. In particular, the differ-
ent tests made to limit the computation to the zone of
an occluded lines set are interesting for our purpose.
This should improve the coherence of the visibility in-
formation computed between two polygons. Besides,
his algorithm is more flexible than Bittner algorithm
with its fixed “front to back” substraction order. As an
example, the optimisation presented in this paper could
not be applied to his algorithm without corrupting the
output. This will be explained in the next section.
Nirenstein algorithm can provide a set of polytopes
representing all the visibility between two polygons.
This information is non-oriented. However it is not
structured like Bittner.
From this study, we choose to take advantage of the
Nirenstein algorithm for CSG computation on poly-
topes. But the algorithm output is modified to organise
the visibility information, like Bittner does. Our struc-
ture is suited for non-oriented polygon-to-polygon vis-
ibility. The next section presents our approach and an
optimisation of the Nirenstein algorithm. In particular,
this optimisation minimises the fragmentation of the
visibility information, and improves robustness.

4. PROPOSED APPROACH
Firstly, this section explains how useless polytope frag-
mentation can occur. Next an overview of our approach
is given and illustrates how the visibility information
is encoded. At last, we presents the “back splitting”
optimisation that allows to minimise the polytope frag-
mentation and to improve the robustness.

Unnecessary Splitting
Two configurations exist where unnecessary splitting
are computed. The first one appears when the splitting
of a polytope P results in a first polytope having the

same intersection as P with the Plücker hypersurface,
and a second one having no intersection with the hy-
persurface. Since only the Plücker surface intersection
is of interest, it becomes clear that such a splitting is
useless. However, we will see how to take advantage
of this problem.

�� �
�� �
�
� �
	��

���
��

	 	

πo1

πo2

πo1

πo2

PAB

���� !#"%$ � ($�	3 ��� Cd.):�f#2�.PCh$
PAB

2%8#3I2|K>.$OA�-#.)2
-#$@$OK 24.Ugh$[��-P24$@"0A4$O=D24$OK gfU$@3)=_8V8Pf#Cd$@"0CL:�3)-#$OA/.)R
3P-a.J=�=�:�!>K#$O" \ ��g#� ��A/3)-~$��J3P` CL:N$ Z 2%8#$[��-24$@"0A4$O= !25��.P- c �N2%8 πo1

K>.$OA�-#.)2 `Y.JKL��RSfU2%8J$7��-P24$@"0A4$1=_25��.-
.)R

PAB c ��2%8i2%8#$W8Pf>Ch$@"0A%!#"%R�3I=D$P\~E 8#��A c .!>:�K gh$
2%8#$'A43)`Y$ c ��258 πo2

\

The second configuration is within the rejection test of
Nirenstein. It checks if a polytope is rejected by at least
one hyperplane from a given occluder. This test, de-
picted in figure 5, can not always prevent unnecessary
splitting operations. Figure 6 illustrates such a case.
This explains why useless polytopes fragmentation still
happens.

�� �
�� �
�
� �
	��

���
��

	 	

⊕

PAB PAB πo1

���� !#"%$��J($�	3 ��� Cd.):�f#2�.PCh$
PAB

2%8#3I2|K>.$OA�-#.)2
-#$@$OK|2�.7gh$T��-P24$@"_A4$O=D2�$1K�gJf[3)-f|8Pf#Cd$@"0CL:�3)-#$OA

πo1 Z
πo2 Z πo3

.)RT3)- .J=�=�:�!#K>$@"@\ �	g#��� $O=D3)!>A4$^3):�: 2%8#$
eP$@"%25��=D$OAW.)R

PAB

:���$X��- 2%8#$^Ch.PA5�N25��eP$b8#3):NRYA5C#3)=D$
.)R

πo1 Z PAB c ��:�: gd$ "0$	��$O=D24$OK 3P->K !L-L-#$O=D$OA5A431"0f
A5CL:��N2425��-# c ��:�:lgh$'3@eP.P��K>$OK,\

Useless splitting generates two main problems. Firstly,
it seems obvious that the probability to face numerical
instability grows with the number of successive split-
ting operations performed. Next it leads to an unneces-
sary polytopes fragmentation,and so to a fragmentation
of the visibility information. These two problems are
obviously correlated. As a consequence, reducing the
polytopes fragmentation must be a solution to both of
them.

Overview
Our approach uses a similar algorithm to Nirenstein’s
one. In this paper, notice we are not in a specific con-
text. As a consequence, we do not use a framework as

���
�� �� �
�� �
�
� �
	��

πo3

PABPAB

���� !#"%$�
J("�	3�� �/-#.)2%8J$O"G=D.P-�h !#"%3125��.- c 8#$@"%$ PABK>.$OAW-J.)2�8#3@eP$~2�.bgh$ A5CL:���2D\ ��g ���G$1=_3P!>A4$~$@3)=_8
8Pf>Ch$@"0CL:�3P-J$

πo1 Z πo2 Z πo3

��-P24$@"_A4$O=D24A
PAB Z �N2 c ��:�:-#.)2�gh$G"%$���$O=D24$OK,\ ��A 3�=D.->A4$��#!#$1->=D$ Z !L-L-#$O=D$OA5A431"0fA5CL:��N25A c ��:�: ghWCd@"%RS.)"_`|\V�4-^C>3I"%25��= !>:�31"[2%8#$UA5C>:���2

gf
πo3 c ��:�:)$1-#$@"%3I24$i!>A4$O:�$OA5A�RS"031 `Y$1-P243I25�N.- .)R

2%8#$Te#��A5��gL��:���2pfU��-#RS.)"_`Y3125��.-�\

developed by Nirenstein for PVS computation. More-
over some parts of this framework are out of matter.
For example, ray sampling can not be used since we
are interested in the whole visibility information com-
putation.
We consider two polygons and obtain from their edges
the hyperplanes representation for the associated poly-
tope in the Plücker space. Our implementation takes
advantage of the Nirenstein solution [Nir03a] for com-
puting its vertices representation. Its full face lattice is
obtained with [Kai02a] that provides a better complex-
ity than [Fuk94a]. At last, explicit splitting operations
are achieved using the approach of [Baj96a].
To store the visibility information, we build a “history
tree”. It has some similarities with an occlusion tree.
It is a binary tree whose inner nodes are associated
with splitting hyperplanes. A leaf represents either a
set of blocked lines, or a set of visibilities between two
polygons. In the later case, the polytope for this set is
associated to the leaf.
But the history tree construction is different. It does
not require a traversal from the root to the leaves. In-
tersection tests are made on visible leaves. When a leaf
is split, it becomes an inner node associated with the
splitting hyperplane. Its children represent each part of
the intersected polytope. Initially, the root node is set
with the polytope associated to the two queried poly-
gons. A history tree can be understood as the history
of the successive splitting operations.
At the end of the process, it encodes and represents
all the visibility information between two polygons.
The history tree is easy to build and does not require
excessive computation time. This structure is suited to
be used as a visibility tool.
Moreover, it gives the opportunity to minimise unnec-
essary splits. Since this induces an useless polygon
fragmentation, we propose to detect and to cancel them
using the history tree. This is the purpose of the “back
splitting” algorithm. It also improves the visibility in-
formation coherence.

Back Splitting Algorithm
The back splitting optimisation takes advantage of the
history tree to cancel useless operations. This implies
the following modifications : Before splitting a poly-
tope, its copy is left in its associated node of the history
tree. An inner node is then associated with a polytope
and a splitting hyperplane. Back splitting affects the
construction of the history tree, with the combination
of two rules.
The first one aims to reduce the number of splits to im-
prove the robustness. It is applied during an occluder
removal, after a splitting operation. If the intersection
with the hypersurface has not been modified,this means
the splitting was useless. However, to keep the opera-
tion benefit, the smaller polytope representing the same
set of lines replaces the copy of the initial polytope.
This may seem a contradiction to the robustness im-
provement. Our motivation is to work with polytopes
as close as possible to the hypersurface, to improve
further rejection tests, and so to decrease the number
of splitting operations. The robustness is related to this
number. Our tests have shown that keeping the smaller
polytope gives finally a smaller splitting number than
keeping the initial polytope.
The second rule tries to minimise the polytopes frag-
mentation. It has to be applied after each occluder
removal. It relies on a quick analysis of each pair of
leaves sharing the same father. This rule is applied each
time one of the two following configuration occurs :

• If both leaves are visible, this means that the poly-
tope set in the father node was unnecessary split,
as shown in Figure 6(b). In this case, this opera-
tion is cancelled. Both children are removed and
the father node restored as a visible leaf.

• If both leaves are invisible, children are removed
and the father node is replaced by a leaf marked
invisible. A similar implication was proposed by
Bittner for its occlusion tree. However, due to the
back to front order constraint, he could not apply
the previous configuration.

This optimisation helps to minimise the polytopes frag-
mentation and the number of splitting operations. This
may seem a contradiction since less fragmentation im-
plies bigger polytopes and bigger polytopes is a con-
tradiction to the first rule. However the justification is
that a polytope can be “big” as long as it remains close
to the Plücker hypersurface.
Moreover, this allows a smaller history tree that de-
scribes the same visibility information. As a conse-
quence, we can expect a more efficient use of this
information and to spare memory. Notice that all the
polytopes associated with nodes can be removed after
the construction of the history tree. The tree with the
splitting hyperplanes in inner nodes is then sufficient.

In the next section, we present some experimental re-
sults emphasising the back splitting improvement. We
test different configurations depending on the visual
complexity.

5. RESULTS

�F�N !#"%$��(E}$OA42HA5=_$I-J$

To test the back splitting optimisation we use an urban
environment composed by 38834 polygons as depicted
in figure 7. This scene was chosen for the various con-
figurations proposed in terms of occlusion and visual
complexity. The hardware used is an Athlon XP1800+
(1.5 GHz) with 512Mo RAM.
From the test scene, we choose three sets of buildings,
each one representing a different configuration for oc-
clusion and visual complexity.

Set 1 The first set is composed of the ten smallest
buildings in the scene. Here, the occlusion is
strong, and the visual complexity is low.

Set 2 In opposition to the first set, the second set
is composed of the ten highest buildings in the
scene. This implies many visibilities and few
occlusion.

Set 3 The third set contains ten buildings with an av-
erage height. It combines both visual complexity
and depth visibility. This means that occlusion
can not be defined by a small subset of occluders.

From each set, the exact visibility between each build-
ing wall and the other scene polygons are computed.
Table 1 shows results for the three sets.
For the first set, the back splitting has no contribution.
We can notice a small time over cost for a query using
back splitting. The explanation lies in the fact that the

pP����y ����~ �l1�14+�D9%'�U��� ����~&���$+)`P���$3?�4� ���l~ pG3/+��)�������/(]k�����:j0fCD/����`�� �����
| �)��-/�$D'��q�p ���G\ x�� y�\ ��z y�\ t�� �dsG\ �$x
| �)��- q�p ���G\ x�� y�\ ��z y�\ t�� �dvG\ z:�
pP���l� ����~ �l1�14+�D9%'�U��� ����~&���$+)`P���$3?�4� ���l~ pG3/+��)�������/(]k�����:j0fCD/����`�� �����
| �)��-/�$D'��q�p yLx	�P\ z �dtG\ � �d�C\ �
� �$t�xG\�y�y
| �)��- q�p yLx	�P\ z �$tG\ ��� xdzC\ �$� yLxd�C\ t�v
pP����x ����~ �l1�14+�D9%'�U��� ����~&���$+)`P���$3?�4� ���l~ pG3/+��)�������/(]k�����:j0fCD/����`�� �����
| �)��-/�$D'��q�p y:�$zG\ x y:zC\ x�v x�vG\ s�z xd��zC\ ���
| �)��- q�p y:�$zG\ x zG\ �$� ��zC\ x	� �0���P\ xdz

E}3IgL:�$�&I(���$1A%!#:�25A c ��2%8#.!J2 3P-#K c ��2%8ag>3)=0?WA5CL:���2425��-J � �� �%\ �������H=�=�:�!>K#$O"0A/��A/2%8J$ 3@eP$@"031)$Y-#!>`'gh$@" .)R
.J=�=�:�!#K>$@"_AGCh$@" �#!#$@"%f)\ ����� 9F.P:�fJ24.PCh$OAG��A 258#$�3OeP$@"%3I I$�-#!>`'gh$@" .)R Ch.P:�fJ24.PCh$OA;"%$1C#"0$OA4$1-P25��-# �2%8J$�e#��A5��g>��:���2pf
��-#RS.)"_`Y3125��.-Xgh$O2 c O1-V2 c .Ue>��A5��gL:�$WCd.):�f# I.->AD\ ������#CL:��N2425��-# ��AT.- 3@eP$O"%31)$62%8#$W-#!L`Tgh$@"'.IRHA5CL:��N2425��-#
.PCh$@"%3I25��.P-WR�.)"�$@3)=_8��#!#$@"%f)\

(in)visibilities are quickly determined, before the two
rules could have an impact on the computation.
For the second set, a significant contribution appears :
40% of the splitting operations are avoided. This leads
to an improvement (35%) of the time computation per
query. However, the most interesting result is the num-
ber of polytopes reduced from 40.5 to 20.44. As the size
of the history tree is connected to the fragmentation of
the polytopes, this implies a better coherence of the in-
formation and a reduction of the memory requirement.
In spite of an important number of occluders and a
significant visual complexity, back splitting remains
efficient on the third set, where 31% of the splitting
operation are avoided. We note the same reduction for
the computation time per query. Once again, the main
result is the minimisation of the fragmentation of the
polytopes. Back splitting reduces fragmentation from
more than 56%.
This result illustrates the back splitting efficiency for
reducing the fragmentation of the polytopes. More-
over, since less splitting operations are performed, this
increases the robustness of the visibility computation.
As a secondary result, the time per query is improved.

6. CONCLUSION
This paper has presented a solution to compute a co-
herent and exact visibility information between two
polygons. The fundamental principles to achieve ex-
act visibility computation has been recalled. From the
first two tractable solutions study, we have proposed an
unified approach taking advantage of both of them. It
modifies the Nirenstein algorithm to provide a history
tree. This allows to organise the visibility informa-
tion similarly to Bittner, but suited for non-oriented
polygon-to-polygon queries. Moreover, we have pre-
sented the back splitting optimisation that improves the
visibility coherence and the robustness. As the infor-
mation is described using a smaller set of polytopes,
memory can also be spared.
Results show that our approach is mainly efficient with

a consequent visibility complexity, which is the most
challenging configuration in graphic applications such
as realistic image synthesis.
As a future work,we plane to enhance such applications
by taking advantage of the history tree as a visibility
tool. Moreover, a collaboration with a telecommunica-
tion department is already in progress for an accurate
and fast visualisation of electromagnetic waves.

7. REFERENCES
[Avi96a] David Avis and Komei Fukuda. ��q��_qsrsw�q
w4q�z_r�npt y��_r q��Ix���qsr�z	� �!�	�#" Discrete Appl. Math., vol
65, 21-46, 0166-218X, Elsevier Science Publishers
B. V.
[Baj96a] C. L. Bajaj and V. Pascucci. $DvPk �%� � �&��'/zm �	�QvPk�q)(*��y m �	�+�_q)(Hj��Dk u
�,�sv1qsw-�%�'z
�Iu/.-�&��q��Iw0�!�
�1" In
Proceedings of the 12th Annual Symposium on
Computational Geometry, ACM, 88-97, May 1996
[Bit98a] J. Bittner and V. Havran and P. Slavik.2 �Sqsr�z_r�npt3��n�zDk546��w0�!78��k �%��u m x1k�k �%��':9;�%��t=<�n�n4k xOw0�!�
�?>1r�q�qsw8"
Proceedings of Computer Graphics International ’98
(CGI’98), 207-219, 1998.
[Bit01b] Bittner and Jan Prikryl. @;(�z�n8�A��q!'	�!�	�)zDk
4���w0�!78��k �%��uHx@w0�%��'CB;�%�Pq-$_vOz�npq;j�z0r�� �%� � �	�+�%�3'3"
TR-186-2-01-06, 1-13, 2001
[Bit02c] J. Bittner. j,tED*D	��w�w�qsr��Sz	� �!�	�GF 2 �Sqsr�z_r�npt���n�zDk
>q�npt��+�!H�xIqsw�y��0rI4���w0�!78��k �%��u m �	� v)x��Sz	� �!�	�1w8" Czech
Technical University in Prague, October 2002.
[Coh03a] Cohen-Or,Chrysanthou,Silva, Durand. J
wpx@r��_qsu���yK�L��w�� 78��k �%��uly8�_r-9,zDk o
��t@r)�0xM'%t3�Fzsv�vPk ��n�z	� � �	�Iw8"
IEEE TVCG, pages 412-431, september 2003
[Dur02a] F. Durand, G.Drettakis, C. Puech. >#tIqONP.
�L��w0�!78��k �%��u�n0�	� vPk�q)(3" ACM Trans. Graph., vol. 21, 2,
pages 176-206, ACM Press.
[Fuk94a] K. Fukuda and V. Rosta.

m �	��78�%�)z	�,�_r���zDk
y4z�npqBq��1xQ��qsr�z	� � �	�=�&�'n��
�+�_q)(GvQ�Dk u
�,�sv1qsw8"
Computational Geometry: Theory and Application,
vol. 4, 4, pages 191-198, 1994
[Kai02a] V. Kaibel and M. E. Pfetsch.

m �	�QvIxQ� �&��'

��tIq}y4z�npq k z	� � ��npqC��y z;vQ�Dk u
�,�sv1q}ysr �	� �%��w �_qsr���q)(� y�z�npq��
�%�Pn8�!D�q��Pnpqsw8" Computational Geometry: Theory and
Applications, vol. 23, 3, pages 281-290, November
2002
[Nir02a] S. Nirenstein and E. Blake and J. Gain.
@ (�z�n8�Pysr)�	� � r�q!'	�!�	���L��w0�!78��k �%��uHn�x1k�k �%��'3" Proceedings of
the 13th Eurographics workshop on Rendering,
pages 192-202, 2002.
[Nir03a] S. Nirenstein.

� z0w��lz	�#D�z�n�n�x@r�z	��qO�L��w�� 78��k �%��u
v)r�q�v)r �5npqswpw0�%�3'3" University of Cape Town, South

Africa, October 2003.
[Pel93a] M. Pellegrini. �lz_u�$@tE�L�	� �%�3'��	� >Ir���z	�3'Dk�qsw �%�
N � $_vOz�npqL" Algorithmica, vol. 9, 5, pages 471-494,
1993
[Tel92a] Seth J. Teller.

m �	� v)x�� �%��'���tIq z	�E� � v1q��Ix��:7�r�z
��y z
�'z_r�q�z/k � '%t��,w��_x@r�nsqL" Computer Graphics, (Proc.
Siggraph ’92), 26:139-148, July 1992.
[Som59a] Sommerville. J �Pz_k u	� ��n�zDk��Fq)�	��q���rpu��%�
>#t@r�q�q-. �%��q��1w�� �	�1" Cambridge University Press,
1959.

New spectral decomposition for 3D polygonal meshes
and its application to watermarking

Kohei MUROTANI and Kokichi SUGIHARA

Department of Mathematical Informatics Graduate School of Information Science and Technology University of Tokyo

7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan

muro@simplex.t.u-tokyo.ac.jp and sugihara@mist.i.u-tokyo.ac.jp

Abstract
This paper present a generalization of a data analysis technique called a singular spectrum analysis (SSA). The
original SSA is a tool for analyzing one-dimensional data such as time series, whereas our generalization is suitable
for multi-dimensional data such as 3D polygonal meshes. One of applications of the proposed generalization are
also shown. The application of the generalized SSA is a new robust watermarking method that adds a watermark
to a 3D polygonal mesh. Watermarks embedded by our method are resistant to similarity transformations and
random noises. Our method has the advantage in that it requires smaller calculation cost than other methods
with nearly equal performance.

Keywords: singular spectrum analysis (SSA), watermarking, 3D polygonal meshe, spectral decomposition

1 Introduction
Techniques of the spectrum decomposition have
been developed in various fields, such as signal pro-
cessing and financial data analysis. The Fourier
analysis and the wavelet analysis are the most fre-
quently used techniques of the spectrum decom-
position. However, since they are the decomposi-
tions by a certain basis functions, the data should
be represented in a parameterized form. They
are applied to one-dimensional series or the tensor
product of one-dimensional series naturally, while
they cannot be applied to non-parameterized data.
For example, we cannot represent an unbounded
two-manifold having the same topology as a sphere
by two parameters. In this case, for example, we
can perform the spectrum decomposition using the
spherical harmonics. But, if this spectrum decom-
position is performed for a piecewise linear func-
tion, such as a 3D polygonal mesh, the numerous
terms are required. Since spectrum decomposi-
tions by hitherto known functions have limitations

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Conference proceedings ISBN 80-903100-7-9
WSCG ’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency - Science Press

like this, there is a real need for new spectrum de-
composition methods.

We generalize the singular spectrum analysis
(SSA) in such a way that it is applicable to the 3D
polygonal mesh, and apply it to engineering prob-
lems [6, 8, 9, 10]. In this paper, the generalized
SSA is applied to a robust watermarking method
that adds a watermark to a mesh.

2 Generalization of singular

spectrum analysis
2.1 From basic SSA to generalized

SSA
Since the basic singular spectrum analysis (SSA)
[2, 3, 17] is designed for the analysis one dimen-
sional sequences such as time series, it is not appro-
priate for the 3D polygonal mesh. In this section,
we generalize the basic SSA in such a way that it
can be applied to the analysis of multi-dimensional
data such as polygonal meshes [9].

2.2 Generalized SSA
Let the elements of the series F be the values given
to the vertices of the mesh. In the case of the
3D polygonal mesh, each element of the series F
consists of the coordinates of a vertex in the mesh,
i.e. the position vector. For simplicity, we consider
the mesh specified by the heights of vertices of a
graph on the plane as shown in Figure 1. Let the
elements of the series F be the heights given to the
vertices of the graph.

Let N be a positive (usually large) integer. Con-
sider a real-value series F = (f0, f1, . . . ,fN−1) of
length N . Assume that F is a nonzero series, that
is, there exist at least one i such that fi > 0. The
generalized SSA consists of two stages, the decom-
position stage and the reconstruction stage, which
are show in the following two subsection.

Figure 1. The mesh where height values are given
to vertices of a graph on the plane.

2.2.1 Decomposition stage
The decomposition stage consists of the next two
steps.
1st step: Embedding In the first step, let us
define the linear operator A which maps F to ma-
trix X = A(F) as

A(F) =

0
BBB@

FA0,0 FA0,1 · · · FA0,K−1

FA1,0 FA1,1 · · · FA1,K−1

.

.

.
.
.
.

. . .
.
.
.

FAL−1,0 FAL−1,1 · · · FAL−1,K−1

1
CCCA (1)

where

Al,k = (al,k,0, al,k,1, · · · , al,k,N−1)
T (2)

and the elements of A(F) are

FAl,k =
N−1∑
n=0

al,k,nfn. (3)

We call the matrix (1) the trajectory matrix or the
generalized trajectory matrix.

2nd step: Singular value decomposition In
the second step, the singular value decomposition
is applied to the trajectory matrix X. Let S
= XXT. Denote by λ1, . . . ,λL the eigenvalues
of S taken in the decreasing order of magnitude
(λ1 ≥ . . .≥ λL ≥ 0), and by U1, . . . ,UL the or-
thonormal system of the eigenvectors of the ma-
trix S corresponding to these eigenvalues. Let
d = max{i | λi > 0}. We defines Vi = XTUi/

√
λi

and X(i)T =
√

λiUiV
T
i (i = 1, . . . , d). Then

the singular value decomposition of the trajectory
matrix X can be written as

X = X(1) + X(2) + . . . + X(d). (4)

The matrix X(i) has rank 1. Therefore they are
elementary matrices. The collection (λi, Ui, Vi) is
called i-th eigentriple of singular value decomposi-
tion (4).

2.2.2 Reconstruction stage
3rd step: Reconstruction of the original se-
ries In the last step, each matrix in the decompo-
sition (4) is transformed into a new series of length
N . This step is called the reconstruction of the se-
ries.

The series F (i) = (f
(i)
0 , f

(i)
1 , · · · , f (i)

N−1) is defined
as the solution of the next optimization problem:

min

d∑
i=1

∥∥ X(i) − A(F (i))
∥∥2

= min
d∑

i=1

∑
l,k

(
x

(i)
l,k − F (i)Al,k

)2
(5)

s.t. F =

d∑
i=1

F (i), (6)

where the norm of the matrix is the Frobenius
norm. If Al,k(0 ≤ l ≤ L−1, 0 ≤ k ≤ K−1) span N
dimensional spaces, then the matrix

∑
l,k Al,kAT

l,k

is regular, and consequently the solution of the ex-
pression (5) is given by

F (i) =

(∑
l,k

x
(i)
l,kAT

l,k

)(∑
l,k

Al,kAT
l,k

)−1

. (7)

Since this F (i) satisfies

d∑
i=1

F (i)
∑
l,k

Al,kAT
l,k =

d∑
i=1

∑
l,k

x
(i)
l,kAT

l,k

=
∑
l,k

(d∑
i=1

x
(i)
l,k

)
AT

l,k

=
∑
l,k

(
FAl,k

)
AT

l,k

= F
∑
l,k

Al,kAT
l,k,

the constraint (6) is satisfied automatically. The
solution F (i) of the optimization problem (5) and
(6) is obtained by the expression (7).

Finally, from the expression (7), the original se-

ries F is reconstructed as F =
∑d

i=1 F (i). These
are the basic ideas of the generalized SSA.

2.3 Linear operator A
In this subsection, we give a particular example of
the linear operator A in the expression (1) that
reflects the connectivity structure of the mesh.

Let P be a 3D polygonal mesh, and let vk, k =
0, 1, · · · , N−1 be the vertices of the mesh. Suppose
that some scalar value fk is assigned to each vertex

vk, and let F be the series F = (f0, f1, · · · , fN−1).
We define the distances Dvk

(vj) from vk to vj as
the number of edges in the shortest path in the
graph where the length 1 is given to the all edges,
so-called the Dijkstra distance. Figure 2 shows an
example of a part of the graph structure associated
with the polygonal mesh. Let vk be the vertex
represented by the black dot in Figure 2. Then,
the vertices vj ’s with Dvk

(vj) = 1 are as shown by
empty circles, and the vertices with Dvk

(vj) = 2
are as shown empty squares.

Figure 2. A vertex of the mesh and the set of
vertices with the same Dijkstra distances.

Let the number of the rows of the trajectory
matrix A(F) be K := N . Let the elements on the
first row and the k-th column (k = 0, 1, · · · , N −
1) of the trajectory matrix A(F) be the value fk

given to the vertex vk and let the elements on the
l-th (1 ≤ l ≤ L − 1) row and the k-th column
be the average value of the values on the vertices
whose Dijkstra distances from vk are l. Therefore
the k-th column of the matrix A(F) corresponds
to the vertex vk of the mesh. For example; for
the vertex vk in Figure 2. (1, k) element of A(F)
is fk, (2, k) element of A(F) is the average of the
value fj over the vertices represented by the empty
circles, (3, k) element of A(F) is the average of the
value fj over the vertices represented by the empty
squares. Thus, let FAl,k be

FAl,k =

∑
Dvk

(vj)=k fj

#{Dvk
(vj) = k} (8)

where #{Dvk
(vj) = l} is the number of the ver-

tices whose Dijkstra distances from vk are l. The
linear operator A in the expression (8) is repre-
sented as

al,k,n =

{
1

#{Dvk
(vn)=l} (Dvk

(vn) = l),

0 (Dvk
(vn) 	= l)

(9)
Note that, since the Al,k (0 ≤ l ≤ L − 1, 0 ≤

k ≤ K − 1) constructed as stated above span an
N -dimensional space, the matrix

∑
l,k Al,kAT

l,k is
usually regular. This is because A1,k (0 ≤ k ≤
N − 1) is the vector where the k-th element is 1
and the other elements are 0.

The rows of A correspond to the vertices of the
mesh, and the columns of A correspond to the
set of vertices with the same Dijkstra distances.
Here the linear operator reflects the connectivity
structure of the mesh.

2.4 Laplacian trajectory matrix

We may not obtain sufficient amount of eigen-
triples for A(F) by our method in subsection 2.3．
If the amount of eigentriples is small, some prob-
lems occur in engineering applications. For exam-
ple, in the case of watermarking in section 4, we
can not embed a lot of data. In order to solve this
problem, we present a new Laplacian trajectory
matrix in this subsection.

In subsection 2.3, fh is assigned to each vertex
vh. In this subsection, in order to consider a new
another trajectory matrix, let f ′

h be Laplacian for
a 3D polygonal mesh and f ′

h is assigned to each
vertex vh. f ′

h is defined as

f ′
h = C∆fh = C

(∑
Dvh

(vj)=1 fj

#{Dvh
(vj) = 1} − fh

)
(10)

where C is a constant number. Figure 3 shows a
mesh whose vertices vh are transposed to Lapla-
cian f ′

h. Let F ′ be a series F ′ = (f ′
0, f

′
1, . . . , f

′
N−1).

Since f ′
h is a linear combination of elements of F ,

A′
i,j exists such that F ′Ai,j = FA′

i,j and A(F ′)
can be transposed to A′(F) as the following equa-
tion:

A(F ′) =

0
BBB@

F ′A0,0 · · · F ′A0,K−1

F ′A1,0 · · · F ′A1,K−1

.

.

.
. . .

.

.

.
F ′AL−1,0 · · · F ′AL−1,K−1

1
CCCA

=

0
BBBB@

FA′
0,0 · · · FA′

0,K−1

FA′
1,0 · · · FA′

1,K−1

.

.

.
. . .

.

.

.
FA′

L−1,0 · · · FA′
L−1,K−1

1
CCCCA

= A
′
(F). (11)

A combined trajectory matrix B(F) is defined as

B(F) =

(
A(F)
A′(F)

)
. (12)

If we use B(F), we can get the double sets of eigen-
triples for A(F).

We can expand B(F) likewise. Let A0(F) =
A(F), A1(F) = A′(F) and Ai(F) be the dupli-
cated Laplacian trajectory matrices by f i

h, where
f i

h is defined as

f i
h = Ci∆

ifh. (13)

Bi(F) is defined de by A0(F), · · · , Ai(F) as

Bi(F) =

A0(F)

A1(F)
...

Ai(F)

 . (14)

If we use Bi(F), we can get the i-fold sets of eigen-
triples for A(F).

Figure 3. A mesh whose vertices are transposed to
laplacian.

2.5 Comparisons of the decomposi-
tions

In this subsection, we compare the decomposition
given by the generalized SSA, the basic SSA [6, 7,
8] and Laplacian matrix [15]. Table 1 shows their
characteristics.

The 3D polygonal mesh represents the boundary
of the three-dimensional region, and this boundary
is a two-dimensional manifold. However, it is not
easy to globally parameterize any two-dimensional
manifold. Note that the three methods compared
in this subsection do not require any parameteriza-
tion of the boundary. On the other hand, the tra-
ditional multidimensional spectral decompositions
such as the multidimensional Fourier transforma-
tion and the multidimensional wavelet transforma-
tion require the parameterization of the boundary,
and hence cannot be used for general 3D polygo-
nal meshes unless the mesh is partitioned into sub-
meshes homeomorphic to disk. In this sense, these
three methods are typical tools for the analysis of
polygonal meshes.

Since the spectral decomposition of a mesh us-
ing the Laplacian matrix requires the eigenvalue
decomposition of a matrix whose rank is the num-
ber of the vertices, the calculation cost is large and
the method cannot be applied to huge meshes. On
the other hand, our generalized SSA and the basic
SSA require the eigenvalue decomposition of the
matrix whose rank is determined by the linear op-
erator e.g., the size of lag L. Moreover, we can
choose a relative small value of L. Therefore, the
calculation cost can be small, and consequently our
generalized SSA and the basic SSA method can be
applied to huge meshes.

The spectrum decomposition for 3D polygonal
meshes is desired to be independent for the change
of the vertex number. In other words, the basis of
the spectrum decomposition is desired to be invari-
ant from the change of the vertex number, because
the shape of the mesh is invariant for the change of
the vertex number. In the three methods, our gen-
eralized SSA and the method using the Laplacian
matrix satisfy this requirement.

As stated above, our generalized SSA overcomes
the respective demerits of the basic SSA and the
method using the Laplacian matrix and can be a
powerful new tool for the analysis of 3D polygonal
meshes.

3 Spectral decomposition of

3D polygonal meshes using
the generalized SSA

3.1 Spectral decomposition using
the generalized SSA

In this subsection, we perform spectral decompo-
sition of the 3D polygonal meshes using the gen-
eralized SSA.

Though we have been considering a scalar-value
series F = (f0, f1, . . . , fN−1), we hereafter con-
sider tri-value series F = (F0, . . . , FN−1) where
Fn = (fn,x, fn,y, fn,z) are the coordinates of the
vertex vn. Consequently, the trajectory matrix
(1)is an L × 3K matrix

X = A(F) =

FA1,1 · · · FA1,K

FA2,1 · · · FA2,K

...
. . .

...
FAL,1 · · · FAL,K

 , (15)

where

FAl,k =

N−1X
n=0

al,k,nfn,x,

N−1X
n=0

al,k,nfn,y,

N−1X
n=0

al,k,nfn,z

!
.

(16)

We perform singular value decomposition (SVD)
for this trajectory matrices.

In our experiments, we used two popular mesh
models, the bunny model (1494 vertices, 2915
faces) shown in Figure 4 (a). Figure 4 shows that
the original bunny model mesh is decomposed us-
ing trajectory matrix with L = 21 and high fre-
quency components are added gradually. Figure 4
(a) shows the original meshes. (b) shows the mesh
constructed using the sum of the lowest frequency
components. Figure 4 (c) or (d) shows the sum of
6 or 15 lower frequency components, respectively.
Figure 5 is the decomposed mesh with L = 10 and
Figure 6 is the decomposed mesh with L = 5 . Fig-
ure 7 is the decomposed mesh of L = 5 using the

Table 1. Comparisons of three spectrum decomposition methods.

decomposition using Laplacian

matrix

decomposition using the basic

SSA

decomposition using the general-

ized SSA

decomposition algorithm
eigenvalue decomposition of

Laplacian matrix
the basic SSA the generalized SSA

meaning of singular value or

eigenvalue
frequency power spectrum power spectrum

parameterizations on 3D polygo-

nal meshes
no parameterizations (merit) no parameterizations (merit) no parameterizations (merit)

spectrum decomposition and

changes of the vertex number
independence (merit) dependence (demerit) independence (merit)

rank of the decomposed matrix

(calculation cost)

order of the vertices of the mesh

(large calculation cost: demerit)

order of the lag L, (L < N
2

)

(small calculation cost: merit)

order of the number of the rings

(small calculation cost: merit)

mesh whose vertices are transposed to laplacian in
subsection 2.4.

From Figures 4, 5, 6 and 7, we can confirm the
following empirical fact. “Approximately, large
singular values correspond to lower spatial fre-
quencies, and small singular values correspond to
higher spatial frequencies. Elementary matrices
associated with higher singular values represent
global shape features, while elementary matrices
associated with lower singular values represent lo-
cal or detail shape features. We made computa-
tional experiments in order to evaluate the perfor-
mance of the proposed algorithms”.

The computer used in this experiment is Pre-
cision 330 of Dell with Intel Pentium 4 2.8G Hz
processor and 1GB memory. Programming lan-
guage is Mathematica 4.0. Calculation times were
11 minite in case of bunny mode with L = 10.

4 Appliction — Watermark-
ing 3D polygonal meshes

In this section, we propose a new method of wa-
termarking for the 3D polygonal meshes.

4.1 What is watermarking ?
Digital watermarking is a technique for adding
secret information called a watermark to various
target objects data. A lot of papers on water-
marking have been published [5]. However most
of the previous researches have been concentrat-
ing on watermarking “classical” object data types,
such as texts, 2D still images, 2D movies, and au-
dio data. Recently, on the other hand, 3D objects
data, such as 3D polygonal meshes and various 3D
geometric CAD data, become more and more pop-
ular and important, and hence techniques to wa-
termark 3D models also become more important
[1, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20].

In the field of image watermarking, a majority
of the watermarking algorithms published depends
on some form of transformations, e.g., wavelet or
Fourier transformations. This is because trans-
formed domain techniques offer various advan-
tages. For example, by modifying the spatial fre-

quency band which human are not very sensitive
to, we can make a watermark embedded in an im-
age less visible. Moreover, the transformed domain
is a suitable place to hide the secret data (water-
marks). Therefore, in those techniques of water-
marking, some kind of spectrum decomposition is
required.

This section presents experiments and results
of an algorithm that embeds watermarks into 3D
polygonal meshes. The proposed method is based
on a new kind of spectrum decomposition, and can
be used for any mesh structures, for details refer
to [6, 8, 9, 10]. We propose a new algorithm for
embedding watermarks into 3D polygonal meshes
based on the generalized SSA. The spectra of the
3D polygonal mesh are computed by the singular
decomposition of the trajectory matrix, and the
watermarks are embedded into the singular val-
ues. The watermark embedded by the algorithm
is robust against similarity transformation (i.e., ro-
tation, translation, and uniform scaling). It is also
resistant against random noises added to vertex
coordinates. Figure 8 is the outline of embedding
a watermark.

Figure 8. Outline of embedding watermark.

4.2 Experiments and results

4.2.1 Method
In our experiments, we used a popular mesh
model, the bunny model (1494 vertices, 2915 faces)
shown in Figure 4 (a).

We compare five watermarking methods. The
first two watermarking methods are based on the

basic SSA using two kinds of the vertex series in
[6, 8, 9, 10], which we call the “Euclidean norm
method” and the “random order method”. The
third watermarking method is the Laplacian ma-
trix method proposed by Ohbuchi et al. [15].
We call this watermarking method the “Ohbuchi’s
method”. The forth watermarking method is
based on our generalized SSA. We call this wa-
termarking method the “generalized SSA ring 21”
in the case of L = 21, and so on. The fifth wa-
termarking method is based on our generalized
SSA using Laplacian trajectory matrix in subsec-
tion 2.4. We call this watermarking method the
“generalized SSA ring 5 Laplacian” in the case of
L = 5. This method have 30 sets of eigentriples
(i.e., ×3 by xyz-coordinates and ×2 by Laplacian).

In the“generalized SSA” method, we embedded
15 bits data, and each bit was embedded only once
(i.e., chip rate is 1). In the other method, we em-
bedded 15 bits data 20 times (i.e., chip rate is 20).
If a mesh is fixed, a higher chip rate means a lower
data capacity and higher robustness.

The watermark embedding amplitudes α is de-
fined as α = β × l where l is the largest length of
the edges of the axis-aligned bounding box of the
target mesh and β is defined as a ratio of the am-
plitude. In this experiments, l = 156 model was
set. In Figure 9, the appearances for β = 0.1, 1
are presented. If α is larger, the watermark with-
stands against more disturbances, (for example,
adding random noises and mesh smoothing) but
the shape itself is distorted.

4.2.2 Appearances of watermarked meshes
Figure 9 show appearances of the watermarked
meshes generated by the generalized SSA ring 21,
while (a) and (b) show the watermarked meshes for
β = 0.1 and 1, respectively. The appearances of (a)
can hardly be distinguished from the appearances
of the original mesh. Thus they are watermarked
successfully. On the other hand, the appearances
of the original meshes are not preserved in (b).
Thus the watermarks are too large in those cases.

Table 2 shows RMS of the differences between
the original meshes and the watermarked meshes
devided by l. RMS (root mean square) is the
mean of 2-norm between the vertices of the orig-
inal mesh and the corresponding vertices of the
watermarked mesh. In the appearances of the wa-
termarked meshes, we cannot see much difference
among the basic SSA methods and the general-
ized SSA method. In these experiments, we set
β = 0.1 in the basic SSA and the generalized SSA,
and β = 0.0035 in the Ohbuchi’s method.

4.2.3 Robustness
We experimentally evaluated the robustness of our
watermarks against the uniform random noises.

(a) β = 0.1 (b) β = 1

Figure 9. Watermarked bunny meshes.

Table 2. RMS
l of original meshes and watermarked

meshes.

Euclidean norm (β = 0.1) 0.0239

random order (β = 0.1) 0.0211

Ohbuchi’s method (β = 0.0035) 0.0211

generalized SSA ring 21 (β = 0.1) 0.0228

generalized SSA ring 10 (β = 0.1) 0.0201

generalized SSA ring 5 Laplacian (β = 0.1) 0.0134

Uniform random noises Figure 10 shows the
appearances of the watermarked mesh whose ver-
tex coordinates were disturbed with uniform ran-
dom noises with amplitude α×γ (β = 0.1). Figure
10 (a) are the meshes with uniform random noises
with γ = 0.01 and (b) are the meshes with uni-
form random noises with γ = 0.1. From Figure
10, we can see that the noises of γ = 0.1 deformed
the appearances of the original meshes to a certain
extent.

We counted the number of the bits recon-
structed correctly; we repeated the experiment 100
times. The result is shown in Table 3. From this
experiment, we can see that the watermark can
withstand against uniform noises for γ ≤ 0.01.
Moreover, we cannot see much difference among
the five methods.

In the Euclidean norm method，the random or-
der method and Ohbuchi’s method, the same bit
was embedded many times (20 times, for example)
because each bit is very fragile. On the other hand,
in the proposed method, each bit is embedded only
once, but still the watermark can be reconstructed
almost in the same accuracy as the other methods,
as shown in Table 3. In this sense, the proposed
watermark method is very robust against random
noises.

This robustness is due to the characteristic of
the linear operator A. Since the elements of the
generalized trajectory matrix are represented as
the linear combinations of the vertices of the mesh,
these linear combinations counteract the uniform
random noises in this step. Therefore, since the
generalized SSA counteracts the uniform random
noises before spectrum decomposition, while the
other methods counteract the uniform random

noises after spectrum decomposition; we can see
almost the same robustness against random noises
among these methods.

Table 3. Ratios of the correctly recovered water-
marks under random noises.

γ = 0.1 γ = 0.01

Euclidean norm 92% 100%

random order 98% 100%

Ohbuchi’s method 98% 100%

generalized SSA ring 21 96% 100%

generalized SSA ring 10 99% 100%

generalized SSA ring 5 Laplacian 98% 100%

(a) γ = 0.01 (b) γ = 0.1

Figure 10. Bunny models to which uniform ran-
dom noises with amplitude α × γ (β = 0.1) are
added.

5 Future Work
We have two future works. First future work is to
develop new application area of generalized SSA.
For that purpose, since there are large freedoms
in the choice of the linear operator proposed in
this paper, we need create new linear operator by
considering the physical phenomenon of the target
models. Second future work is to complete the
theoretical framework of the generalized SSA.

Acknowledgement
This work is partly supported by the 21st Century
COE Program on Information Science and Tech-
nology Strategic Core, and the Grant-in-Aid for
Scientific Research (S) of the Japanese Ministry of
Education, Culture, Sports, Science and Technol-
ogy.

References

[1] O. Benedens. Geometry-based watermarking of 3D
models. In IEEE CG, pp. 46–55, 1999.

[2] S. Broomhead and P. King. Extracting qualitative dy-
namics from experimental data. In Physica D, Vol.
20, pp. 217–2362, 1986.

[3] B. Elsner, J. and A. Tsonis, A. Singular Spectrum
Analysis - A New Tool in Time Series Analysis.
Plenum Press, 1996.

[4] S. Kanai, H. Date, and T. Kishinami. Digital water-
marking for 3D polygons using multiresolution wavelet
decomposition. In Proceedings of the Sixth IFIP WG
5.2 International Workshop on Geometric Modeling:
Fundamentals and Applications (GEO-6), pp. 296–
307, 1998.

[5] K Matsui. Basic of watermarks (in Japanese).
Morikita Shuppan Publishers, 1998.

[6] K. Murotani and K. Sugihara. Watermarking 3D
polygonal meshes using the singular spectrum anal-
ysis. In Proceedings of the 10th IMA International
Conference on The Mathematics of Surfaces, pp. 85–
98, 2003.

[7] K. Murotani and K. Sugihara. Watermarking 3d
polygonal meshes using the singular spectrum analy-
sis. In ISM Symposium Statistics, Combinatorics and
Geometry, pp. 20–22, 2003.

[8] K. Murotani and K. Sugihara. Generalized SSA and
its applications to watermarking 3d polygonal meshes.
In METR METR 2004-17, pp. 1–23, 2004.

[9] K. Murotani and K. Sugihara. Watermarking 3d
polygonal meshes using generalized singular spectrum
analysis. In NICOGRAPH International Conference
2004 in Taiwan, pp. 121–126, 2004.

[10] K. Murotani. Spectral decomposition method for
three-dimensional shape models and its applications.
In Doctoral thesis (Information Science and Technol-
ogy, University of Tokyo), 2004.

[11] R. Ohbuchi, H. Masuda, and M. Aono. Watermarking
three-dimensional polygonal models. In Proceedings
of the ACM International Conference on Multimedia
’97, pp. 261–272, 1997.

[12] R. Ohbuchi, H. Masuda, and M. Aono. Targeting ge-
ometrical and non-geometrical components for data
embedding in three-dimensional polygonal models. In
Computer Communications, Vol. 21, pp. 1344–1354,
1998.

[13] R. Ohbuchi, H. Masuda, and M. Aono. Watermarking
three-dimensional polygonal models through geomet-
ric and topological modifications. In IEEE Journal on
Selected Areas in Communication, Vol. 16, No. 4, pp.
551–560, 1998.

[14] R. Ohbuchi, H. Masuda, and M. Aono. A shape-
preserving data embedding algorithm for NURBS
curves and surfaces. In Proceedings of the Computer
Graphics International’99, pp. 7–11, 1999.

[15] R. Ohbuchi, S. Takahashi, T. Miyazawa, and
A. Mukaiyama. Watermarking 3D polygonal meshes
in the mesh spectral domain. In Proceedings of the
Graphics Interface 2001, pp. 9–17, 2001.

[16] E. Praun, H. Hoppe, and A. Finkelstein. Robust mesh
watermarking. In ACM SIGGRAPH 1999, pp. 69–76,
1999.

[17] R. Vautard, P. Yiou, and M. Ghil. Singular spectrum
analysis: A toolkit for short noisy chaotic signals. In
Physica D, Vol. 58, pp. 95–126, 1992.

[18] G. Wagner, M. Robust watermarking of polygonal
meshes. In Proceedings of Geometric Modeling & Pro-
cessing 2000, pp. 201–208, 2000.

[19] B-L. Yeo and M. Yeung, M. Watermarking 3D objects
for verification. In IEEE CG&A, pp. 36–45, 1999.

[20] K. Yin, Z. Pan, J. Shi, and D. Zhang. Robust mesh
watermarking based on multiresolution processing. In
Computers & Graphics, Vol. 25, pp. 409–420, 2001.

(a) Original mesh (b) d̂ = 1 (c) d̂ = 6 (d) d̂ = 15

Figure 4. The decomposed bunny model of L = 21. The sum of d̂ lower frequency components.

(a) d̂ = 1 (b) d̂ = 3 (c) d̂ = 5 (d) d̂ = 8

Figure 5. The decomposed bunny model of L = 10. The sum of d̂ lower frequency components.

(a) d̂ = 1 (b) d̂ = 2 (c) d̂ = 3 (d) d̂ = 4

Figure 6. The decomposed bunny model of L = 5. The sum of d̂ lower frequency components.

(a) d̂ = 1 (b) d̂ = 2 (c) d̂ = 3 (d) d̂ = 9

Figure 7. The decomposed bunny model of L = 5 using the mesh whose vertices are transposed to
laplacian. The sum of d̂ lower frequency components.

A Subdivision Scheme to Model
Surfaces with Spherelike Features

Koen Beets

Limburgs Universitair Centrum
Expertise Centre for Digital Media

Universitaire Campus
B-3590, Diepenbeek, Belgium

koen.beets@luc.ac.be

Johan Claes
Limburgs Universitair Centrum

Expertise Centre for Digital Media
Universitaire Campus

B-3590, Diepenbeek, Belgium

johan.claes@luc.ac.be

Frank Van Reeth
Limburgs Universitair Centrum

Expertise Centre for Digital Media
Universitaire Campus

B-3590, Diepenbeek, Belgium

frank.vanreeth@luc.ac.be

ABSTRACT
In this paper, we introduce a novel subdivision method able to generate smooth surfaces which locally tend to
minimize variations in curvature. The method is based on a tensor product of a subdivision scheme for circle
splines, which is then generalized to arbitrary quadrilateral meshes.
Although they involve a geometric construction, our rules are applied in a uniform way, without the need for
applying different rules for different vertices or for different stages in the subdivision process. This results in a
more general and natural way to obtain circular curvatures, unlike other approaches involving subdivision
curves able to generate circles. Surfaces of revolution are just a basic example, as circular features can be
distributed freely over the surfaces generated via our methods.

Keywords
Curve and surface modeling, interpolatory subdivision, curvature minimization, circle splines

1. INTRODUCTION
Subdivision surfaces are widely used in the graphics
community. A major advantage is their ability to
generate surfaces with arbitrary topology in a
uniform representation based on a freely editable
coarse polygonal mesh. Due to their close
relationship with multiresolution and wavelet
analysis, their practical applications further benefit
from a vast amount of theoretical knowledge. We
refer the interested reader to the Siggraph 2000
course by Zorin et al. [Zor00] and to the book by
Warren and Weimar [War02] for excellent
introductions to subdivision techniques, with many
pointers to the continuously developing literature.
In this paper, our attention goes to surfaces which
locally resemble sphere regions. Conventional
subdivision methods seem to be inadequate as

although the control points in a certain region are all
located on the same sphere, the resulting surface
usually exhibits a highly varying curvature. This
variation results especially problematic for the
schemes which directly interpolate the control points
provided by the user instead of only approximating
them.
Our study of the related literature started with curve
representations based on circle blending. Compared
to global optimization techniques, such as the
Minimized Variation Curve [Seq92], local blending
is much cheaper to compute. Furthermore, such
global techniques have the additional disadvantage
that a local change in the input may have a global
impact on the resulting curve, something highly
undesirable during interactive modeling.
Circular spline schemes usually employ 4
consecutive vertices P0, P1, P2, P3 to generate a curve
segment with minimal curvature variation between
P0 and P1. An interpolation scheme combines the
segments resulting from the circle C1 through P0, P1,
P2 and the circle C2 through P1, P2, P3 (see Figure 1).
Various interpolation schemes have been proposed.
Wenz blends the two circles using simple linear
interpolation of 2 point positions on the base arcs
[Wen96]. To improve the tangent continuity at the
joints of segments, Szilvasi-Nagi and Vendel
propose trigonomically weighted interpolation,
which guarantees G2 continuity [Szi00]. To further

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WSCG 2005 conference proceedings, ISBN 80-903100-7-9
WSCG’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

improve the curve quality, Séquin et al. constructed a
C2 circular curve blending scheme [Seq05]. Instead
of interpolating point positions, they suggest a
trigonometrical interpolation between tangent angles.
As Séquin et al. argue, this approach remedies the
cusps and sharp loops which can appear in the
previous schemes, in particular when the control
polygon features sharp corners.
In a theoretical work, Chris Doran shows how
Clifford algebras help to define a circle blending
with an arbitrary level of G continuity [Dor03]. His
employment of conformal transformations leads to
curves which are – in the G2 case – identical to the
curves presented by Séquin et al. [Seq05]. For us this
forms an extra argument to also adopt angle based
interpolation. Doran furthermore extended his
approach to sphere blending, but unfortunately this
did not yet lead to practical methods for surface
construction.
Circle blending techniques are interesting to generate
curves, but for our subdivision surfaces, we also
need a subdivision approach for the underlying
curves. In 1987, Dyn et al. introduced the first
interpolating subdivision scheme for curves, known
in the literature as the four-point scheme or also as
the DLG scheme [Dyn87]. Starting from a coarse
control polygon, new points are recursively
introduced between each pair of old points. The new
point positions are defined as the central point of a
spline which interpolates the four immediate
neighbors.
As the four-point scheme generates curves with
highly varying curvature, Séquin and Yen
constructed a circular subdivision scheme. Their new
point positions are now calculated to lie at the centre
of an angle-based interpolated arc [Seq01].
Sabin and Dodgson provided yet another solution to
create subdivision curves with more continuous
curvature [Sab04]. With a particular definition of
curvature as a kind of normalized cross product, they
ensure that the new point’s curvature averages the
curvature of its immediate neighbors. Additionally,
to obtain a more even spacing of vertices after
subdivision, they position new vertices closer to the
shortest edge adjacent to the current edge. The
resulting scheme is C2 in practical situations, just as
the four-point scheme.
In the literature, also some subdivision surface
schemes incorporating circular arcs are described.
Nasri et al. started from an interpolating subdivision
algorithm for piecewise C1 circular spline curves,
based on biarcs [Nas01]. This is used to create a
modified version of the Doo-Sabin scheme for
surfaces, where the standard rules are combined with
the circular rules on user-defined edges. This way

surfaces with piecewise circular boundaries can be
created as well as seamless connections between
different surfaces along a common circular boundary.
A disadvantage of their technique is that the
curvature changes abrupt at the control vertices.
Also, to create circular or spherical regions, extra
vertices have to be added to the control polygon,
while it is not always clear how to add these.
In a similar approach, Morin et al. describe a non-
stationary subdivision scheme for surfaces of
revolution [Mor01]. With their technique, the user
has to mark the desired sections of the curve as
circular. Between circular arcs, standard Catmull-
Clark subdivision rules are applied. Both Morin et
al.’s and Nasri et al.’s schemes are approximating,
while we want to create a scheme that interpolates all
of its control vertices. Also, we intend to have a more
continuously varying curvature everywhere, more
than only at certain indicated circular regions.
Our subdivision surface scheme is inspired by
Kobbelt’s interpolating scheme for quadrilateral
meshes [Kob96]. Kobbelt first created a tensor
product of the four-point scheme for curves and then
extended this to meshes with arbitrary topology.
The rest of this paper is organized as follows: In
section 2 we describe a subdivision scheme for
curves, which minimizes local variations in
curvature. Afterwards we employ the same idea to
construct a subdivision scheme for surfaces, and
explain how it is constructed. Next, we propose some
applications for which the spherelike scheme is very
well suited. Finally we present some results which
we compare to results of well-known subdivision
schemes, and we formulate our conclusion.

2. THE CURVE SCHEME
The subdivision scheme for curves works as follows:
For every couple of adjacent vertices P1 and P2, we
consider the 4 consecutive vertices (P0, P1, P2, P3).
Since every circle can be determined by three
vertices, one can fit exactly one circle C1 going
through (P0, P1, P2), and also one circle C2 through
(P1, P2, P3). This situation is illustrated in Figure 1.
Between P1 and P2, both circles have an arc arc1 and
arc2, which is parameterized to have parameter u=0
at P1, and u=1 at P2.
The scheme blends both arcs between P1 and P2,
creating a curve segment minimizing curvature
changes. First we calculate the tangent vectors t1 and
t2 in P1, and their average t. The arc arcavg which has
a tangent vector equal to t in P1 is created. On this
arc we take the central vertex to be S, and insert it
into the new curve.
After several iterations of the recursive subdivision
scheme, we obtain a smooth segment, which is

shown as a fat dashed line between P1 and P2 in
Figure 1.

Figure 1: Blending two circle segments between P1
and P2. Every iteration, the tangents t1 and t2 to
the circles C1 and C2 are calculated in P1. Then the
arc passing through P1 and P2, and having the
average tangent t is calculated. The vertex S,
lying in the middle of this arcavg is added to the
curve.
The algorithm we use is based on Séquin’s circular
subdivision scheme for curves [Seq01]. Séquin
rotates a vertex P with distance f(u) = b* sin(u*t(u)) /
sin(t(u)) from P1 lying on P1P2 an angle φ(u) = (1-
u)t(u) around the axis rot_axis = P0P1 X P1P2, where
b = |P1P2|. The resulting vertex S lies on the average
arc arcavg. For u=0.5, this is shown in Figure 2.

Figure 2: Obtaining S using matrix rotation

We instead suggest not rotating this point P using
matrix rotation, but instead we propose to use a
geometric construction to obtain S, using vector
calculation. Let P12 = (P2 – P1) / |P2 – P1|.We
calculate the cross product N = rot_axis X P12, which
is a unity vector, because both rot_axis and P12 are
unity vectors and are perpendicular to each other.
Then we obtain:

S = P1 + cos(φ) * f * P12 + sin(φ) * f * N
Advantages for using this method instead of matrix
rotations are faster calculations of the new points,
and higher accuracy.

3. THE SURFACE SCHEME
In this paragraph we describe how we extend the
techniques presented in the previous section to
surfaces, generating smooth and interpolating
surfaces of arbitrary topology. Starting from a coarse
control mesh, the algorithm recursively refines the
mesh. At each iteration, the number of faces is
multiplied by four. The algorithm works as follows:
First, all edges are split into two, while all original
vertices are retained. Then, new face vertices are
placed inside every face. Finally, the new mesh is
reconnected, replacing every old n-sided face with n
new quadrangles. In the next paragraphs we describe
the algorithm in more detail.
First, all edges are split into two, using the rule for
curves. For every edge which is not part of a
boundary, we take the two end vertices V1 and V2,
and locate V0 and V3 (see Figure 3).
Figure 3a illustrates the situation in the regular case.
We apply the curve algorithm to these four vertices,
and split the original edge in two by inserting a
vertex E. If, however, the valence of a vertex
belonging to the curve is different from 4, we use
other rules.
Suppose we have a vertex v with valence different
from four. There are two different cases: If v has an
even valence, we take the most central edge to obtain
the other vertices used for calculating the edge split .
This is illustrated in Figure 3b. If v has an odd
valence, we choose V0 or V3 as the vertex which is
the furthest away from V1, and belonging to the
central face. This is illustrated in Figure 3c.

(a)
Regular case

(b)
Even valence,

different
from 4

(c)
Odd valence

Figure 3: Different situations around an edge with
vertices V1 and V2. In subfigure a, the situation
with a regular vertex V1 is shown. Subfigure b

shows a vertex V1 with an even valence different
from 4, while subfigure c displays a vertex V1 with
an odd valence. In each situation, the vertices V0
and V3 are located.
When all vertices V1, V2, V3 and V4 are found, a new
vertex E is inserted between V1 and V2. This is
illustrated in Figure 4.

Figure 4: The mask for splitting edges using
spherelike interpolating subdivision for surfaces.
Vertex E is inserted in every edge, using the
algorithm for curves. This algorithm is applied to
the vertices (V1, V2, V3, V4).
Secondly, a face vertex F is created inside every
face. The creation of a face point in the regular case
is illustrated in Figure 5. We apply the scheme for
curves to the vertices (V1, V2, V3, V4) and to the
vertices (V5, V6, V7, V8). Note that both will not give
the same result. Thus we add a new face vertex with
the average coordinates. Since the scheme is
interpolating, existing vertices are left unchanged.
Finally, the old faces are discarded, and new faces
are created by connecting every old vertex with its
two adjacent edge splits, and with a face vertex of an
adjacent old face.

Figure 5: Creation of a new face vertex F inside
the gray quadrangle, in the regular case. The
points Vi are used for calculating F. F becomes
the average of the curve subdivision applied to
(V1, V2, V3, V4) and (V5, V6, V7, V8) respectively.

In the extraordinary case, we employ a different rule
for generating new face vertices. In this case, we can
not simply select 2 paths of edges passing through
the centre of the face, since the number of edge splits
in the face will be different from 4. So there is a
problem picking the second edge vertex. We discern
two different cases here: If the number of vertices n
is even, we calculate the n/2 curve subdivisions using
the new edge vertices. Then we take the average of
these results. This is shown in Figure 6 (left). If the
face has an odd number of vertices, say n, we take
the new face vertex to be the average of n
calculations of the curve scheme, using the vertices
of the face. This is illustrated in Figure 6 (right).

Figure 6: Calculating face points in the
extraordinary case: a face with an even number of
vertices (left), and a face with an odd number of
vertices (right).

4. MODELING APPLICATIONS
There are many applications which may benefit from
using the interpolating spherelike subdivision
scheme. We enumerate some examples.
A first application would be the smoothing of
polygonal objects, since the scheme does not shrink
the object. Selective smoothing of edges is also
possible.
Another application is the efficient generation of
cylinder-like objects and tubes. Starting from a
random curve in 3D, one can sweep a circle over this
curve, with the curve going through the centre of the
circle. Throughout this path, the diameter of the
circle may change, or the circle may change shape.
At the end points, one may use a sphere to produce a
round end point, or a flat plane. An example object
generated using this technique is shown in Figure 7.

(a)

Control mesh

(b)

Subdivided surface
Figure 7: An example tubular object generated
using the interpolating spherelike scheme.
Also, objects like surfaces of revolution can be
represented easily using the spherelike scheme. An
example chess pawn is shown in Figure 8b, along
with the control mesh in Figure 8a.
Finally the scheme can be used to support boolean
operations. An example would be to create a smooth
spherelike blending between two cylinders, where
one cylinder cuts another cylinder under an angle.

5. RESULTS
Figure 8 shows a visual comparison of a chess pawn,
subdivided using different subdivision schemes. Our
spherelike scheme combines the advantages of both
interpolating and approximating subdivision: it
generates the smooth surface of approximating
schemes like Catmull-Clark, while still interpolating
the control points. This interpolation is an important

feature for application of subdivision surfaces in
engineering applications. The interpolating
spherelike scheme generates a round pawn while
preserving the features well. The surface generated
by Kobbelt’s scheme is not round enough, while the
Catmull-Clark surface lacks the necessary features.
Clearly these schemes need a different – and more
complex – control mesh to generate a realistic pawn.

6. CONCLUSION
We presented a new subdivision scheme for surfaces,
which is interpolating, and which minimizes local
variations in curvature. It is well suited to efficiently
produce surfaces with spherelike regions.
For general use, subdivision surfaces are not suitable
yet. Gonsor and Neamtu present a list of problems
with subdivision in engineering applications
[Gon01]. Several problematic properties of
subdivision surfaces are mentioned which may be
alleviated by our scheme: The scheme is
interpolating, while still generating good quality
surfaces, in contrast to existing interpolating
schemes. Secondly, our scheme creates surfaces
with good curvature. Finally, our scheme is locally
refinable, while still maintaining exactly the same
shape, unlike most other schemes.
Future work includes a thorough analysis of the
behavior of the scheme, and adding support for
adaptive subdivision.

7. ACKNOWLEDGMENTS
The authors are pleased to acknowledge that this
work has been partially funded by the European
Fund for Regional Development and the Flemish
Government.

8. REFERENCES
 [Dor04] Doran, C. Circle and Sphere Blending with

Conformal Geometric Algebra. Submitted to Computer
Aided Geometric Design, 2004

[Dyn87] Dyn, N., Gegory, J., and Levin, D. A 4-point
Interpolatory Subdivision Scheme for Curve Design.
Computer Aided Design, Volume 4, pp. 257-268, 1987

[Gon01] Gonsor, D., and Neamtu, M. Can subdivision be
useful for geometric modeling applications? Boeing
Technical Report #01-011,
http://www.math.vanderbilt.edu/~neamtu/papers/report
.pdf.gz, 40pp, 2001

[Kob96] Kobbelt, L. Interpolatory Subdivision on Open
Quadrilateral Nets with Arbitrary Topology. Computer
Graphics Forum, Volume 15, Issue 3, pp. 409-420,
1996

[Mor01] Morin, G., Warren, J., and Weimer, H. A.
Subdivision Scheme for Surfaces of Revolution.
Computer Aided Geometric Design, Volume 18, Issue
5, pp. 483-502, 2001

[Nas01] Nasri, A., van Overveld, C., and Wyvill, B. A
Recursive Subdivision Algorithm for Piecewise

Circular Spline. Computer Graphics Forum, Volume
20, Number 1, pp. 33-45, 2001

[Sab04] Sabin, M., and Dodgson, N. A Circle-Preserving
Variant of the Four-Point Subdivision Scheme,
Proceedings of the 6th International Conference on
Mathematical Methods for Curves and Surfaces,
Accepted, 2004

[Seq92] Séquin, C., and Moreton, H. Functional
Optimization for Fair Surface Design. SIGGRAPH
1992 Proceedings, pp. 167-176, 1992

[Seq01] Séquin, C., and Yen, J. Fair and Robust Curve
Interpolations on the Sphere. SIGGRAPH 2001 Sketch,
p. 182, 2001

[Seq05] Séquin, C., Lee, K., and Yen, J. Fair, G2- and C2-
Continuous Circle Splines for the Interpolation of

Sparse Data Points. Journal of Computer-Aided
Design, Volume 37, Issue 2, pp 201-211, 2005

[Szi00] Szilvási-Nagy, M., and Vendel, T.P., Generating
Curves and Swept Surfaces by Blended Circles,
Journal of Computer Aided Geometric Design, Volume
17, Issue 2, pp 197-206, 2000

[War02] Warren, J., and Weimer, H. Subdivision Methods
For Geometric Design: A Constructive Approach.
published by Morgan Kaufmann. ISBN: 1558604464,
2002

[Wen96] Wenz, H.-J. Interpolation of Curve Data by
Blended Generalized Circles. Computer Aided
Geometric Design, Volume 13, Issue 8, pp. 673-680,
1996

[Zor00] Zorin D., Schröder P. Subdivision for Modeling
and animation, SIGGRAPH 2000 course notes, 2000

(a)

Control mesh
(b)

 The interpolating spherelike
scheme

(c)
Kobbelt’s scheme

(d)
Catmull-Clark

Figure 8: A visual comparison of an object of revolution, subdivided with various subdivision schemes.

Anisotropic Sampling for Differential
Point Rendering of Implicit Surfaces

Florian Levet1 Julien Hadim1 Patrick Reuter1,2 Christophe Schlick1

1 LaBRI - CNRS - INRIA - University of Bordeaux 2 LIPSI - ESTIA
{levet,hadim,preuter,schlick }@labri.fr

ABSTRACT

In this paper, we propose a solution to adapt thedifferential point renderingtechnique developed by Kalaiah and
Varshney to implicit surfaces. Differential point rendering was initially designed for parametric surfaces as a two-
stage sampling process that strongly relies on an adjacency relationship for the samples, which does not naturally
exist for implicit surfaces. This fact made it particularly challenging to adapt the technique to implicit surfaces. To
overcome this difficulty, we extended theparticle samplingtechnique developed by Witkin and Heckbert in order
to locally account for the principal directions of curvatures of the implicit surface. The final result of our process is
acurvature driven anisotropic samplingwhere each sample ”rules” a rectangular or elliptical surrounding domain
and is oriented according to the directions of maximal and minimal curvatures. As in the differential point rendering
technique, these samples can then be efficiently rendered using a specific shader on a programmable GPU.

Keywords: Geometric Modeling, Implicit Surfaces, Differential Geometry, Point Rendering

1 Introduction
Implicit surfaces are an elegant surface representation
to model 3D surfaces without explicitly having to ac-
count for topology issues. Moreover, it is possible
to develop a complete modeling-animating-rendering
pipeline with almost no topological constraints by us-
ing ray-tracing to render the corresponding surfaces.
Unfortunately, to be able to provide a decent ren-
dering of implicit surfaces at interactive framerates,
there is usually no other choice than to convert them
into polygonal meshes, which inherently reintroduces
heavy topological constraints.
In 2001, Kalaiah and Varshney [17, 16] proposed an
innovative technique to render parametric surfaces in
higher quality. The basic idea of theirdifferential point
renderingtechnique is to generate a discrete sampling
of the parametric surface, where each sample locally
defines the differential geometry (i.e. the position, the

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Conference proceedings ISBN 80-903100-7-9
WSCG’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency–Science Press

tangent plane, as well as the minimal and maximal di-
rection of curvature). All the samples are individu-
ally rendered without any connectivity information by
point rendering using a specific rectangular ”splatter”
accounting for the local differential geometry. This
splatter can then be efficiently rendered by specific
shaders on a programmable GPU (see also recent work
of Botsch et al. [5]).
The differential point rendering technique is partic-
ularly well adapted to parametric surfaces since the
samples can be generated explicitly using the local dif-
ferential geometry, and the technique can be simply
extended to triangular meshes by estimating the dif-
ferential geometry at the mesh vertices.
Since the differential point rendering technique offers
high quality rendering of surfaces using less surface
samples, it is quite appealing to extend it for implicit
surfaces as well. This was the initial motivation of
the work we present here. Unfortunately, the exten-
sion is not as straightforward as it may appear at first
glance. The main concern is that the sampling tech-
nique proposed by Kalaiah and Varshney is basically a
two-stage process. In the first stage, a relatively dense
point sampling of the surface is computed, either by
direct sampling of the parameter space (in the case of
a parametric surface), or by using the existing vertices
(in the case of a triangular mesh). Then, during the
second stage, many of the samples are removed using
a simplification process that accounts for the local dif-
ferential geometry, i.e. keeping more samples in the

directions of high curvature and less samples in the
directions of low curvature. The final result is acur-
vature driven anisotropic samplingwhere each sample
”rules” a rectangular or elliptical surrounding domain,
locally oriented according to the directions of maximal
and minimal curvatures. The problem is, that this sec-
ond stage is heavily based on the adjacency relation-
ship between the samples. This relationship naturally
exists in a triangular mesh or in a regular sampling
of a parametric surface, but it has no natural counter-
part for an implicit surface. As a consequence, even
if it can theoretically be implemented, the two-stage
process proposed by Kalaiah and Varshney is not well
adapted to implicit surfaces.
The goal of this paper is to present an alternative solu-
tion for implicit surfaces to obtain a curvature driven
anisotropic sampling that offers similar properties as
the one generated by Kalaiah and Varshney. Our solu-
tion is based on a particle system, in the spirit of the
one initially proposed by Witkin and Heckbert [31],
but we also account for anisotropic sampling using lo-
cal differential geometry.
The remainder of the paper is organized as follows:
Section 2 presents some related previous work mainly
dealing with sampling techniques for implicit surfaces.
Section 3 details our new anisotropic sampling tech-
nique for implicit surfaces. Section 4 presents several
experimental results that focus on the visual quality
and the convergence speed. Section 5 concludes and
presents some directions we are currently studying.
Finally, the mathematical background to compute the
principal curvature directions of an implicit surface as
well as the corresponding curvature amounts is given
in the Appendix.

2 Previous work
Since the groundbreaking work done in 1985 by Levoy
and Whitted [20] which was revisited by Grossman
and Dally in 1998 [13], point rendering has become
a popular research domain in recent years. But as our
goal is to adapt the differential point rendering tech-
nique to implicit surfaces, it is out of the scope of this
paper to recall all existing point rendering techniques.
We refer the interested reader to a recent overview [18]
and tutorial [1].
We will thus focus more precisely on sampling tech-
niques for implicit surfaces. Basically, existing work
can be divided into two main families: tessellating
techniques and particle system techniques.

2.1 Tessellating implicit surfaces

The tessellating techniques of implicit surfaces can
themselves be divided into three categories. First,spa-
tial sampling techniquessubdivide the 3D space into

cells, commonly either cubes or tetrahedra, and search
for the cells that intersect the implicit surface. One
of the most commonly known spatial sampling tech-
niques is the marching cubes algorithm [32, 21], that
divides the 3D space into cubic cells, and triangles
are generated according to the sign at the corners of
the cells. Unfortunately, there are ambiguous con-
figurations that have to be resolved [12]. Marching
tetrahedra algorithms, e.g. by Shirley and Tuchman
[23] or Hall and Warren [14], further divide the cubic
cells into tetrahedra, and for each tetrahedra there are
no ambiguous configurations. Nevertheless, marching
tetrahedra algorithms create numerous, often over dis-
torted triangles. In both the marching cubes and the
marching tetrahedra algorithms, the cells are of con-
stant size, so all these techniques may miss small fea-
tures, do not adapt to the local geometry of the implicit
surface, and require knowledge about the topology of
the implicit surface. When the cell size is too small,
an excessive number of polygons may be produced,
and when it is too large, details may be obscured. To
overcome this drawback, adaptive subdivision tech-
niques that converge to the surface recursively have
been developed [3], but with such techniques cracks
may occur between triangles of adjacent cells of dif-
ferent size.
The second category aresurface fitting techniquesthat
create a seed mesh that roughly approximates the im-
plicit surface and progressively adapt and deform it
to better fit the implicit surface. For example, Velho
[29, 30] starts with a coarse polygonal approximation
of the surface and subdivides each polygon recursively
according to the local curvature. But still there must
be some a priori knowledge about the topology of the
surface since the coarse polygonal approximation has
to capture the correct topology of the implicit surface.
Other surface fitting techniques either assume special
classes of implicit surfaces created from skeletal ele-
ments [10, 7], or rely on a search for critical points
[28, 6] suffering from inefficiency for complex im-
plicit surfaces.
The third category aresurface tracking techniques(or
continuation techniques) that start from a seed ele-
ment on the surface and iteratively grow a polygonal
mesh that approximates the implicit surface. Cellu-
lar surface tracking techniques [2, 32, 4] start from a
cell that intersects the implicit surface and iteratively
find all intersecting cells among its neighbors. Since
the cells are of constant size, cellular surface track-
ing techniques suffer from the same drawbacks as non-
adaptive spatial sampling techniques, and furthermore,
in the general case, it can be difficult to determine a
seed cell.

2.2 Particle systems

The second way to sample implicit surfaces is to use
so-calledparticle systemsthat evenly distribute sam-
ples over the implicit surface. The first time that par-
ticles were used to sample and control a surface was
in a complete modeling tool using oriented particle
systems by Szeliski and Tonnesen [24], but in their
work there was no underlying implicit surface. Turk
[26] used a similar process in order to generate tex-
tures using a reaction-diffusion method. Like the par-
ticle system, he used repulsion radii to simulate this
reaction-diffusion, but the distribution of the particles
is uniform and does not adapt to the local curvatures.
Figueiredo et al. introduced a system to sample im-
plicit surfaces using particles [9]. Even if the force ap-
plied to the particles is not the same as the one used by
Turk, the authors used the relaxation process of Turk
in order to achieve a uniform distribution of the points.
Then these points are used to compute a polygonal ap-
proximation of the implicit surface. Turk’s reaction-
diffusion method can also be used to re-tile polygo-
nal surfaces [27] according to the curvature with more
points in regions of high curvature. But the method
only takes into account isotropic curvature informa-
tion and does not consider the principal directions of
curvature of the surface.
Witkin and Heckbert [31] developed a powerful mod-
eling application by putting together some of these ex-
isting ideas. Indeed, they demonstrated that particle
systems are useful in order to both display and control
implicit surfaces. They used two different types of par-
ticles: floatersthat lie on the surface and that are used
for rendering, andcontrol pointsthat are used to de-
form the surface. These two types of particles must re-
solve a set of constraints so that the floaters follow the
implicit surface and that the surface follows the con-
trol points. Moreover, the authors defined an adaptive
repulsion and a split/death condition so that particles
could either split or disappear from the surface. Hart
et al. [15] improved upon this particle system for au-
tomatic and numerical differentiation of the implicit
surfaces. Indeed, in the work of Witkin and Heck-
bert, the derivatives for complex models can become
computation-demanding and error-prone. Moreover,
shape adapterswere introduced that simplify surface
deformations. One main limitation of both works is
that no information about the curvature of the implicit
surface is taken into account, thus only uniform dis-
tribution can be generated with spherical particles that
all have the same repulsion radius.
Crossno and Angel [8] derived another extension based
on the work of Witkin and Heckbert that can be used
to sample an isosurface extracted from a 3D density
image. A trilinear interpolation between the eight ver-
tices of the voxel surrounding the particle location is

used to approximate the implicit function. They use
the same repulsion forces and movement calculation
as in [31], but they estimate the repulsion radius of
each particle depending on the curvature at the sample.
Consequently, particles in regions of higher curvature
have a smaller repulsion radius. Nevertheless, Crossno
and Angel only account for isotropic curvature infor-
mation and thus do not consider principal directions of
curvature.
Finally, Pauly et al. [22] used a particle system in order
to simplify point-sampled surfaces. The same linear
force as in [27] is used and the distribution of points
depends on the curvature of a moving least squares
(MLS) surface that approximates the points. Using
a death condition combined with the repulsion forces
enables them to simplify the number of points of the
surface. Again, they only account for isotropic curva-
ture information and do not consider principal direc-
tions and curvatures.
Some particle systems have also been used to poly-
gonize implicit surfaces [9] via a Delaunay triangula-
tion. Again, care must be taken that the particles are
dense enough to create a topologically correct polygo-
nal mesh.

3 Anisotropic sampling
Recall that our goal is to generate an anisotropic sam-
pling technique for implicit surfaces that offers similar
properties as the one generated by Kalaiah and Varsh-
ney for parametric surfaces. The density of the sam-
pling should be related to the local curvatures as well
as to account for the directions of maximal and min-
imal curvatures. In other words, each sample should
be the center of an elliptical domain oriented along
these directions and sized according to the maximal
and minimal radius of curvature. To reach this goal,
we propose to adapt the particle sampling technique
developed by Witkin and Heckbert [31].
The basic idea of the sampling algorithm is outlined in
Algorithm 1. In this section, we detail the choice we
made for every step involved in this algorithm.

Algorithm 1 The basic idea of our algorithm.
Require: An implicit surface

Create a set of particles lying on the surface
while Convergence is not reacheddo

Compute the repulsion radii of the set of particles
Compute the repulsion forces of the set of particles
Update the position of the particles
Split particles when necessary

end while

3.1 Initial set of particles

Actually, thanks to the particle splitting step, the al-
gorithm converges even when starting with one sin-

gle initial particle, but it is more efficient to have an
initial set of particles covering the surface. The easi-
est way to reach this is to use a scheme similar to the
shrink-wraptechnique [28]: first regularly sample ei-
ther the bounding sphere or the bounding box of the
implicit surface and then migrate the resulting parti-
cles by following the gradient of the implicit function
until the surface is reached. Note that the diameter of
this bounding volume is used as a normalization scal-
ing factor during the entire process, so that every dis-
tance (radius, curvature, migration) can be computed
in a scale-independent manner.

3.2 Repulsion radii

At each step of the particle migration loop, the re-
pulsion radius for each particle has to be calculated.
As stated above, we want an anisotropic repulsion
process where particle are repelling more in directions
of low curvature and less in directions of high cur-
vature. So we actually compute two repulsion radii
per particle (for the directions of maximal and mini-
mal curvatures, respectively) by adapting the compu-
tation given in [17] to implicit surfaces. The math-
ematical background to compute the principal curva-
ture directions of an implicit surface as well as the cor-
responding curvature amounts is given in the Appen-
dix. Note that this calculation allows us to determine
the variation of the implicit field of the implicit sur-
face. The values that are found are not some distance
measurements of the curvature that could be used di-
rectly in the application. Indeed, one has to multiply
these values by a coefficient in order to scale them and
to be able to use them as distance measurements that
will define a repulsion domain around each particle.
More specifically,minCurv andmaxCurv will yield
the curvature amounts in the two principal directions
minCurvDir andmaxCurvDir.

3.3 Repulsion forces

This step of the algorithm differs significantly from
the rest of the literature. In [31, 8, 15], the authors
compute the repulsion forces between the particles by
using an energy measure. Even if it works well for
isotropic repulsion, this process cannot be generalized
for anisotropic repulsion. Another way to compute re-
pulsion forces between particles has been proposed in
[27, 22]. Again, the computation was proposed for
isotropic repulsion between circular particles, but in
contrary to the previous one, it is possible to extend
this scheme for anisotropic repulsion between ellipti-
cal particles.
More precisely, an elliptical particle can be defined
by combining the two repulsion radiiminRadius and
maxRadius and the two orthogonal directions of cur-

vature. By adding a radius in the third direction, we
actually define ellipsoidal particles instead of ellipti-
cal ones. We have done this modification because
in 3D space, it is much easier to compute repulsion
forces between ellipsoids than between 2D ellipses
defined on two different planar domains. Note that
the radius given for this third direction (let us call it
the heightof the particle) does not really matter: we
have tested either by using a small constant value for
each particle, to get almost flat ellipsoids, or by using
minRadius again, to get particles with a circular sec-
tion, but the final sampling obtained after the particle
migration process is very similar. The main reason is
that the centroids of neighboring ellipsoids lie almost
on the same plane during the last iteration steps, there-
fore the repulsion forces are more or less orthogonal
to the height direction canceling the influence of the
particle’s height.
Once the ellipsoidal shapes of the particles have been
set up, the repulsion forces can be computed accord-
ing to the algorithm given below. It is important to
note that we do not have to compute the repulsion
force between any pair of particles. We rather use a
space partitioning scheme that avoids computing the
force between two particles that belong to distant ar-
eas. We use the same scheme as in [31], but any other
hierarchical partitioning should work fine. Space par-
titioning reduces the overall complexity fromO(n2) to
O(n ln n) and thus significantly speeds up the compu-
tation involved in each step of the migration process.

3.3.1 Computing repulsion forces by using spher-
ical coordinates

We use Algorithm 2 in order to compute the repulsion
force.

Algorithm 2 Calculating the repulsion force between
two particles.
Require: Two particles with their respective curvature information

Compute vectorrij = pj − pi between the centers of the
particlesi andj
Comute the intersectionmi of rij and the ellipsoid ofi
Compute the intersectionmj of rij and the ellipsoid ofj
Determine whether the two ellipsoids intersect themselves
Compute their repulsion force.

This algorithm is really efficient as it only requires
computing two line/ellipsoid intersections.
The intersection of the two ellipsoids can then be cal-
culated. Starting from the two intersection pointsmi

andmj :

res = ‖mi‖+ ‖mj‖ − ‖rij‖ (1)

A negativeres means that the two particlesi andj do
not intersect and thus do not apply forces to each other.

Otherwise, the repulsion force of the particlej applied
on the particlei is defined by:

Fij(i) = res ∗ (pi − pj) (2)

We use the same linear repulsion force as in [27, 22]
because of its compact radius of support. The total
force exerted oni is then given by

F (i) =
∑

j∈Np

Fij(i), (3)

whereNp is the neighborhood ofi that can be retrieved
by the spatial partitioning.

3.4 Migration of the particles

After we have computed the repulsion forces for all
the particles, the next step of the algorithm is to move
the particle according to its repulsion force. Since the
repulsion forceF (i) of a particle is a vector, we just
have to add this vector to the position of the particle
in order to find its new position:pi += kF (i). The
constantk defines the rigidity of the particle’s reaction
with respect to the forces that are applied on it. In our
implementation we use a constant value, but ideally
k should be proportional to the average distance from
a particle to its neighbors. Note that after this move-
ment the particle does not exactly lie on the surface
anymore, and we have to apply a step of the Newton-
Raphson method to glue the particle on the surface:
pi -=f(pi)ni, wheref(pi) is the value of the implicit
functionf at the particlei andni is the normal at the
new position of particlei.
Once we have the final position of the particle, we have
to compute its normal one last time for rendering.

3.5 Determining the fate of the particles

The final step of the algorithm is to determine whether
the particle has to be split. We have seen that a good
condition is to subdivide a particle when the sum of
the norms of the forces that are applied on it be-
comes lower than a predefined threshold. Indeed, as
the forces of repulsion are applied on a finite radius
around the particles, the fact of having a particle with
few forces applied means that it is in an under-sampled
region. It is then natural to divide it in order to increase
the local sampling density.

3.6 Rendering

After that the characteristics of the ellipsoids for all
the particlesi have been created, we use them in or-
der to create the differential points that are rendered

as fragment-shaded rectangles. Since current graph-
ics hardware does not support curved primitives as
differential points, we make use of the possibility of
directly programming new primitives in the GPU of
these graphics cards.
More precisely, we use a rectangular primitive to rep-
resent a particle according to the local differential
geometry. Similar to [17], the rectangle is defined in
the tangent plane of the particle where the normal and
the two perpendicular curvature directions define a lo-
cal coordinate system.
The rectangle’s extent is computed according to the
maximum and minimum curvature amounts. Conse-
quently, the higher the surface curvature, the smaller
is the rectangle. In order to render the rectangle as a
piece-wise smooth surface, an adequate normal distri-
bution of the rectangle is required. In contrast to Kala-
iah and Varshney, who select the best fitting normal out
of 256 precomputed normals according to the principal
curvatures, we interpolate the normals at the corners of
the differential point’s rectangle usingvertex shaders
and fragment shaders. Since we know the underly-
ing implicit surface, we assign the normal to each of
the four vertices of the rectangle. In other words, we
define a normal field over the rectangle that locally ap-
proximates the appearance of the smooth implicit sur-
face. The fragment shader interpolates the normals for
each fragment and normalizes them by using acube
map texture.
The rectangles are fragment-shaded using the pro-
grammable graphics pipeline with vertex and fragment
programs. In the vertex program, we do not compute
the shading since we want per-pixel lighting. We write
the normal, light and half vector in texture registers in
order to interpolate them and define a normal distrib-
ution in screen-space. Then, in the fragment program,
we normalize the interpolated normal, light and half
vector and shade the fragment with both diffuse and
specular components according to the Phong shading
model. Finally, the set of these fragment-shaded rec-
tangles gives a visual impression of a smooth surface.

4 Experimental results
All the images of this section were produced on a Pen-
tium IV at 3.0 GHz with 1 GB of main memory and
an NVidia GeForce Quadro FX. No code optimization
effort has been done, the only acceleration technique
is the spatial subdivision in order determine the parti-
cles that are in the compact support radius of another
particle. We implemented the differential point render-
ing using Cg’s vertex and fragment shaders on a NV30
chipset graphics board from NVidia.
The only parameter that a user can modify is the scal-
ing factor of the curvature amounts. Note that this fac-
tor must be chosen carefully. Indeed, the differential

point rendering allows having a smooth rendering of
an implicit surface with a reduced number of points.
Nevertheless, when the repulsion radii are too large,
each differential point covers a too large amount of the
surface resulting in a lower rendering quality. Figure 1
underlines this problem. Indeed, Figure 1(a) shows an
ellipsoid rendered with a large repulsion radii. Arte-
facts appear at the silhouette of the surface as well as in
the shaded regions compared to Figure 1(b), where the
ellipsoids are rendered with a smaller repulsion radii
and thus reducing the artefacts.

(a) Large repulsion radii (b) Small repulsion radii

Figure 1: Differential point rendering

As explained in Section 3.6, differential point render-
ing renders the surface as a collection of overlapping
fragment-shaded rectangles. In Figure 2, a random
color has been used for each rectangle in order to out-
line the underlying structure. Figure 3(a) presents the
rabbit rendered with a constant diffuse material but it
should be noted that once the size and orientation of
the rectangles have been defined, any fragment-shader
can be used. As an example, Figure 3(b) shows a
non-photorealistic rendering that is obtained by sim-
ply changing the shaders.

Figure 2: The differential points are rendered with ran-
dom colors to outline the overlapping.

The principal problem of particles systems concerns
the convergence detection: even if the surface seems
to be well sampled, particles can still be created due
to the splitting criterion of the particle system. Indeed,
a slightly moving particle can lead to a change in the
splitting criterion and thus to the generation of a new
particle. This does not have a high impact on the ren-
dering of the surface, but it shows that the convergence

(a) Constant diffuse material(b) Non-photorealistic rendering

Figure 3: Different renderings of the rabbit

of particle systems is critical. A simple example of this
problem is given in Figure 4.

-16

-15

-14

-13

-12

-11

-10

 0 100 200 300 400 500 600 700 800
 0

 50

 100

 150

 200

 250

 300

L
og

(R
es

id
ua

l p
ar

tic
le

s
m

ot
io

n)

N
um

be
r

of
 g

en
er

at
ed

 p
ar

tic
le

s

Iteration step

Log(Residual particles motion) per iteration
Number of generated particles per iteration

Figure 4: Residual particles motion and number of
particles created per iteration.

Figure 4 underlines the fact that some particles are
created even when the surface is well sampled. For
example, Figure 4 shows that between iteration num-
ber 600 and iteration number 800, only 5 to 10 par-
ticles are created. So a quasi-equilibrium state of the
system has been reached as soon as iteration number
200, but, because of the particle system behaviour, a
small number of particles continues to split. Another
evidence that lead us to believe that the equilibrium
state has been reached is that, even if some particles
have been created, the residual motion the particles de-
creases after a higher number of iterations. This means
that the surface is well sampled and that the new parti-
cles only have a small influence on the motion of other
particles. In order to resolve this problem, we are cur-
rently working on a more robust convergence criterion
based on the residual motion of the particles instead of
thresholding the forces.

5 Conclusion
In this paper, we presented an adaptation of the differ-
ential point rendering to implicit surfaces by anisotrop-
ically sampling the implicit surfaces using a particle
system. Linking differential point rendering with par-
ticle systems provides an elegant way to sample and

render implicit surfaces. By pushing the information
of the local differential geometry into each sample, we
can describe the surface using fewer particles. This
is particularly beneficial for remote rendering applica-
tions with limited bandwith.
Another contribution of our work is the mathematical
background that we provide to compute the principal
curvature directions of an implicit surface as well as
the corresponding curvature amounts (cf. Appendix).
One drawback of the current implementation concerns
the definition of a robust convergence criterion: in the
case of spherical particle systems, an energy criterion
can be used to identify the convergence. Unfortu-
nately, energy criteria work well for isotropic particle
systems (using spheres), but cannot be easily adapted
for anisotropic systems (using ellipsoids).
We believe that the convergence time and the number
of iterations of the relaxation process can be signifi-
cantly reduced by first doing a global approximation
step of the sampling and then running the particle sys-
tem in a second step. More precisely, the global sam-
pling step should determine the number of particles to
sample the surface, and the second step determines the
position of the particles on the surface.
Finally, we believe that particles systems are perfectly
suited for interactive implicit surface modeling. As a
consequence, the next step of our application will be to
allow the user to deform the surface while the particles
are following the surface deformation.

References
[1] M. Alexa, M. Gross, M. Pauly, H. Pfister, M. Zwicker,

and M. Stamminger. Point based computer graphics.
In SIGGRAPH Course Notes, 2004.

[2] E. Allgower and S. Gnutzmann. Simplicial pivoting
for mesh generation of implicitly defined surfaces.
CAGD, 8(4):305 – 325, 1991.

[3] J. Bloomenthal. Polygonization of implicit surfaces.
CAGD, 5(4):341–355, 1988.

[4] J. Bloomenthal. An implicit surface polygonizer.
Graphics Gems IV, pages 324–349, 1994.

[5] M. Botsch, M. Spernat, and L. Kobbelt. Phong
splatting. InSymposium on Point-based Graphics
2004, pages 25–32, 2004.

[6] A. Bottino, W. Nuij, and K. van Overveld. How to
shrinkwrap through a critical point. InProc. of
Implicit Surfaces ’96, pages 53–73, 1996.

[7] B. Crespin, P. Guitton, and C. Schlick. Efficient and
accurate tessellation of implicit sweep objects. In
Proc. of Constructive Solid Geometry ’98, 1998.

[8] P. Crossno and E. Angel. Isosurface extraction using
particle systems. InIEEE Visualization ’97, pages
495–498, 1997.

[9] L. de Figueiredo, J. Gomes, D. Terzopoulos, and
L. Velho. Physically-based methods for

polygonization of implicit surfaces. InProc. of
Graphics Interface ’92, pages 250–257, 1992.

[10] M. Desbrun, N. Tsingos, and M.P. Cani. Adaptive
sampling of implicit surfaces for interactive modeling
and animation.Computer Graphics Forum, 15(5),
1996.

[11] M. DoCarmo.Differential Geometry of curves and
surfaces. Prentice-Hall, 1976.

[12] A. Van Gelder and J. Wilhelms. Topological
considerations in isosurface generation.ACM
Transactions on Graphics, 13(4):337–375, 1994.

[13] J. Grossman and W. Dally. Point sample rendering.
Eurographics Rendering Workshop 1998, pages
181–192, 1998.

[14] M. Hall and J. Warren. Adaptive polygonalization of
implicitly defined surfaces.IEEE Computer Graphics
& Applications, 10(6):33–42, 1990.

[15] J. Hart, E. Bachta, W. Jarosz, and T. Fleury. Using
particles to sample and control more complex implicit
surfaces. InProc. of Shape Modeling International
2002, pages 129–136, 2002.

[16] A. Kalaiah and A. Varshney. Modeling and rendering
of points with local geometry.Trans. on Visualization
and Computer Graphics, 9(1):30–42, 2003.

[17] Aravind Kalaiah and Amitabh Varshney. Differential
point rendering. InProc. of Eurographics Workshop
on Rendering 2001, pages 139–150, 2001.

[18] L. Kobbelt and M. Botsch. A survey of point-based
techniques in computer graphics.Computer &
Graphics, 2004.

[19] V. Krishnamurthy and M. Levoy. Fitting smooth
surfaces to dense polygon meshes. InProc. of ACM
SIGGRAPH 96, pages 313–324, 1996.

[20] M. Levoy and T. Whitted. The use of points as display
primitive. Technical Report TR 85–022, University of
North Carolina at Chapel Hill, 1985.

[21] W. Lorensen and H. Cline. Marching cubes: A high
resolution 3D surface construction algorithm.
Computer Graphics (ACM SIGGRAPH 87 Proc.),
21(4):163–169, 1987.

[22] M. Pauly, M. Gross, and L. Kobbelt. Efficient
simplification of point-sampled surfaces. InIEEE
Visualization 2002, pages 163–170, 2002.

[23] P. Shirley and A. Tuchman. A polygonal
approximation to direct scalar volume rendering.
Computer Graphics, 24(5):63–70, 1990.

[24] R. Szeliski and D. Tonnesen. Surface modeling with
oriented particle systems.Computer Graphics (Proc.
of ACM SIGGRAPH 92), 26(2):185–194, 1992.

[25] G. Taubin. Estimating the tensor of curvature of a
surface from a polyhedral approximation. InProc. of
ICCV’95, pages 902–907, 1995.

[26] G. Turk. Generating textures for arbitrary surfaces
using reaction-diffusion.Computer Graphics (Proc.
of ACM SIGGRAPH 91), 25(4):289–298, 1991.

[27] Greg Turk. Re-tiling polygonal surfaces.Computer
Graphics, 26(2):55–64, 1992.

[28] K. van Overveld and B. Wyvill. Shrinkwrap: an
adaptive algorithm for polygonizing an implicit
surface. Technical Report 93/514/19, University of
Calgary, 1993.

[29] L. Velho. Adaptive polygonization made simple. In
Proc. of SIBGRAPI ’95, pages 111–118, 1995.

[30] L. Velho. Simple and efficient polygonization of
implicit surfaces.Journal of Graphics Tools,
1(2):5–25, 1996.

[31] Andrew P. Witkin and Paul S. Heckbert. Using
particles to sample and control implicit surfaces. In
Proc. of ACM SIGGRAPH 94, pages 269–278, 1994.

[32] B. Wyvill, Craig McPheeters, and Geoff Wyvill. Data
structure for soft objects.The Visual Computer,
2(4):227–234, 1986.

Appendix: Principal curvature directions
of an implicit surface

In the initial differential point rendering technique [17, 16],
Kalaiah and Varshney proposed to extract the principal di-
rections of curvature from parametric surfaces [11], triangu-
lar meshes [25], or NURBS surfaces that are fit to triangular
meshes [19]. In this appendix, we show how to extract the
principal directions of curvature for a pointp = [x, y, z]T

on the implicit surfaceS, i.e. p ∈ S. To this end, consider
the defining functionf : <3 → < (that has second order
partial derivatives) of the implicit surfaceS = {x ∈ <3 :
f(x) = 0}. Recall, that the normaln of a pointp is defined
by the non-zero gradient of the defining function

n = ∇f(p) =

�
∂f

∂x
(p),

∂f

∂y
(p),

∂f

∂z
(p)

�
.

In order to derive second-order local geometry for the deter-
mination of the principal directions of curvature, we require
theHessian matrixH of the second derivatives of the defin-
ing functionf :

H =

0
@

∂n
∂x (p)
∂n
∂y (p)
∂n
∂z (p)

1
A =

0
BB@

∂2f

∂x2 (p) ∂2f
∂x∂y (p) ∂2f

∂x∂z (p)
∂2f

∂x∂y (p) ∂2f

∂y2 (p) ∂2f
∂y∂z (p)

∂2f
∂x∂z (p) ∂2f

∂y∂z (p) ∂2f

∂z2 (p)

1
CCA

Note thatH is symmetric because of the equality of mixed
partials. We use a local parameterization to extract the prin-
cipal directions and curvatures on a pointp ∈ S with an
associated normaln and a Hessian matrixH. For the illus-
tration of the following calculations, consider Figure 5.
Let us now approximate the defining functionf of the im-
plicit surfaceS in a small vicinity of p by using a small
vectorw for a second degree Taylor expansion with an ap-
proximation erroro(‖w‖2):

f(p + w) = f(p) + nT •w +
1

2
w • (Hw) + (‖w‖2)

Sincep ∈ S, the defining function of the implicit surfaceS
in p is f(p) = 0, and we find

f(p + w) = nT •w +
1

2
w • (Hw) + o(‖w‖2).

�
�
�
�

�
�
�
�

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

� �
� �
� �
� �
� �

� �
� �
� �
� �
� �

w

p

h

Normaln

d(h)nT

Tangent Plane

Implicit SurfaceS
Distance Functiond(h)

Figure 5: Curvature of an implicit surfaceS.

Now, we split vectorw into a vectorh that is orthogonal to
n, i.e. nT • h = 0, and a distance functiond to the tangent
plane inp: w = h + d(h)nT . We want to determine the
distance functiond so thatf(p + h + d(h)nT) = 0. By
combining the two previous equations and settingd(h) =
o(h) sinced′(0) = 0 by definition, we find

nT • (h + d(h)nT) +
1

2

�
(h + d(h)nT) •

�
H(h + d(h)nT)

��

= o(‖h‖2),

that we develop to

nT • (h + d(h)‖n‖2 +
1

2

�
h • (Hh)

�
+

1

2

�
h •

�
Hd(h)nT

��

+
1

2

�
d(h)nT • (Hh)

�
+

1

2

�
d(h)nT • (Hd(h)nT)

�
= o(‖h‖2).

SincenT • h = 0, and since we can neglect the constant
term with respect toh, we find

d(h)‖n‖2+1

2

�
h•(Hh)

�
+d(h)

�
h•(HnT)

�
= o(‖h‖2),

and the second order approximation ofd is

d(h) = −h • (Hh)

2‖n‖2 .

Now, we want to find the maximum and minimum ofh •
(Hh) for h orthogonal ton. This implies that the derivative
of h• (Hh) has a component orthogonal ton with the value
0, and henceHh = µhT +λnT . To determine the principal
directions and curvatures, we have to find the eigenvectors
with associated non-zero eigenvalues of

Hh− (Hh) • nT

‖n‖2 nT =
�
I− nT • n

�
H

�
I− nT • n

‖n‖2
�

.

Summing up, the principal curvature amountsup andvp are
the non-zero eigenvalues of this latter matrix, and the prin-
cipal directionsup andvp are given by the corresponding
eigenvectors.

Simulation-Based Cartoon Hair Animation
Eiji Sugisaki

Waseda University
3-4-1 Okubo, Shinjuku-ku,

Tokyo Japan, 169-8555

eijil11@toki.waseda.jp

Yizhou Yu
University of Illinois
201 N. Goodwin,

Urbana, IL U.S.A 61801

yys@cs.uiuc.edu

Ken Anjyo
OLM Digital Inc.

1-8-8 Wakabayashi,
Setagaya-ku, Tokyo Japan

anjyo@olm.co.jp

Shigeo Morishima
Waseda University

3-4-1 Okubo, Shinjuku-ku,
Tokyo Japan, 169-8555

shigeo@waseda.jp

1 INTRODUCTION
Hair movement in cel character animation is sometimes

inconsistent. For example, there may be inconsistencies
in the number of strands or locks of hair, as can easily be
seen in the images in Fig. 1. The representation of hair is
thus a specialized work in cel animation. In fact, Cartoon
hair representation is very difficult to achieve in com-
puter graphics. This is because all of the hair attributes
may not be consistent between camera positions. Al-
though physics equations can be used to obtain physi-
cally correct movement, it is not always the movement
for which the animator is looking. Since the movement of
hair in cartoon animation sometimes carries meaning, the
animator may be looking for something that exists only
in his or her imagination. This means that the character-
istics of the hair (modeled shape, number, etc.) between
key frames may actually have not to agree. Even though
the frames are physically inconsistent, the results can be
quite convincing. This is the most difficult part of creat-
ing cartoons using computer graphics and is the reason

Keyword :
Cel Animation, Cartoon Animation, Hair Dynamics, 3D Animation

why cartoon hair animation has been done by hand.
This requires a lot of human labor. In the full-cel ani-
mated movie "Princess Mononoke", [Dvd 01a] for ex-
ample, it takes a month to complete five minutes anima-
tion in windy scenes.

The representation of hair motion is very important
for computer graphics regardless of whether the
graphic is simulation or cartoon animation. Moreover,
while cartoon-like hair description plays a crucial role
in making cartoon character animation impressive, hair
simulation for cartoon animation is a challenging task
because the human eyes discern the subtleties of hair
motion and readily notices anything unnatural.

Although attractive cartoon hair animation is often
seen on TV and in movies, there are few animators who
can achieve impressive hair motion in cel animation.
The hair motion as the camera angle changes is
particularly hard to draw by hand. It requires the
instincts of an expert animator and is very time
consuming. While the work of a very skilled animator
is very demanding, there has been little research
directed at solving such time-consuming problems as
the cel animation of hair motion. [Pno04a]

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

Conference proceedings ISBN 80-903100-7-9
WSCG’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency - Science Press

Figure 1. Example of cel images

ABSTRACT
This paper describes a new hybrid technique for cartoon hair animation, one that allows the animators to create

attractive and controllable hair animations without having to draw everything by hand except a sparse set of key
frames. We demonstrate how to give a cel animation character accentuated hair motion. The novelty of this approach
is that we neither simply interpolate the key frames nor generate the movement of the hair only using physical
simulations. From a small number of rough sketches we prepare key frames that are used as indicators of hair motion.
The hair movements are created based on a hair motion database built from physical simulations custom-designed
by the animator. Hair animations with constraints from the key frames can be generated in two stages: a matching
process to search for the desired motion sequences from the database and then smoothly connect them; the
discrepancies between the database sequences and the key frames are interpolated throughoutthe animation using
transition function.

1.1 Overview
We develope a method for creating cartoon hair anima-

tion in computer graphics that easily retains the "anime-
like" aspect of animation. Our goal is to produce an inter-
esting cartoon hair animation that matches the hair de-
signs shown in hand-drawn rough sketches. Our ap-
proach is a hybrid one taking advantages from both key-
frame interpolation and physical simulation. The input is
a sparse set of hand-drawn hair sketches for a cartoon
character in the key frames. These sketches illustrate the
target cartoon features.

A crucial step in our approach is building a motion
database in advance. Building a database with an ex-
haustive list of motions is infeasible given the sheer num-
ber of hair strands and the number of vertices on each
strand, so we build an "animator-directed motion data-
base" with a chosen set of force impulses that can be
used to generate sequences that potentially match the
hair sketches. That is, we build a custom-designed data-
base for each hair animation. It takes about 30 minutes to
build such a database.

One way to reduce an animator`s workload is to con-
sider hair geometry in three dimensions. Although cel
animation uses a two-dimensional structure, we use a
three-dimensional structure so that hair motion can be
created more easily. It is difficult, however, to use three-
dimensional structures to fully express in two dimensions
the inconsistencies that are peculiar to animation. We
therefore propose a method for hair animation that
matches data between the three-dimensional hair models
and the key frames of rough sketches made by animators
or directors that indicate hair motion. More specifically,
we use the three-dimensional hair models and the im-
pulse force to generate interactive and attractive motions,
which we use to construct a hair motion sequence data-
base. We then try to match the rough sketches to the
three-dimensional hair motion sequence database data
by projecting the sequence data onto the rough sketches.
Once we find a match, we create a cartoon hair model to
interpolate between the rough sketches.

2 Related Work
This overview of related work is limited to previous

work on hair dynamics, focusing on explicit hair models.
These models consider the shape and dynamics of each
strand. While they are especially suitable for the dynam-
ics of long hair, they do not consider cartoon simula-
tions. Anjyo et al. [Ken92a] used a simplified cantilever
beam to model hair and used one-dimensional projective
differential equations of angular momentum to animate
strands. Rosenblum et al. [Rer91a] and Daldegan et al.
used sparse characteristic hair to reduce computation
time. Kim and Neumann [Tae02a] presented an artful
method for creating hairstyles that uses Multi-resolu-
tion Hair Modeling (MHM) system, which is based on

the observed tendency of adjacent hair strands to form
clusters at multiple scales. Yu et al. [Yyu01a] also pre-
sented a method for creating hairstyles. These advances
greatly improved hair expression in computer graphics.

Several researchers have proposed novel approaches
to hair-hair interaction. Hadap and Magnenat-Thalmann
[Had00a] proposed modeling dense dynamic hair as a
continuum by using a fluid model for lateral hair move-
ment. Hair-hair collision is approximated by the pres-
sure term in fluid mechanics while friction is approxi-
mated by viscosity. Hair-air interaction is approximated
by integrating hairs with an additional fluid system for
the air. Chang et al. [Jtc02a] modeled a single strand as a
multibody open chain expressed in generalized coordi-
nates. Dynamic hair-to-hair collision is solved with the
help of auxiliary triangle strips among nearby strands.
The input to their simulation algorithm is an initial sparse
hair model with a few hundred strands generated from
their previous hair modeling method. Plante et al. [Epl01a]
proposed a "wisps model" for simulating interactions in
long hair. Bando et al. [Yba03a] proposed a method in
which they model unordered particles that have only
loose connections to nearby control points. By freeing
particles from some constraints, they are able to ani-
mate hair including hair-hair interactions at a reason-
able computational cost. Considering hair-hair interac-
tion is also making significant contribution to hair ex-
pression in computer graphics.

In terms of cartoon expression, Lasseter [Jon87a] is
very likely the first paper to describe the basic prin-
ciples of traditional two-dimensional hand-drawn ani-
mation and their application to three-dimensional com-
puter animation. In this paper, he clearly describes car-
toon animation and what it requires of an animator. Paul
Noble and Wen Tang [Pno04a] achieved cartoon hair
modeling and animation by using NURBS Surfaces to
model the primary shape and motion of cartoon charac-
ter hair.

Rademacher proposed the method that a three-dimen-
sional structure is used in cel animation.[Pau99a] The
reference hand-drawn image of the object or character
often contains various view-dependent distortions that
cannot be described with conventional 3D models.
Therefore, to prepare view-dependent models, which
consist of a base model, a set of key deformations cre-
ated by the base model, a set of corresponding key view-
points, and a given discretional viewpoint, they inter-
polate the key deformations that are specific to the new
viewpoint. They thus capture the view-dependent in-
consistencies of the reference drawing.

3 Constructions of Hair Data

from Original Input and 3D Geometry
Our method requires the preparation of various types

of hair data before starting the simulation. We first need

Figure 2 Rough sketches hand-drawn by an animator
Figure 3 Example of making hair strund steps

Figure 4 Example of plotting the rough sketch images

to prepare a high-quality two-dimensional cel image of
the animated character (like those shown in Fig. 1) and
roughly sketched images of the character’s hairstyles (Fig.
2). These images are hand-drawn by a skilled animator
and are used as original input. This is the only step in
which a skilled animator draws images. We also need to
prepare a three-dimensional model of the character’s head.
This model is based on a wire frame model. We obtain the
three-dimensional head model by texture mapping. This
step is performed by users (animators).

3.1 Making Hair Strands
We also need to obtain position coordinates manually

from high-quality two-dimensional cel images drawn by
the animator. By obtaining the position coordinates and
adjusting them to extract a hair model that is well adapted
for the character animation, we create a three-dimensional
sparse-hair model. This hair model has boundary lines
to form the hair shapes and a centerline to control hair
motion (see Fig. 3). These lines are expressed using
Catmull-Rom splines. The centerline and boundary lines
are connected by weak springs.

3.2 Constructing Initial 3D Hair Model and

Converting The Rough sketch Images to data
To construct an initial three-dimensional hair model

that matches the character, we use a tool that allows the
head model and hairs to be displayed simultaneously in
three dimensions. A commercial tool can be used for this
step. We also convert the rough-sketch hair images into
quantitative data and match this data to hair data in the
hair motion database (Fig. 4). Points on the sketched
hair strands are plotted interactively. The plotted data is
initially two-dimensional. Users perform all of these steps.

4 Creating Hair Motion
In this section, we describe how we create hair motion

from a database and explain the construction of our
“designed hair motion database”. We also explain the
matching process, which uses the similarities between
the angles derived from the rough sketches and the data
obtained by projecting the three-dimensional hair data
from the database sequences onto the image planes

defined for the rough sketches. We describe how we
obtain the attractive hair shape by applying a
deformation function to the differences between the
angles. In addition, we describe how we interpolate
between the database sequences to maintain smooth
transitions between them.

4.1 Designing Hair Motion Database
We apply forces such as those due to wind and head

move to our hair model. After designing the forces, we
simulate the hair dynamics using an implementation of
Featherstone’s algorithm for multi-body dynamic
chains.[Mul01a] [Pli94a] Only the centerline is controlled
by this dynamics. Every sequence generates using this
method specifies three-dimensional points with veloc-
ity vectors.

Compiling a database [Luc02a] [Jpl00a] [Dou03a] has
become a common way of handling a corpus or scat-
tered data. We also deal with the hair control point data
as a database. A strong point of our method is that this
database is custom-designed by an animator for a spe-
cific target animation. One unit of database sequence is
about five frames long. All movements of hair strands
in this database can be designed by an animator so as
to reduce database size and enable target hair motions
to be extracted. The animator can even define the spe-
cific forces needed to obtain a motion that does not
conform to general physical laws. The size of the data-
base depends on the trade-off between speed and qual-
ity. The database we use in our simulation is not so
large, usually less than 5MB. (It depends on how many
hairs a character has.) The force we apply is an impulse

Figure 7 Example of applying

RBFs to matching aspect

(2)

(3)

function. Since the animator needs to design hair that is
close to the sketched hair in the key frames, we consider
the rough sketches as the indicator of hair motion. For
instance, to bend a hair strand dramatically, the animator
should only apply a force to the middle part of the hair
strand. Moreover, to make a motion in which only the
hair tip moves, the animator should define forces ap-
plied only to the tip (see Fig. 5).

4.2 Matching Process:

 Finding Similar Hair Strands in Database
Our method requires animators to use their intuition to

decide the camera positions for the rough hair sketches.
Three-dimensional position points from the hair data-
base sequence are then projected onto the image plane
of he rough sketch. The data thereby become two-di-
mensional. Then we carry out matching in the 2D image
plane with an x- and y-axes, comparing the angle be-
tween hair segments (Fig. 6). More specifically, we mea-
sure the difference in the angles between the data made
from the rough hair sketches and the data of the hair
sequences from the motion database projected onto the
image plane. Then we compare this data using Eq. 1 from
the hair root to the edge. We select the hair motion se-
quence that has the smallest error at the key frames.

(1)

where θ is the angle made from the rough sketch data, φ
is the angle made from the data projected onto the rough
sketch surface, and i is the angle number counting from
the hair strand root. In this equation, the result of each
subtraction must be lower than a certain threshold, th. If
the subtraction result is higher than th, we do not choose
the database sequence with the minimum error. We
thereby obtain from the rough sketch the most similar
hair form in the motion database.

4.3 Deformation Function for Angles
Research on scattered interpolation has generally used

radial basis functions [Jpl 00a](RBFs), which can be
basically expressed as

This interpolation is a linear combination of nonlin-
ear functions of a distance from the data points. It uses
the database sequence chosen in the matching pro-
cess. To transform hair shapes to make them more simi-
lar to the hair sketches than to the database sequences
obtained in the matching process, we use RBFs. Nor-
mally, impressive and exaggerated hairstyles cannot be
obtained by using only physical equations. Initially, we
used the RBFs to interpolate the discrepancies in the
projected hair vertex positions on the image plane of
the rough sketch. However, the hairs became awkwardly
long (Fig. 7, center) and seemed unnatural. We there-
fore apply RBFs to the discrepancies in the angles in
order to get the target shape. This is done using Eq. 3.

where i is the number of links in a hair strand, N is the
total number of links, k is the number of database se-
quences, and Wi is calculated by subtracting θ from φ.
(The answer is an absolute value.) This calculation is
carried out for the database sequence chosen in the
previous step. We then repeat this step from the next
hair root link to one point before the hair tip link, and
adjust the database sequence. (Fig. 8)

To implement this interpolation, we can preserve the
length of the hair segments. Once the angle differences
at the first and last frames of a matching database se-
quence are computed, this interpolation is performed
for all the frames within the sequence. It is repeated for
all hair control points, thereby improving the strands,
as shown in Fig. 7 (right). A second strong point of this
process is that it preserves hair length and reduces the
dimensionality of the calculations from two dimensions
(for x and y) to one (the angle)

4.4 Interpolation Between Hair Motions
We interpolate between two consecutive hair

sequences in order to connect the hair motion smoothly.
Since we use impulse forces to construct the hair motion

Figure 5 Example of

designing hair motion Figure 6 Example of matching aspect

k
d

i

ii∑
=

−

= 1
min

|||| φθ
th

ii
<− |||| φθ

∑ −=
N

XXWXd

ψ
ψψφ ||)(||)(ˆ

∑
=

−
−=

N

i

iik

i

r
Wd

1
2

)
2

||||
exp()(

θφ
φ

Figure 9 An image of the transition

 between DB sequences

Figure 8. An image of how to implement

deformation to the database sequence

(4)

database, the animation result may not be smooth without
interpolation. We use Eq. (4) for the interpolation.

Where c is a variable parameter. If c is large, this
interpolation becomes close to linear interpolation. If it is
small, the interpolation becomes close to a step function.
t represents the time interval; the smaller t, the smoother
the interpolation. The advantage of this equation is that
animators can control c. They can decide whether the
interpolation should change dramatically or smoothly. Too
much smoothness and meticulousness, however, is
inconsistent with cartoon-like animation because it makes
animation results more realistic. The animator thus must
decide on the best parameters to use. Figure 9 shows the
image of this interpolation.

5 Results
Camera Position Interpolation
 The camera position for each rough sketch is set to a

key position, and we carry out linear interpolation between
these positions. The number of segments depends on
the number of frames obtained between the rough sketch
images.

Creating hair thickness
Our hair model does not consider thickness because

we obtain this data from the two-dimensional images. To
do the shading, we create the thickness of the hair. To
create the thickness, we use the hair boundary lines. We
obtain the center position from the boundary points and
then calculate the vector from the center to right-boundary
control point. To get the direction from the hair root to
the end, we use an average vector made from both
boundary points. We then calculate the outer product of
these vectors. By controlling the calculated vector’s
magnitude, we can create and control hair thickness.

Cartoon shading
We have implemented cartoon shading to obtain

cartoon-like aspect character. [Adv02a]

Using our method, we have successfully animated our
hair model in two animations using two kinds of inputs.
For each animation, we have also used the ‘on-twos’
animation method, which is commonly used for cartoons
and is a means of getting more cartoon-like animation by

using the same image for two frames. All animations
were made at 24 frames per second, the standard rate for
cartoon animation. Figure 10 shows the results using
input that requires camera motion. It clearly shows the
effectiveness of our method, since there are few
animators who can achieve animation by hand. Figure
11 shows the results using input that does not require
camera motion. This also shows that our method is
clearly working for matching. The computations for
these example results were executed on a computer with
a 2.4 GHz Pentium 4 processor and were completed
within five minutes for 120-frames animation.

6 Discussion
Using physical parameters obtained from a database

of hair motions designed by a skilled animator, our
method enables animators to use computer graphics to
interactively design and generate cartoon hair anima-
tions with quality close to that obtained by hand. We
easily produced target hair motions by using a simple
hair model designed physically. Using our method we
can achieve hair motions visualized from roughly
sketched indicator images.

However, since the target cartoon expression is in the
animator`s mind, the animation results could be consid-
ered to be the right expression by one animator but not
by another animator. An extreme way of saying this is
that a cartoon character has a life in all scenes. What
the character does must have the meaning the animator
wants to express. One can argue that this is why vari-
ous methods of cartoon expression have been devel-
oped.

Allowing this inconsistency is a huge advantage of
cartoon expression and the most difficult thing to ex-
press in computer graphics. Even if the appearance of a
cartoon characters` hair is physically impossible, the
animation can still be fantastic and express the
animator’s intention. This is an advantage of drawing
by hand. Since our model uses a three-dimensional hair
structure to render hair, it cannot deal with such incon-
sistencies. The question of how to address these in-
consistencies is future work. Automating the pre-com-
puting steps, sections 3.1 and 3.2 is also left for future
work. Another future project is consideration of how
shadowing, rendering, etc. should be handled to enable
discrepancy in cartoon expression.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+−×

−××+
+=

ct

tc
S

||12||

)12()1(
1

2

1

Figure 11 Matching sample of another character

 from animation sequence

Figure 10 Animation sequence that

requires camera motion

Acknowledgment
We would like to thank Yosuke Nakano, Kiyoshi

Kojima, Shinji Sokawa and Akinobu Maejima for help-
ing to make video. Additional thanks go to Jun
Kurumisawa, Tatsuo Yotsukura, Mitsunori Takahasy
and Shoichiro Iwasawa for their comments and sugges-
tions. This research is supported by Japan Science and
Technology Agency, CREST project.

Reference
[Ken92a] Ken. Anjyo, Y. Usami, and T.Kurihara. A simple
method for extracting the natural beauty of hair. In Proc.
of SIGGRAPH 92, pp. 111 - 120, 1992.
[Dal93a] Daldegan, N.M.Thalmann, Kurihara, and D.
Thalmann. An integrated system for modeling
animationandhair renderin Computer Graphics Forum
(Eurographics 93), 12(3): pp. 211 - 221, 1993.
[Had00a] Hadap and N. MagnenatThalmann. Interactive
hair styler based on fluid flow. In Computer Animation
and Simulation 2000. Proceedings of the Eleventh
Eurographics Workshop, 2000.
[Had 01a] Hadap and N. Magnenat-Thalmann. Modeling
dynamic hair as continuum. In Eurographics
Proceedings. Computer Graphics Forum, Vol.20,No.3,
2001.
[Yyu01a] Y.Yu. Modeling realistic virtual hairstyles. In
Proceedings of Pacific Graphics, pp. 295-304, 2001.
[Joh02a] Johnny Chang, Jingyi Jin, and Yizhou Yu, A
Practical Model for Hair Mutual Interactions, ACM
SIGGRAPH Symposium on Computer Animation, San
Antonio, July 2002, pp.73 - 80.
[Rer91a] R.E. Rosenblum, W.E. Carlson, and E. Tripp.
Simulating the structure and dynamics of human hair:
Modeling, rendering and animation. The Journal of
Visualization and Computer Animation, pp.141-148,
1991.
[Rfe87a] R. Featherstone. Robot Dynamics Algorithms.
Kluwer Academic Publishers, 1987.
[Mul01a] Multibod Dynamics (Package software) http:/
/www.kuffner.org/james/software/index.html
[PLi94a] P. Litwinowicz, L. Williams. Animating images
with drawings. SIGGRAPH 94, Orlando, FL, pp. 409-
412,1994
[Nbu76a] N. Burtnyk, M. Wein: Interactive Skeleton

Techniques for Enhancing Motion Dynamics in Key
Frame Animation. SIGGRAPH 76 , Orlando 564 - 569.
[Pau99a] Paul Rademacher, “View-Dependent Geometry”
In Proceedings of SIGGRAPH 99, L.A pp. 439-446
[Luc02a] Lucas Kovar, Michael Gleicher , and Fred Pighin,
Motion Graph, In Proceedings of SIGGRAPH 2002 San
Antonio. pp 473-482.
[Jpl00a] J. P. Lewis, Matt Cordner, Nickson Fong,”Pose
Space Deformation: A Unified Approach to Shape
Interpolation and Skeleton-Driven Deformation” In
Proceedings of SIGGRAPH 2000 New Orleans. pp 165 -
172.
[Adv02a] Advanced RenderMan, A.A.Apodaca and L.
Gritz. Morgan Kaufmann 2002
[Dvd01a] DVD, Making process of “Princess of
Mononoke” produced by Studio GHIBLI.
[Pno04a] P. Noble and W. Tang: Modelling and Animating
Cartoon Hair with NURBS Surfaces, Proc. CG
International 2004, pp. 60 - 67.
[Yba03a] Y. Bando, B.-Y. Chen and T. Nishita, Animating
Hair with Loosely Connected Particles, Computer
Graphics Forum, Vol. 22, No. 3, 2003.
[Kwa03a] K. Ward and M. Lin, “Adaptive Grouping and
Subdivision for Simulating Hair Dynamics”, Proceedings
of Pacific Graphics, 2003, pp.234-243.
[Fbr03a] F. Bertails, T.-Y. Kim, M.-P. Cani, and U.
Neumann, “ Adaptive Wisp Tree - a multiresolution
control structure for simulating dynamic clustering in
hair motion”, ACM Symposium on Computer Animation,
2003.
[Tae02a] Tae-Yong Kim and Ulrich Neumann “Interactive
Multiresolution Hair Modeling and Editing”, In
Proceedings of SIGGRAPH 2002 San Antonio pp 620 -
629.
[Epl01a] E. Plante, M.-P. Cani, and P. Poulin. A layered
wisps model for simulating interactions inside long hair.
In Proceedings of Eurographics Computer Animation
and Simulation, 2001.
[Jtc02a] J. T. Chang, J. Jin, and Y. Yu.”A practical model
for hair mutual interactions” Proceedings of ACM
SIGGRAPH Symposium on Computer Animation 2002,
73–80, 2002.
[Jon87a] John Lasseter “Principle of Traditional
Animation Applied to 3D Computer Animation” Proc
Siggraph 1987, pp 35-44.
[Dou03a] Doug L. James and Kayvon Fatahalian,
Precomputing Interactive Dynamic Deformable Scenes,
In Proceedings of ACM SIGGRAPH, 2003.

Motion Retargeting for the Hand Gesture

Chunbao Ge1
Bejing 100020, China

hagcb@163.com

Yiqiang Chen2
Bejing 100080, China

YiqiangChen@ict.ac.cn

Changshui Yang2
Bejing 100080, China

Changshui@ict.ac.cn
Baocai Yin1

Bejing 100020, China
Ybc@bjut.edu.cn

Wen Gao2
Bejing 100020, China

WGao@ict.ac.cn
ABSTRACT

This paper presents a new technique for retargeting the sign language data captured from motion capture
device to different characters with different sizes and proportions. Realistic and natural animations can be
produced to express similar meanings to the original. The proposed method first defines many sensitive points
on the human body and selects the key sensitive points through analyzing the importance of the sensitive points.
Next a novel mapping method based on relative position is presented to adapt the original sensitive points to the
target sensitive points. Finally we utilize an IK solver to realize the retargeting problem. Experimental results
show that the proposed method dramatically improves the recognition rate about 30%.
Keyword
 Character animation, motion retargeting, key sensitive points, IK, Chinese Sign Language

1. INTRODUCTION
Recently, motion capture has become one of the most
promising technologies in character animation.
Realistic motion data can be captured by recording
the movement of a real actor with a motion capture
system, and motion retargeting will adapt these
motion data to new character. While the target
character is different from the original one, the target
character is likely to lose desire features of original
motion. The problem can be solved through motion
retargeting technology.

Many solutions to motion retargeting have been
presented for different applications. Conventional
retargeting techniques seldom consider the accurate
meanings expressing in motion data. For example, in
the sign language, very small changes in the hand
postures will lead to wrong meanings. Our task is to
retarget sign language motion data to new characters
and guarantee the similarities of the meanings. The

most important characteristics for the sign language
are the precise position relations between the hand
and the other parts of the human body, so we must
analyze and acquire these important characteristics.

Figure 1 shows several key-frames of sign language
(This model was downloaded from Miralab, and we
only use it for demonstration as a standard virtual
human model according to VRML). The left shows
“human”. The middle shows “eye”. The right shows
“rectangle”. For the left and the right the most
important feature is the relative position between two
hands. For the center the important feature is the
relative position between the hand and the head, and
the meaning will change if the forefinger points to
other position.

1. Multimedia and Intelligent Software Technology
Beijing Municipal Key Laboratory, Beijing
University of Technology.

2. Institute of Computing Technology, CAS.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WSCG 2005 Conference proceedings ISBN 80-903100-7-9
WSCG’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

Figure 1. Sign language of “human”,
“eye”, “rectangle”

This paper presents a new technique for retargeting
sign language data captured from motion capture
device to different characters with different sizes and
proportions. We can produce realistic and natural
animations that express similar meanings to the
original. We begin our discussion by providing a
related work of our method in next section. Next we
introduce the model of the human upper limb and
reprocessing of the captured data. In section 3 we
introduce feature analysis for the hand gesture. In
section 4 we present a novel mapping method based
on the relative position of the sensitive points. In
section 5 we introduce our IK solver. Finally, we
show several experimental results and conclude the
paper.

2. RELATED WORKS
 Several techniques have been proposed for reusing
or altering existing motions. [Witkin95a] motion
warping and [Bruderlin95a] motion displacement
mapping discuss motion editing technique based on
direct manipulation of data curves. [Bruderlin95a]
and [Unuma95a] utilized signal-processing
techniques for motion editing. [Wiley97a] proposed
the interpolation synthesis algorithm that chooses
and combines most relevant motions from the
database to produce animation with a specific
positional goal. Though some of the techniques
above can be used for motion retargeting problem
with user’s extra efforts, they don’t specifically
address the motion-retargeting problem. [Boulic92a]
presented the combined direct and inverse kinematics
control technique for motion editing. The concept
called coach-trainee metaphor is very similar to the
motion retargeting problem formulation. A method,
which is devoted to the motion-retargeting problem,
was proposed by [Gleicher97a]. He used the space-
time constraint method that minimizes an objective
function g(x) subject to the constraint of the form
f(x)=c. Since the whole interval has to be integrated
to find the optimal solution, the method is
intrinsically an off-line process. [Choi00a] adopted
the idea of inverse rate control to compute the
changes in joint angles corresponding to those in
end-effectors positions while imitating the captured
joint angles by exploiting the kinematics redundancy.

When the virtual character and performer have
different sizes and proportions, not all aspects of the
motions can be preserved during mapping. At the
lowest level, it is simply not possible to mimic both
the locations of the end-effectors and the joint angles.
A system must make choices to which aspects of the
motion should be preserved and which should be
allowed to change. Gleicher’s space-time motion
editing [Gleicher98a] and retargeting system

[Gleicher97b] proposed the notion of preserving the
important qualities of the motion by changing
unimportant ones, where the important qualities were
defined by constraints. Lee and Shin’s hierarchical
motion editing [Lee99a] provided similar results
using a different underlying implementation. Popovic
and Witkin demonstrated results that made the
kinetic aspects of the original motion important to
preserve [Popovic99a].

These methods mentioned above are all offline
in that they examine the entire motion simultaneously
in processing. Shin, etc [Shin01a] proposed an
importance-based approach that retarget a performer
to an animated character in real-time. They mapped
as many of the important aspects of the motion to the
target character as possible through importance
analysis, while meeting the online, real-time
demands. However, their approach addressed only
the interaction between the end-effectors of a
character and objects in the environment. In fact,
there may also be interaction among the segments of
a character, for example, sign language. In sign
language we convey our meanings through the hand
gesture, and small difference in the hand gesture may
lead to wrong expressions. Due to the geometric
difference between the character and the performer,
the hand gesture of animation characters may deliver
misleading meaning and even unrealistic motion
through directly mapping. Existing algorithms don’t
deal with how to express precise meanings of the
hand gesture. This paper presents a new retargeting
method that can preserve accurate meanings of
original motion for the upper limbs of the human
body.

3. MODEL OF HUMAN UPPER LIMB
AND REPROCESSING OF DATA
Our model has 18 joints and 32 degrees of freedom
in each upper limb. The shoulder joint has three
DOFs. The elbow and the wrist have two DOFs
respectively. In order to perform complicated hand
gestures there are three joints in each fingers and sum
up to 25 DOFs in a hand (As shown in Figure 2).

Figure 2. The controlled degrees of
freedom for the dynamic model of the
virtual human

We build our sign language motion library through
data glove and location tracker device. Data glove is
a kind of device for capturing the hand motion, and
location tracker device can record the position of the
shoulder, the elbow and the wrist. The captured data
usually have many noises and cannot reflect the
realistic motion in detail, so we must preprocess
these captured data. A tool is developed to edit these
original data through manual adapting, and finally
we achieve a suit of standard sign language motion
library for a fixed model proportional to the
performer.

4. ANALYZE FEATURES OF HAND
GESTURE
The most important features for the sign language are
the precise position relations between the hand and
other parts of the human body. The small change
occurring in the end-effectors may lead to mistake in
the meaning. This section discusses how to get the
most important features from the hand gesture. In
figure 1, the middle shows “eye” when the forefinger
points to the eye. And if the forefinger points to the
nose, the gesture means “nose”. In this example the
end of the forefinger is very close to the eye, so it is
important to express the meaning of the gesture. The
relative positions between the end of forefinger and
the eye may be selected as the most important
information. Similarly, we may analyze the important
information involving the relation between two
hands (see the left and the right pictures in figure 1).

In order to find the feature information, we define
three sets of special points called sensitive points for
two hands and one head (see figure 3). Several
notable points (for example eye, ear, nose, mouth, etc)
in the head and two hands are selected as the
characteristic points.

Usually, the importance is higher when the distance
between two points is closer, and this feature must be
preserved after retargeting. We call the first and the
second closest points as key sensitive points and
secondary key sensitive points defined as follows.
Experiment shows that the main feature information
can be got through selecting the key sensitive points
and the secondary key sensitive points.

Here we only consider three parts including one head
and two hands. We define three sets: H denotes
sensitive points in the head; L and R denote the
sensitive points in the left hand and the right hand
respectively.

Let L= }{ 0 , nili ≤≤ , R= }{ 0 , niri ≤≤ ,
H= }{ 0 ,h mii ≤≤ . Here we define 22 points in
each hand and 11 points in the head.

First we analyze the motion between two hands, and
the motion between the head and the hand is similar.
Given points ir in R and jl in L, let ()tdij be the
Euclidean distance between them at t frame (We deal
with each frame independently). Let
D= }{ ,0 ,(t) d (ij nji ≤≤ . We sort the D and get
the two minimal values 1d and 2d (1d ≤ 2d).
Suitable ir and jl corresponding to the 1d and the

2d are selected as key sensitive points and secondary
sensitive points. For example, the left gesture in
figure4, we select 1k and 2k as the key sensitive
points, and select 1s and 2s as the secondary sensitive
points. For the right gesture, there are only key
sensitive points 1k and 2k (We consider the
secondary sensitive points only if 2d ≤ 3).

5. MAP SENSITIVE POINTS
From above analysis, we know that the most
important thing is the relative position between the
hand and other parts of the body for understanding
the sign language. If we map the relative position to
target object when retargeting, these important
aspects for understanding the meaning will be
preserved. We have got several couples of important
sensitive points through above analysis. Next, we
will discuss how to map the relative position for each
couple sensitive points.

Figure 3. Feature points defined in the head
and the hand

k1

k2

 k1 k2
s1 s2

Figure 4. Analyze the key sensitive points
and the secondary sensitive points: the left
shows “heart” and the right means “eye”

Usually the relative position can be denoted with a
vector linking to two sensitive points, and we must
retain identical vector corresponding to the key
sensitive points after retargeting.

Two kinds of situations need to be considered when
we compute the relative positions of two sensitive
points. The first condition is that one point is fixed
and the other point moves to the target position, for
example, motion occurring in the hand and the head.
The other condition is that two points both move to
the target positions, for example, motion occurring in
two hands.

As shown in figure 5, here s1 and s2 are the sensitive
points of the source object; t1 and t2 are the relative
sensitive points of the target object without adapting.
For first condition, we let s2 fixed points, and then we
transfer s1s2 to t1t2 until s2 and t2 are coincident. For
the second condition, we transfer s1s2 to t1t2 until their
centers are coincident. New t1’ and t2’ are the target
position.

 We denote it with two equations as followings.

'
1t = 221)(tss +− , '

2t = 2t

Or

'
1t =

22
2121 sstt −

+
+

, '
2t =

22
1221 sstt −

+
+

6. INVERSE KINEMATICS SOLVERS
Traditionally, inverse kinematics solvers can be
divided into two categories: analytic and numerical
solvers. Most industrial manipulators are designed
to have analytic solutions for efficient and robust
control. [Kahan83a] and [Paden86a] independently
discussed methods to solve an inverse kinematics
problem by reducing it into a series of simpler
subproblems whose closed-form solutions are
known. Korein and Badler [Korein82a] showed that

the inverse kinematics problem of a human arm and
leg allows an analytic solution. Actual solutions are
derived by Tolani and Badler [Tolani96a]. A
numerical method relies on an iterative process to
obtain a solution. Girard and Maciejewski
[Girard85a] addressed the locomotion of a legged
figure using Jacobian matrix and its pseudo inverse.
Koga [Koga94a] made use of results from
neurophysiology to achieve an “experimentally”
good initial guess and then employed a numerical
procedure for fine-tuning. Zhao and Badler
[zhao94a] formulated the inverse kinematics
problem of a human figure as a constrained non-
linear optimization problem. Rose et al. [Rose96a]
extended this formulation to handle variation
constraints that hold over an interval of motion
frames.

Here we adopt the analytical method based on the
geometrical constraints. According to the Stokoe’s
definition [Stokoe60a], each sign language can be
broken into four parameters: hand shape, orientation,
position and motion. These parameters as four
important features play an important role in the sign
language recognition. We build an objective
function to satisfy these constraints (e.g. shape,
orientation and position) for our special applications.
Our method can find a suitable solution that
maximizes the value of the objective function.
Considering the IK chain displayed in the Figure 6
represents the human upper limb. This chain has
three joints: the shoulder S, the elbow E, the wrist W
and the end-effectors F. To guarantee orientation of
the hand we select two points N and M in the hand
together with the wrist joint W to define a plane in
the hand, as shown in the Figure 6.

We give several constraints for the IK chain: the

position of the key sensitive points (hard constraint),

the normal vector n1 of the plane MNW determining

the hand orientation, the normal vector n2 of the

S

E
W

M

F
N

n1 n2
n3

Figure 6. Joints chain of the upper
limb and normal vectors n1, n2, n3
defined by MNW, MEF, SEW

Figure 5. The left shows that one is fixed and the
other move to the new position. The right shows
that two points both move to the new positions

plane EWF and the normal vector n3 of the plane

SEW determining the shape of the upper limb. In

addition, each joint must meet the physiological

constraints of the human body, so their activities

should be restricted in a limited range. We give

different weights for three orientation constraints

according to their importance. The objective

function is defined as in:

)()()('
33

'
22

'
11 nnnnnnG ⋅+⋅+⋅= γβα

Here in and '
in represent the original normal

vectors and the target normal vectors respectively,

and we specify α =0.8, β =0.15, γ =0.05.

There are two elbow circles o1 and o2 defined in
[Tolani00a]. One is made up of the elbow, the
shoulder and the end-effector, and the other is made
up of the elbow, the wrist and the end-effector, as
shown in the figure 7. Let their swivel angles are φ
and ψ . When placing the end-effectors (F) at a
desired point in space, there are an infinite number
of solutions. When the swivel angles ψ of the
elbow circles o1 is confirmed we can decide the
position E, and hence we get another elbow circles
o2. Let its swivel angles is φ, so we can get the
position of W. Then we can get the length of EF
and the DOF’s values of the shoulder, the elbow
and the wrist parameterized by φ, ψ. Furthermore
we can get the reasonable range of φ, ψ and the
length of EF according to the physiological
constraints and the geometrical knowledge, and we
can enhance the efficiency of our IK algorithm to a
great extent. For example, let EF= 2d , SF= 1d ,
SE= 1l , EW= 2l , WF= h , we can deduce:

1d + 1l ≥
2d ≥

1d - 1l , 2l + h ≥
2d ≥ h - 2l , and

get the range of 2d : m ≥ 2d ≥ n . m=min
{ 1d + 1l , 2l + h }, n=max { 1d - 1l , h - 2l }.

Algorithm consists of two steps.

First we solve the DOF’s values of the shoulder, the
elbow, and the wrist according to the position of the
key sensitive points. We preserve other DOF’s
values of joints in the hand if there is a lack of
secondary sensitive points; otherwise we solve it
again in a local joint chain in the hand formed by
secondary sensitive points. It is described in the
following steps.

(1)Get the valid ranges of φ, ψ, 2d .

(2)For each 2d between m and n , we ascertain
the elbow circle o1

(3)For each ψ we compute the position of E and
get the elbow circle o2
(4) For each φ we compute the position of F and
get the value of G
(5) Select suitable E and F values corresponding to
the maximal G and gets the values of DOFs

As for secondary sensitive points, because we had
ascertained the DOF’s values of the shoulder, the
elbow and the wrist, we can deal with it only in a
finger chain.

7. EXPERIMENTAL RESULTS
Our method had been implemented on Chinese sign
language synthesis system. It is a system using
computer technology that translates text into
animation of the virtual human in order to help
hearing impaired people study sign language and
communicate with the outsides conveniently. For
pursuing more harmonious interaction between
human and the machine and applying it for more
fields (for example, TV news broadcasting, internet,
communication and film) so as to improve their life's
quality we build many virtual human models for the
users’ choice. Our task is to produce animations for
different virtual human models that express the same
meanings and can be readily understood by members
of the deaf population.

Our systems have six virtual human models that one
is the standard model and others are different from

S

E

W

F

l1
l2

hd1

d2

φ
ψ

o1

o2

Figure 7. Two circles formed by the elbow and
the wrist

Figure 8. Virtual human models: Joe, Yuxin,
Jali, Lisa, Susan, Lili

the standard in sizes and proportions (see figure 8).
To evaluate the effectiveness of our work, two
methods are adopted. First we conducted tests among
deaf people for our retargeting results. In this
experiment we selected 160 deaf people from four
deaf schools and 100 typical examples of sign
language including various kinds of contacting,
crossing to test. Usually these sign languages will
express wrong meanings if we don’t retarget it. Test
result is shown in the tabe1.

model Lisa Jali YuXin Susan Lili

R.R 97.54% 98.33% 98.43% 97.35% 96.26%

Table 1. R.R means recognition rate

In addition, we invited some experts in sign language
to examine all words for the five models. There are
3162 basic words in Chinese sign language. Test
result is shown in the tabe2.

model Lisa Jali Yu Xin Susan Lili

B.R.R 47.28% 65.03% 61.52% 52.43% 63.25%

A.R.R 96.54% 94.33% 96.43% 95.35% 95.26%

Table 2. B.R.R means recognition rate before
retargeting, A.R.R means recognition rate after
retargeting.

It is very effective to preserve original meanings
and can be readily understood by deaf people after
retargeting from the test result. Experimental results
show that the proposed method dramatically
improves the recognition rate about 30%. Our
methods can produce animation for the Sign
language in real-time. We show some results in
figure 9. These snapshots show some key-frames
for several typical words in sign language, and
animation for retargeting results can be got from our
application for Chinese Sign Language Synthesis
System.

8. CONCLUSIONS AND FUTURE
WORK
We have presented a new approach for motion
retargeting that transforms the upper limbs motions
of a performer to the virtual characters with
different sizes and proportions. First we define
many sensitive points on a human body and select
key the sensitive points and the secondary sensitive
points through analyzing the importance of the
sensitive points. Then we propose a novel mapping
method based on relative position that adapts the
original sensitive points to the target sensitive
points. Finally we utilize an IK solver to realize the
retargeting problem. Our methods had been

implemented on Chinese Sign Language Synthesis
System.

Sign language, as a kind of most structured body
language, is regarded as an indispensable means of
everyday communication for deaf people. Research
on sign language recognition will make for the
communications between deaf people and common
people. Conventional sign language recognition
seldom utilizes the synthesis information of sign
language. We can produce many suits of synthesis
data for different models through our retargeting
technique, and our future work is to implement the
sign language recognition system based on
synthesis information.

9. ACKNOWLEDGMENTS
This work has been supported by National Science
Foundation of China (contract number 60303018),
National Hi-Tech Development Program of China
(contract number 2003AA114030), the Natural
Science Foundation of Beijing of China
(No.4011001), the Educational Committee of Beijing
of China (No.01KJ-017, No. 2002KJ001)

.

10. REFERENCES
 [Boulic92a] R. Boulic and D. Thalmann. Combined

direct and inverse kinematic control for
articulated figure motion editing. Computer
Graphics Forum, 11(4): 189–202, 1992.

[Bruderlin95a] A. Bruderlin and L. Williams. Motion
signal processing. InR. Cook, editor, Computer
Graphics (SIGGR–APH ’95 Proceedings), 97-
104,August1995. ACM-0-89791-701-4.

[Choi00a] Kwang-Jin Choi and Hyeong-Seok Ko.
On-line motion retargetting. Journal of
Visualization and Computer Animation, 11:223-
243, 2000.

[Gleicher98a] M. Gleicher. Retargeting motion to
new characters. In SIGGRAPH 98 Conference
Proceedings, Annual Conference Series, pages
33–42. ACM SIGGRAPH, Addison Wesley, July
1998. ISBN 0-89791-999-8.

[Gleicher97a] Michael Gleicher. Motion editing with
spacetime constraints. In Proceedings of 1997
Symposium on Interactive 3D Graphics, 139-148,
1997.

[Girard85a] M. Girard and AA Maciejewski,
"Computational modeling for the computer
animation of legged figures," Computer Graphics,
Vol. 19, No. 3, pp. 263-270, July 1985.

[Kahan83a] W. Kahan. Lectures on computational
aspects of geometry. Unpublished manuscripts,
1983.

Figure 9. Some snapshots of typical sign
language: The left shows standard sign
language. The middle shows results without
retargeting and the right shows results after
retargeting. (They represent the meanings of
“head”, “tongue”, “eye”, “fight”, “hesitate”,
“bless” and “human” respectively.)

[Koga94a] Y. Koga, K. Kondo, J. Kuffer, and J.
Latombe. Planning motions with intentions.
Computer Graphics (Proceedings of SIGGRAPH
94), 28:395–408, July 1994.

[Korein82a] J. U. Korein and N. I. Badler.
Techniques for g–enerating the goal-directed
motion of articulated structures. IEEE CG&A,
pages 71–81, Nov. 1982.

[Lee99a] Jehee Lee and Sung Yong Shin. A
hierarchical approach to interactive motion
editing for human likefigures. In Proceedings of
SIGGRAPH 99, 39–48, 1999.

[Paden86a] B. Paden. Kinematics and Control Robot
Manipulators. PhD thesis, University of
California, Berkeley, 1986.

[Popovic99a] Zoran Popovic and Andrew Witkin.
Physically based motion transformation. In
Proceedings of SIGGRAPH 99, 11–20, 1999.

[Rose96a] C. Rose, B. Guenter, B. Bodenheimer, and
M. F.Cohen. Efficient generation of motion
transitions using spacetime constraints. Computer
Graphics (Proceedings of SIGGRAPH 96),
30:147–154, August 1996

[Shin01a] Shin H. J, Lee. J, Gleicher, M, and Shin, S.
Y. Computer Puppetry: An Importance-Based
Approach. ACM Transactions on Graphics, Vol.
20, No. 2, April 2001, Pages 67-94.

[Stokoe60a] W. C. Stokoe, Sign Language Structure:
An Outline of the Visual Communication System
of the American Deaf. Studies in Linguistics:
Occasional Papers 8 (Revised 1978). Buffalo, NY:
Linstok, 1960.

[Tolani96a] D. Tolani and N. I. Badler. Real-time
inverse kinematics of the human arm. Presence,
5(4): 393–401, 1996.

[Tolani00a] D. Tolani, A. Goswami, and N. Balder.
Real-time inverse kinematics techniques for
anthropomorphiclimbs. Graphical Models 62(5),
Sept. 2000,335-388

[Unuma95a] K. A. Munetoshi Unuma and R.
Takeuchi. Fourier principles for emotion-based
human figure animation. In R. Cook, editor,
Computer Graphics (SIGGRAPH ’ 95
Proceedings), 91–96, August 1995. ACM-0-
89791-701-4.

[Witkin95a] A. Witkin and Z. Popovic. Motion
warping. In R. Cook, editor, Computer Graphics
(SIGGRAPH ’95 Proceedings), pages 105–108,
August 1995. ACM-089791-701-4.

[Wiley97a] D. J. Wiley and J. K. Hahn. Interpolation
synthesis of articulated figure motion. IEEE
Computer Graphics and Applications, 39–45,
November/December 1997.

[Zhao94a] J. Zhao and N. I. Badler. Inverse
kinematics positioning using nonlinear

programming for highly articulated figures. ACM
Transactions on Graphics, 13(4): 3–13–336, 1994.

The SenStylus: A Novel Rumble-Feedback Pen
Device for CAD Application in Virtual Reality

Michele Fiorentino
DIMeG

Politecnico di Bari
Viale Japigia 182
 70100, Bari, italy

m.fiorentino@poliba.it

Antonio E. Uva
DIMeG

Politecnico di Bari
Viale Japigia 182
 70100, Bari, italy

a.uva@poliba.it

Giuseppe Monno
DIMeG

Politecnico di Bari
Viale Japigia 182
 70100, Bari, italy

gmonno@poliba.it

ABSTRACT
We have developed a pen device for CAD applications in virtual reality which provides novel features compared
to existing systems. The SenStylus consists of a wireless pen designed to be ergonomically handled by the user
for spatial interaction using a six degree of freedom optical tracking. In addition to the classic digital button(s)
input, it provides analog multi-axial control, and a dual-rumble feedback output. We have integrated the device
into an existing virtual reality CAD environment and extended the application functionalities with new device-
specific features. The SenStylus vibration feedback improves perception in the virtual world by controlling
frequency, amplitude, and duration of the feedback, simulating a variety of responses during collisions and
selection tasks. This capability enforces the visual depth sensitivity, which is critical when working with
complex CAD models. The multi-axial analog input provides a natural interaction paradigm to the user, thus
simulating pen pressure and angle as in real world sketching and in real clay modeling. Dynamic tool-tip
dimensioning and shaping are implemented as extra features. We present some applications to prove the added
value of the SenStylus. The evaluation of the device received positive feedback by designers and engineers
alike. The new features offered by this device can easily be extended to other VR applications using the API
provided.

Keywords
Virtual reality, user interface hardware, CAD, 3D interaction

1. INTRODUCTION
As established by many studies, one of the most
limiting factors in desktop CAD is the use of two
degrees of freedom devices for creating 3D forms.
However, the use of fully 3D environments is
limited by the barely explored virtual reality (VR)
interface.

For an effective use of CAD in VR, several VR
interaction techniques have been explored. In
particular, among the many implementations, the so-
called pen&tablet metaphor has proved to be
effective in many applications [Zol97a].

In the pen&tablet interface, the user holds in his/her
non-dominant hand a transparent palette, on which
menus and buttons are displayed; the other hand
controls a stylus for application-related precision
tasks.

Figure 1. The SenStylus.

In spite of the widespread use of the pen&tablet
interface both in academia and in the industrial
world, none of the stylus hardware implementations

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Conference proceedings ISBN 80-903100-7-9
WSCG’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

fully fulfills our needs for our present and on-
development applications. In addition to the classic
stylus, providing six degrees of freedom (6DOF)
and a few state buttons, we needed a multi-axial
analog control for our VR CAD system, and a dual
channel haptic feedback output.

Therefore, we decided to design and prototype a
novel stylus device called SenStylus (Figure 1).

Our SenStylus consists of a wireless pen which is
designed to be ergonomically handled by the user
for spatial interaction using a 6DOF tracking.

The first goal was to offer different controls in a
stylus-shaped design, including buttons, analog
joysticks and sliders. The second goal was to provide
haptic feedback to add further insight to virtual
environments (VE).

Related Works
Spacedesign is an innovative test bed application
developed by the authors to address CAD issues
using virtual and augmented reality interface. Based
on the Studierstube library [Sch96a] and the ACIS
[Spa] modeling kernel, Spacedesign uses the
pen&tablet metaphor (Figure 2).

Figure 2. The Spacedesign VR CAD application

architecture.

The stylus is the main input device for interaction: it
is used for 3D sketching, surfacing, navigation,
selection, and manipulation. The user is also
provided with a virtual palette (a tracked Plexiglas
sheet device) that is used to display information as
well as virtual menus and buttons.

In order to improve the CAD functions using the
stylus, we started a preliminary research on new
available devices suitable for our stylus needs.

Some non-standard interaction devices are
commercially available for entertainment and
research purposes. Besides the very well known
Fastrack Stylus, Fakespace [Fak] produces the
NeoWand™, with eleven buttons and ergonomic
design, and the Cubic Mouse™ [Fro00a]. The Cubic
Mouse - a tracked cube with state buttons and rods

protruding from the sides - is designed for 3D
volume visualization and clipping planes control in
space.

Wanda by Ascension [Asc] is a palm-sized
navigation and interaction 6DOF-tracked tool, with 1
joystick and 3 buttons.

However, the 3D interaction efficiency in VE
depends not only on the type of device, but also on
external factors such as the type of feedback (visual,
audio, or tactile), the number of degrees of freedom,
and ergonomic and subjective aspects. In [Kon95a],
[Lin99a], and [Lin02a], for example, it is
demonstrated that the user’s performance in VE can
be improved with multi-channel feedback (e.g.:
tactile and visual). Force-reflecting devices using
exoskeletons or pantographs, such as PHANToM
[Sen], provide very effective feedback, but their use
is limited by their cost and cumber.

As alternative to this solution, the use of vibrating
motors, like the ones in game pads or cell phones, is
gaining popularity to provide inexpensive
vibrotactile feedback [Che96a], [Oka98a], and
[Cam99a]. Hughes and Forrest [Hug96a] coupled a
standard desktop mouse with vibration elements and
tested its application.

Logitech's [Log] proprietary iFeel technology,
implemented in the iFeel mice, uses Immersion’s
Inertial Harmonic Drive engine and TouchSense API
to produce vibrations in one axis. The API controls
the vibration wave function through frequency,
amplitude, and duration, while the hardware takes
care of the rest, combining multiple effects to
simulate a variety of responses, including quick pops
and different textures.

In this preliminary research on devices suitable for
our stylus needs, we found many products offering
partial solutions, but none of them completely
fulfilled our interface needs.

In the following sections, we describe the SenStylus
design and some of its applications.

2. THE SENSTYLUS

Interface Design and Requirements
To exploit the VR CAD potential, users must have
the possibility to improve their communication
to/from the virtual environment. Our underlying idea
was to maximize the number and quality of the
input/output channels.

We decided that the SenStylus design had to fulfill
the following requirements:

- ergonomic and lightweight (it should be held in
one hand and for continuative use);

- wireless;

- vibrating feedback;

- availability of buttons, sliders, and joysticks for
digital and analog input.

The SenStylus Prototype
We performed a market research on already existing
products, in order to find some wireless, analog
input and rumble-feedback pen-shaped device.
Several products with characteristics similar to
those required, especially oriented to the game
industry, are available (i.e. gamepads and joysticks).
Unfortunately, their shape is not optimized for VR
applications, in which both hands are used
independently. As far as the authors know, on the
market there is no device meeting all the
requirements mentioned above.

The commercial product which comes closest to our
needs is the Logitech® Wingman Cordless
Rumblepad ™.

This device supplies 2 independent vibration
channels, 11 push-buttons, 5 analog controls, and 1
wireless communication on a 2GHz bus with a range
of 6 meters. We decided to modify this device to
obtain a first prototype of the SenStylus. In the
following sections, we describe the aforesaid
hardware transformation.

Ergonomic Issues
The SenStylus is designed for extensive use. Bad
design and uncomfortable grasp can reduce the
precision of the interaction, thus causing frustration
in the user. The lack of limb support (as provided by
the table during drawing) makes the 3D spatial input
interaction a big issue. In fact, the VR stylus -
differently from other devices like the desktop
mouse - requires both power and precision grip. For
this reason, weight is critical. Researches on
surgical instruments show that the tool weight is a
trade-off between filtering hand vibrations (heavier
tools) and reducing fatigue (lighter tools). In this
first prototype, we decided to split the device in two
parts: the first is the stylus itself and the second is
the console attached to the user’s forearm.

The pen is connected to the console by a soft wire
plait.

This solution removes the heavier components
(wireless transmitter, battery pack, etc.) from the
hand-held device. Moreover, the front buttons on the
console are of easy access for the other hand.

In the SenStylus design the thumb and middle finger
provide the power grip, while the index reaches the
controls located on the top (Figure 3). The stylus

cross-section is semi-elliptical for a comfortable
grip and to permit adjustability to hand size. Both
left- and right-handed people can use the device
proficiently. For additional comfort, controls are
rounded and covered with padded foam.

Figure 3. The SenStylus ergonomics.

In order to satisfy the ergonomic requirements
mentioned above, some modifications have been
made on the device based on the Wingman (Figure
4).

- The shape of the circuit board has been slightly
modified for compactness reasons. The wireless
transmission module has been removed and
reconnected in a different location.

- Four buttons and the two joysticks have been
moved from the console to the stylus in
ergonomic position.

- The power supply has been modified. The
original battery pack (four AA batteries) has been
replaced with a single rechargeable 9V battery
with tension regulator.

- The two vibrating motors have been moved from
the console corners to the pen extremities.

Wireless Connection
VR devices (stylus, tablet, glasses, etc.) must be
tracked in order to provide the 6DOF position and
orientation necessary for the 3D input. Most of the
previous generation tracking systems, such as the
magnetic- and acoustic-based ones, needed a wire
connection between the tracked device and the
central unit. However, a completely wireless device
can disclose unknown freedom to the user, who can
be free to move in the VR environment without wire
jams. The latest optical tracking systems provide a
much higher precision in conjunction with no
physical connection. Regarding input device
controls, such as buttons, joysticks, etc., a wireless
communication is needed not to nullify the
advantage of an untethered tracking system.

Analog Multi-Dimensional Input
Apart from the 6DOF input, VR stylus devices are
usually provided with simple controls: buttons,
sliders, and joysticks. One single state button
(on\off) is able to command simple operations (i.e.
selection and navigation), but in order to be
effective, more advanced CAD functions - such as
shape modeling and editing - need other and more
complex controls in the input interface.

Most of the devices available on the market are
provided with discrete state buttons. Many
applications though - such as those aimed at
expressing ideas in conceptual design - go further
than the on\off logic. A clear example of this is free
sketching on paper, where the pressure and the
inclination of the pen on the paper are used to give
expression and “style” to otherwise simple and dull
lines. Commonly available desktop interfaces
(mouse and keyboard) do not usually gratify the
designer’s artistic freedom. One of the main goals
we want to achieve with the development of the
SenStylus is to introduce analog (thus emotional)
input into a VR-based conceptual design application.

We adapted two modified 2-axis joysticks of the
Logitech Wingman to provide a continuous bi-
dimensional analog input. The two joysticks, that we
called indexstick because controlled by the index
finger, are located on the top side of the stylus
(Figure 4), just under the user’s natural index
position. Some applications, especially developed to
make use of the indexstick, are described in the
application section.

Figure 4. The SenStylus prototype.

Rumble Feedback
Virtual reality technology, by means of stereo vision
and tracked point of view, provides an enhanced
visualization and an improved understanding of the
digital model, especially for complex models.

Although visual stimuli play the major contribution
to the human perception model, experiments have
shown that users are not capable of judging the added
depth dimension as naturally as they do the other
two. Novice and experienced VR users alike find
difficulties in localizing 3D targets along the depth
direction. This can be explained by the following
points:

- occlusion issues: hand and pen can cover the
image on the screen;

- 2D interface influence: the user thinks and acts
on 2D as in desktop interface;

- attention allocation: the user concentrates
his/her attention just on the plane of the screen.

Force\Rumble feedback can be coupled with the
visual stimuli to provide a better perception of the
world. Many on-going studies are developing
technologies for conveying force feedback in a VR
environment. Unfortunately no one provided a
definitive solution to issues such as complex set-
ups, costs, and low user’s acceptance. The vibrating
feedback technology instead is nowadays rather
widespread. Rumble feedback is common in game
controllers, but in some applications, such as the
vibrating desktop mice, it is often reported to be
uncomfortable and useless.

In VR, a controlled vibration can provide rendering
of different material textures or different effects
(i.e. collision, snapping, etc.).

The main idea is to use two vibration sources
controlled by the application and located at the
extremities of the pen (Figure 4). The final aim is to
test the feasibility of rumble feedback for VR CAD
applications.

Our early experiments with a first SenStylus
prototype, using the rumble vibrator motors
extracted from the Logitech Wingman,
demonstrated that the vibrations commonly used in
game controllers are excessive for immersive VR
use, and not well accepted during modeling, because
annoying and tiring. These considerations made us
modify the Wingman motors, using smaller ones
commercially available in the mobile phone market.

The effect, even if lighter then the previous one, is
nonetheless experienced by the user. Moreover the
motor substitution (Figure 5) reduced the
encumbrance, the weight, and also the power
absorption, allowing us to simplify the SenStylus
design.

Figure 5. The Wingman vs SenStylus rumble

motors.

2.1.1 Rumble effects
Since in our implementation we used two separate
rumble vibrators, we can command two independent
channels of feedback output. This solution allows to
provide a wide spectrum of feedback effects without
the need for more expensive haptic displays.

To determine the most effective waveform
combination for the use in virtual environments, we
tested several waveform effects, using a dedicated
editor (Figure 6).

Figure 6. Effects editor.

Using the combination of simple waveforms, it was
possible to create a wide list of different effects,
clearly discerned by the users (Figure 7). In this way
test subjects could accurately detect CAD events
like collisions and snapping. Besides, by using the
double channel it was possible to convey to the user
direction information, such as that indicating
collisions in and out of the virtual objects. Subjects
could also easily associate a continuous change in
the perceived vibration amplitude to a scalar value
(i.e. temperature, pressure, or velocity) in a
volumetric field data set.

Figure 7. Example of a rumble effects wave

shape in the two channels.

Some examples described in the application section
demonstrate the effectiveness of vibrotactile
stimulation in conveying a wide range of information
in a VR CAD system. We are continuously working
to develop and test several dual channel effects for a
more useful feedback.

Software
Integrating the SenStylus device into the
Studierstube framework, which originally has no
support for analog controls and force\rumble
feedback output, required some effort to preserve
the existing architecture and to maintain the
compatibility with the previous applications.

In order to implement these new features, the
Studierstube API Tracking class was extended with
analog input and rumble feedback virtual methods.
Then, a new tracker class called SenStylusTracker
was implemented.

The SenStylusTracker architecture is displayed in
Figure 8: the 6DOF input (translation and rotation)
of the real stylus device is acquired from the 3D
input tracker (i.e. ART Dtrack), and merged with the
button and control states coming from the SenStylus
driver, using a Studierstube Buttonfilter. The
SenStylus I\O resources are accessed via a DirectX-
based driver.

In the input device market, mostly pushed by the
gaming industry, Microsoft DirectX has become a
standard, thus making the development of new input
devices very easy. DirectX enables the application to
retrieve from each device the features provided and
to control them accordingly.

Through action mapping, the applications can
retrieve input data without the need to know what
device is generating it.

Figure 8. SenStylus Tracker.

The SenStylus tracker maps the button input into an
extended Studierstube tracker architecture.

SenStylus is provided with:

- 11 x state buttons,

- 2 x analog controls,

- 1 x slider.

Rumble feedback features are activated according to
different modalities. These modalities can be
activated by selecting one of the following
functions:

- start constant vibration,

- load vibration effects from file (.ffe),

- start custom effect,

- stop effect.

The rumble control is achieved in asynchronous
mode, thus in a way transparent to the application.

For each custom effect, the user can instantly
control the tension applied to the motor in order to
vary:

- phase,

- wavelength,

- effect shape and envelope,

- offset,

- max amplitude,

- time delay\duration,

- axes (front or back motor).

Effects can be designed and tested using Microsoft
Force Editor (provided with DirectX SDK) saving
the files as “.ffe”, and then retrieving them from the
application.

In the following section we present some
applications where the added value of the SenStylus
is evident.

3. APPLICATIONS
The SenStylus has been integrated in Spacedesign via
new software modules. These modules, as described
in the next section, have been specifically designed

to exploit and test the innovative features provided
by the new device.

Enhanced Scene Navigation
In this module we have modified the VE navigation
metaphor we had been using for years in
SpaceDesign. The previous system was “clutch”-
based, which means that the user, by pressing a status
button on the stylus, attaches the virtual scene to the
tracked device until he\she releases the button. The
new navigation idea was borrowed from the
AutoCAD “wheeled zoom”, which is very effective
in 2D modeling. We added a fly-through function to
the “clutch” navigation. In the fly-through function
the speed is controlled by one of the indexsticks,
and the direction is controlled by the orientation of
the SenStylus. The swapping between the “clutch”
and the fly-through modes is very fast (Figure 9).
Our preliminary tests proved this solution to be very
effective and more efficient for all users. We are
currently working on extensive test cases to give a
quantitative measure of the increased performances.

Figure 9. Enhanced Scene Navigation using the

SenStylus.

Object Snap
The 3D Object Snap is the natural extension to the
3D input of the Object Snap tools already available
on most Desktop CAD systems. The object snapping
can be easily extended to a 3D input in a virtual
environment, where they are very useful because of
the tracking error, the user’s fatigue, the hand
vibration, and the lack of limb support. Compared to
2D, the 3D object snapping uses a sensible volume
instead of a flat region and the marker is displayed as
a “wire framed” 3D geometry depending on the
snapped topology (Endpoint, Midpoint,
Perpendicular, Centre, etc.). With SenStylus we have
added haptic effects while snapping was activated
(Figure 10). The waveform of the associated effects
varies according to the snapped topology. The use of
a two-channel feedback can provide information
about the pen movement direction towards the snap
point. Another well known issue is the snap volume

dimensioning: a small volume increases precision
but requires more interaction time for selection,
especially in complex scenes. We have used one of
the indexsticks to dynamically change the sensible
volume dimension interactively, according to the
complexity of the model.

Figure 10. Endpoint snapping example.

Object Collision Feedback
We have used SenStylus dual-channel rumble
capabilities to improve the user’s perception of the
VR model. In our tests, object selection in a VR
CAD has proved to be a critical task for complex
models, especially in the depth direction. Therefore,
we implemented a haptic proximity sensor with two
different effects (in/out). A calibrated phase shift
between the two channels was used to convey the
information about the approach and withdrawal
direction (Figure 11).

Figure 11. Dual effect collision.

Multiple DOF “Solid Line” Sketching
In this module we tested the SenStylus analog
control capabilities for 3D free sketching. With this
Spacedesign function the user can draw tubular-
shaped lines with multiple degrees of freedom
(8DOF). Basically, the user sweeps a profile along
the rail drawn in the space by the stylus movement
(3DOF). The cross-section is an ellipsoid whose
dimensions are constantly controlled by the user
with one analog indexstick. During the sweeping, the

SenStylus orientation rotates the cross-section
plane, in a way similar to the real-world marker pen.
Tests showed positive results especially for 3D
writing and logo sketching (Figure 12).

Figure 12. “Solid Line” sketching.

Haptic Probing in Volumetric Fields
Virtual reality, through effective visualization and
exploration, makes it possible to gain a quick and
intuitive understanding of very complex datasets. To
extend the data perception in VE we augmented the
graphical clues with the two haptic channels
available. Moving the SenStylus probe inside the
volume dataset, the intensity of the vibration is
associated to a selected variable value. Using two
channels we convey the instantaneous variable value
to the two extremities of the stylus where the
vibrators are located. In this way the SenStylus is
able to simulate directionality in the feedback
without using more expensive force-reflecting
devices (Figure 13).

Figure 13. Dual-channel rumble rendering

of a CFD dataset.

4. CONCLUSIONS AND FUTURE
WORK
This work presents a novel VR device, the
“SenStylus”, which is expressly designed for CAD in
VR. At the moment no commercially available pen-

like interface satisfies in one product all the
requirements for CAD interaction in virtual
environment: ergonomically shaped, wireless, light
weight, rumble feedback, analog input. The
SenStylus prototype presented here is built using
computer shop hardware. Two rumble feedback
sources located at the pen’s extremities can be
activated separately in order to simulate a variety of
responses. Analog input is provided by two dual axis
joysticks, with which the user can control multiple
degrees of freedom operations.

We have developed and implemented some
applications especially conceived for testing the
Senstylus potentials.

We plan to further test these potentials within a
whole VR CAD design session in order to evaluate
its global performances. Our intention is to make the
SenStylus available to other VR research centers so
as to have it tested in different frameworks. Beside
the presented prototype, we are currently working on
the redesign of the SenStylus in order to integrate all
the components in one ergonomic device.

5. ACKNOWLEDGMENTS
We would like to thank Prof. Francesco Corsi, Dr.
Angelo Dragone, Massimiliano Dellisanti, and
Marco Landriscina for the essential help in building
up the prototypes. The authors wish to thank Dr.
Oliver Kreylos for the tube drawing implementation
and Prof. Dieter Schmalstieg for the Studierstube
library.

6. REFERENCES
 [Art] ART, “Advanced Realtime Tracking GmbH,

ARTtrack1 & DTrack IR Optical Tracking
System”, www.ar-tracking.de.

[Asc] www.ascention.com.
[Cam99a] Campbell C, Zhai S, May K, Maglio P.,

“What You Feel Must Be What You See: Adding
Tactile Feedback to the Trackpoint”, in: Proc. of
INTERACT'99: 7th IFIP Conference on Human
Computer Interaction, 1999; 383-390.

[Che96a] Cheng L-T, Kazman R, Robinson J.,
“Vibrotactile Feedback in Delicate Virtual
Reality Operations”, in: Proc. of the Fourth
ACM Int’l. Conf. on Multimedia, 1996; 243-
251.

[Fak] www.fakespace.com.

[Fio02a] Fiorentino M., De Amicis R., Stork A.,
Monno G. “Spacedesign: Conceptual Styling and
Design Review in Augmented Reality”, in Proc.
of ISMAR 2002 IEEE and ACM International
Symposium on Mixed and Augmented Reality,
Darmstadt, Germany, 2002, pp. 86-94.

[Fro00a] B. Fröhlich and J. Plate, “The Cubic
Mouse: A New Device for 3D Input,” Proc. ACM
CHI 2000, ACM Press, New York, Apr. 2000,
pp. 526-531.

[Hug96a] Hughes R, Forrest A., “Perceptualisation
Using a Tactile Mouse.” In: Proc. Visualization
'96 1996; 181-186.

[Kaw95a] Kawai, S. et al. "Effects of Varied Surface
Conditions on Regulation of Grip Force During
Holding Tasks Using a Precision Grip",
Japanese Journal of Physical Fitness and
Sports Medicine 44(5). 519-538. 1995.

[Kon95a] Kontarinis D, Howe R., “Tactile Display of
Vibratory Information in Teleoperation and
Virtual Environments”. Presence: Teleoperators
and Virtual Environments 1995; 4(4); 387-
402.

[Lin99a] Lindeman R, Sibert J, Hahn J., “Towards
Usable VR: An Empirical Study of User
Interfaces for Immersive Virtual Environments”.
In: Proc. of ACM CHI '99 1999; 64-71.

[Lin02a] Lindeman, R.W., Templeman, J.N., Sibert,
J.L., Cutler, J.R., "Handling of Virtual Contact in
Immersive Virtual Environments: Beyond
Visuals", Virtual Reality, 6(3), 2002, pp. 130-
139.

[Log] www.logitech.com.
[Oka98a] Okamura A, Dennerlein J, Howe R.,

Vibration Feedback Models for Virtual
Environments”. In: Proc. of the IEEE Int’l. Conf.
on Robotics and Autom., 1998; 674-679.

[Ryu91a] Ryu, J. et al. "Wrist Joint Motion", in
Biomechanics of the Wrist Joint, 27-60. 1991.

[Sen] www.sensable.com.
[Spa] www.spatial.com.
[Sch96a] Schmalstieg D., Fuhrmann A, Szalavari Z.,

Gervautz M., “Studierstube - An Environment for
Collaboration in Augmented Reality”, in Proc. of
CVE 96 Workshop, Nottingham, GB, 1996, pp.
19-20.

[Zol97a]Zolt., Gervautz M. :"The Personal
Interaction Panel – A two Handed Interface for
Augmented Reality", Computer Graphics Forum
16(3) C335-C346, 1997.

Implementing Multi-Viewer Stereo Displays

Bernd Fröhlich,
Jan Hochstrate,
Jörg Hoffmann,
Karsten Klüger

Bauhaus University Weimar

Bauhausstraße 11
99423 Weimar

Germany

Bernd.Fröhlich@medien.uni
-weimar.de

Roland Blach
Matthias Bues

CC Virtual Environments
Fraunhofer IAO

Nobelstr 12
70569 Stuttgart

Germany

Roland.Blach@iao.fhg.de

Oliver Stefani

Center of Applied Technologies in

Neuroscience
Wilhelm Klein-Strasse 27

4025 Basel,
Switzerland

ols@coat-basel.com

ABSTRACT
In this paper we describe our implementations of multi-user stereo systems based on shuttered LCD-projectors
and polarization. The combination of these separation techniques allows the presentation of more than one
stereoscopic view on a single projection screen. We built two shutter configurations and designed a combined
LC-shutter/polarization setup. Our first test setup was a combination of mechanical shutters for the projectors
with liquid crystal (LC) shutters for the users’ eyes. The second configuration used LC-shutters only. Based on
these configurations we have successfully implemented shuttering of four projectors to support two users with
individual perspectively correct stereoscopic views. To improve brightness conditions and to increase the
number of simultaneous users, we have designed a combined LC-shutter/polarization filter based projection
system, which shows the most promising properties for real world applications.

Keywords
Virtual Reality, Immersive Projection Systems, Stereo Displays, Multi User Systems, Multi Viewer Systems

1. INTRODUCTION
Perspective projection in combination with head
tracking is widely used in immersive virtual
environments to support users with correct spatial
perception of the virtual world. However, most
projection based stereoscopic systems show a correct
perspective view for a single tracked viewer only.
Other users share the same view, but from different
positions, which results in an incorrect perception of
the displayed objects. This limits the suitability of

projection-based stereoscopic systems for multi-
viewer scenarios, particularly in cases where
concurrent 3D-interaction of all users is desired.

Our intent is the development of a multi viewer
projection system for local collaboration in
immersive environments. We focus on projection
based systems where all users operate in the same
interaction space. A realistic application scenario for
a team of collaborators in front of a single projection
screen would incorporate not more than ten users due
to space limitations in front of the screen. In most
cases we expect only two to six users being involved
in such scenarios.

In this paper we describe our implementations of
multi-user stereo systems based on shuttered LCD-
projectors and polarization. We discuss the results of
our work and give a comparison of the three
configurations. Additionally, our ideas for further
improvement will be presented.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WSCG 2005 conference proceedings ISBN 80-903100-7-9
WSCG’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

View Separation Techniques
The separation of different views is mainly used to
separate the left eye view from the right eye view in
stereo projection systems. There have been also
examples for the separations of different user
perspectives [Agr97, Blom02].
Following the classification of Paastor [Paa97] for
separation techniques we will describe the common
approaches in the field of immersive projection
environments.

1.1.1 Time-Sequential or Shutter Techniques
There are two main approaches for shuttering
projectors: mechanical shutters and liquid crystal
(LC) shutters. Mechanical shutters are in the simplest
form based on a spinning disc, which is half
transparent and half opaque. [Fak04, Ham24, Lip01,
Pal01] suggest this approach, which also seems to be
used in a commercial product [Fak04]. Liquid crystal
shutters are widely used for shutter glasses and they
were also used for shuttering projectors [Kun01,
Kun02]. They can be opened and closed
electronically.

1.1.2 Color-Multiplexing
Anaglyphs, a common technique for stereo viewing,
use different colors to provide different views. The
perceived image appears monochrome. From the
ergonomical point of view anaglyphs are more tiring
and they are more straining for the eyes than other
techniques. A new approach has been developed
which is based on wavelength multiplexing which is
a kind of multi channel color multiplexing for red,
green and blue, the so called Infitec system [Jor04].
With this approach there are up to now some
inherent problems with color matching delivered in
the different views.

Color multiplexing uses appropriate filters in front of
the projector and the eyes for the separation.

1.1.3 Polarization-Multiplexing
Polarized light has a defined oriented field vector in
the plane perpendicular to the direction. Linearly
polarized light has fixed direction. Circularly
polarized light has a fixed rotation direction of the
field vector. With appropriate filters, polarized light
can be generated from unpolarized or undirected
light. With polarization it is only possible to separate
two views due to the nature of polarization where the
filtering is based on the splitting of the light waves
into two orthogonal parts. A linear polarization filter
which is orthogonal to the light polarization direction
theoretically blocks the light completely. Polarization
filters are used in front of the projectors and the eyes
to apply the separation. This is the standard
technique for stereo projection in non interactive
mass presentations.

1.1.4 Performance parameters
To evaluate the quality of a multi view projection
system, three main parameters can be considered:

• Brightness per view
• Crosstalk; static and dynamic
• Perceived flicker, which depends on the

shutter frequency, the video rate of the
projector and brightness.

One of the main challenges is the delivery of
sufficient light to the eye. The light which is emitted
by the projection system is distributed over the
amount of views and is therefore dependent on the
overall view switching frequency, the initial
brightness and the attenuation of the optical filter.
Another issue is crosstalk between different views
which is generally disturbing and also strains the
eyes. Crosstalk occurs when image parts belonging
to other views are perceived, which should be ideally
completely blocked. Crosstalk can be subdivided into
static and dynamic crosstalk. Static crosstalk is based
on the imperfection of the used materials. In the case
of shutters the contrast ratio, that is the ratio between
transmission in the open state to transmission in the
closed state, is also an indicator for expected static
crosstalk. Dynamic crosstalk is due to the timing
behavior of the opening and closing of the shutter
elements and only arises in the transition phases.
Dynamic crosstalk can be reduced to nearly not
existent with an adequate control system. In a system
with low switching frequency, there will be always a
trade off between dynamic crosstalk and brightness.
Our approach for the configuration of a scalable
multi view system focuses on a hybrid configuration
which combines shutter and polarization filter
techniques.

2. RELATED WORK
Shuttering devices for time-sequential

stereoscopic displays have a long history. Lipton
provides an overview in [Lip91]. Interesting in this
context is Lipton’s reference to Hammond’s work on
the Teleview system from 1924 and 1928 [Ham24,
Ham28]. Hammond used a spinning disc and two
projectors to generate a field-sequential active stereo
image. He also used a synchronized spinning disc in
front of the user’s eyes to provide each eye with the
corresponding image. Palovuori’s patent application
from 2001 [Pal01a] presents basically the same
approach based on the spinning disc and shows
nearly identical images. In addition, Palovuori
suggests the use of LC shutters in front of the users’
eyes and/or in front of the projectors. Palovuori’s
patents also mention the extension of the shuttering
approach to more than two projectors, which he calls
multichannel images. In [Pal01b] Palovuori suggests

the development of pulsed projectors, which emit
bright images only during their active cycle. They are
dimmed down or turned off during the rest of the
time.

The application of polarization filters for stereo
viewing systems was used since 1936, when three
approaches were discovered for the economical and
industrial production of polarization filters
(Bernauer, Kaesemann, Land and Mahler). Thus,
picture separation became possible even in color
pictures [Waa85]. The technology has not changed
much since. The main issues were the loss of light by
the filter and crosstalk. Recently, new approaches for
better exploitation of light for LCD-projectors was
presented [Elk02, Ste05]. Kunz et al. [Kun01,
Kun02] employed LC shuttered LCD-projectors to
generate an active stereo display for their blue-c
system. There have been a small number of other
approaches to provide multiple users with individual
stereoscopic images. The two-user Responsive
Workbench [Agr97] displays four different images in
sequence on a CRT-projector at 144Hz, which results
in 36Hz per eye per user. They also developed
custom shutter glasses for cycling between four eyes.
Blom et al. [Blo02] extended this approach to
support multi-screen environments such as the
CAVE [Cru93]. Barco [Bar04] developed the
“Virtual Surgery Table”, which provides two users
with individual stereoscopic images by combining
shuttered and polarized stereo into one system.

3. PROJECTION SETUPS
We describe three configurations which combine the
polarization and shutter separation techniques.

General Setup Considerations
A multi view setup which operates only with shutters
can be described schematically as follows:

Figure 1. General multi viewer setup based on shutters.
The right eye of user 1 is active.

A multi view setup which operates with shutters and
polarization filters can be described schematically as
follows:

Figure 2. General multi view setup with shutter and
polarization filter; left and right view of user 1 are
active.
As described in [Agr97, Blo02] for pure shutter
systems, there are basically two different open/close
sequences; user interleaved or eye interleaved that is
AL, AR, BL, BR, CL, CR, … or AL, BL, CL, AR,
BR, CR, … (A, B, C are user indices, L and R are
left and right eye index).

Combined Mechanical and LC-Shutter
For the mechanical shutter approach we used a
spinning plexiglass disc in front of the projectors.
For safety reasons the spinning disc is encased in a
wooden cage (Figure 3).

Figure 3: The spinning disc is contained in a wooden
cage separated from the projector rack to avoid
vibrations of the projectors. The small motor in the
middle spins the disc.
The straight forward layout for the spinning disc
would use three opaque quarters and one transparent
quarter. If we open the shutters immediately once the
transparent quarter reaches a lens, we introduce
crosstalk since one of the other lenses is still open. If
we reduce the transparent quarter such that it fits
right in between the projector lenses such that only

one lens is open at a time, we reduce the crosstalk
significantly (Figure 4). The overall brightness is
appropriately reduced. Alternatively we could stick
with the ¾ / ¼ and open shutters only during times
when only one projector lens is open. This introduces
phases during which all shutter glasses are closed.

Other layouts are possible, which divide the disc for
example into eight zones. Two zones would be
transparent, the others opaque. Such a setup would
divide the required rotation speed in half, but
decreases the actual light output if the disc size is not
enlarged. The diameter of the exit pupil of the
projectors in relation to the circumference of the disc
should be small, since the actual shutter timing
depends directly on it.

Figure 4. Shutter disc for the two-user setup. Four
projectors are located around the axis of the disc. One
quarter of the disc is open, three quarters are closed. A
reflective optical switch is used for generating the
synchronization signals for the shutter glasses.
We currently use a single reflective optical switch to
generate the control signals for the shutters. The
inner ring of the disc is separated into four black and
four white zones, which generate the clock for the
shutter glasses. Our current implementation requires
that the spinning disc starts always in a defined
orientation to switch the LC shutters in the correct
order. We could also install an additional optical
switch which detects the opening of the first video
projector and provides an initialization for the clock
signals of the inner ring.

We use the ATMEL ATMega32 [Atm04] micro
controller to drive the shutter electronics for the
projectors and glasses. The amplified digital outputs
of the micro controller are used to drive the shutter
glasses. The digital inputs read the signals from the
reflective optical switches.

LC-Shutter
We used standard tethered gaming shutter glasses
(Elsa Revelator) for shuttering the users’ eyes. For
shuttering the projectors we took the same gaming

shutter glasses apart and mounted the shutters
directly in front of the projectors. The shutters are a
little too small to cover the whole image, but for a
test setup they were quite sufficient. The original
electronics of the shutter glasses were removed and
we used also the ATMEL ATMega32 micro
controller to generate the required signals.

LC-shutters are closed if a positive or negative
voltage is applied. Otherwise they are open. For fast
and continuous on/off switching of the shutters it is
necessary to drive them with alternating polarity to
avoid memory effects. Our experiments showed that
our particular shutters provide the best results if +-15
Volts are applied. We were able to run the shutters at
up to 300Hz with only little cross talk. Currently we
feed exactly the same signal to the shutters in front of
the projectors and to the shutter glasses. As a
consequence, the closing signal for a projector and
the corresponding eye shutter arrive exactly at the
same time as the opening signal for another projector
and eye. This approach might contribute slightly to
the cross talk, but we have not yet experimented with
slight delays nor do we know the exact open and
close timing behavior of the shutters.

For the final tests we used projectors with 1700
Lumens, which resulted in significant heat
development in the shutters. We had to install a fan
to cool the shutters down. Larger shutters would
allow us to move away from the LCD-projectors,
which would distribute the heat across the larger
shutter surface. Smaller fans could be mounted near
each shutter to avoid heat problems..

Combined LC-Shutter and Polarization
For the combination of polarization and the LC-
Shutter approach, two solutions are possible:

• Eye separation with shutters and user
separation with polarization

• Eye separation with polarization and user
separation with shutters

The second approach scales well, since users can be
added one by one. For the maximum exploitation of
light we used LCD-projectors with an extension of
the filter optimization proposed by Stefani [Ste05].
Due to their internal structure most LCD projectors
emit already linearly polarized light. Unfortunately,
the polarization of the green beam is orthogonal to
the polarization of red and blue beam. This problem
can be solved by wavelength dependent λ/2 retarders
for the green channel and a red/blue combination,
which rotates only the appropriate color channels by
90 degrees. These selective retarders can be obtained
from projector filter manufacturers, e.g. ColorLink
[Col04].

LC-Shutter elements use also polarization filter as an
integral part of their function. A LC shutter is a
combination of two linear polarizers and a voltage
controlled retarder. For a single user the light path is
shown in Figure 5.

Figure 5. The polarized light is emitted from the
projector. A selective green λ/2 retarder rotates the
green channel on the upper projector. A selective
red/blue λ/2 retarder rotates the red and blue channel
on the lower projector. The LC-shutters are then
applied to open and close the views. All shutters for one
user are opened and closed at the same time.
We plan to use ferroelectric liquid crystal (FLC)
shutters for the user separation, which are
significantly faster than standard LC shutters. FLC-
shutters have to be driven differently than the above
mentioned Elsa Revelator Shutters, which we also
drive by an ATMEL microcontroller.

Figure 6. Combined LC-Shutter and Polarization
Setup. View of user 1 is shown all others are closed.
In this configuration, four LC-Shutters are used for
one user. All four shutters open and close at the same
time. We have to trigger the next user after the
shutters of the previous user are definitely closed to
avoid cross talk. As projector we will use the
Panasonic LB 10-NTE with 2000 ANSI lumens. For
this setup a fan was also necessary to cool the optical
elements.

4. DISCUSSION
We have evaluated the different setups regarding
brightness, crosstalk and subjective perception of
flicker. We are aware of the difficulty of comparing
these setups formally. Nevertheless, they show the
principles with their advantages and disadvantages
very clearly.

Brightness considerations
We have measured the relative brightness of filter
combinations which can be applied to the various
configurations. For the measurement we used the
Panasonic LB 10-NTE LCD-projector with 2000
ANSI lumens. As measurement device we used the
Universal Photometer from Hagen. The following
optical elements were used:

Element Description
LCS LC-Shutter element Stereographics

Crystal Eyes 1
PL Linear polarization filter heliopan ES 77
RL2 Retarder λ/ 2
RL2g Selective Retarder for green λ/2
CRPL Combined high quality element

consisting of a selective λ/2 retarder, a
λ/2 retarder, and a linear polarization
filter

Table 1: Used Elements in measurement.
We present here the results which are the building
blocks for the three presented hardware
combinations.

75,27%

35,48%

29,03%

35,29%

21,57%

23,66%

0,00% 10,00% 20,00% 30,00% 40,00% 50,00% 60,00% 70,00% 80,00

relative brightness

equivalent DLP config

equivalent DLP confiig Linear Polarization CRPL

LC-Shutter without polarization
modification LCS + LCS, 45°

LC-Shutter with polarization
modifications, optimized Element

LC-Shutter with polarization
modification not optimized

Figure 7. Relative brightness with a white test pattern.
The DLP is shown only for comparison as a
representative for non polarized light sources. The last
row shows a optimized standard polarization.
The pure LC-shutter setup and the combined LC-
shutter/polarization setup follow the same light path.
Consequently the pure LC-shutter configuration can
also benefit from the modification and optimization
with the CRPL Element as a prefilter in front of the
projector shutter. Nevertheless the combination of

shuttering and polarization provides twice the
brightness as the shutter only approach, but it
requires a polarization preserving projection screen.

Combined Mechanical and LC-Shutter
The spinning disc approach leads to really fast

rotations if it is used in its simplest form. For
example if we want to achieve 200Hz, 50Hz per eye
per user, we need to spin the disc at 50 Hz or 3000
rpm. We tried this approach and we were able to spin
the disc at up to nearly 3000 rpm with a small DC
motor. At the maximum rotation rate and 49.5 Hz per
eye per user the image was basically flicker free. At
45Hz we saw minimal flicker. At lower refresh rates
the flicker increased and below 40Hz the flicker was
very noticeable.

 Our current disc has a diameter of around 40
Centimeters and is made of 3mm plexiglass. The
minimal size of the disc is mainly determined by the
size of the projectors and the distances of the
projector lenses, but the disc size affects directly the
time it takes to close and open a projector lens.
Larger discs reduce this time significantly, but it is
difficult to fully avoid vibrations and noise of large
spinning discs. We did not measure the noise of our
system, but it was significant and annoying after a
while. The cage around the spinning disc could be
used to dampen the noise.

One of the main advantages of the mechanical
shuttering approach is the possibility to completely
avoid static crosstalk between projectors. There is
always some cross talk due to the shutter glasses
unless they would be replaced by mechanical shutters
as well. Thus it is very worthwhile to look at
mechanical shuttering systems, which provide 100%
transmittance during their open period even though
the LC shuttering approach is much easier to
implement.
LC-Shutter
Our first tests investigated the cross talk at different
frequencies and supply voltages for the LC-shutters.
The least cross talk was found at about 15 Volts.
Over 15 Volts the shutters started to show some
speckles, which indicates their voltage limitations.
Nevertheless we were running the shutters at 15
Volts for many hours without any degradation in
image quality, but it is possible that this is above the
specs. There was slight crosstalk, which was barely
perceivable while viewing stereoscopic images.

Our shutters are quite small and they barely cover the
exit pupil of the projector lens. If we use the full
resolution of the projectors, we are seeing refraction
artifacts from the boundaries of the shutters, which
results in some rainbow effects across the images. If
we limit ourselves to about 80 percent of the shutter
surface, these artifacts are no longer visible.

We experimented with different shutter switching
frequencies in the range of 140Hz to 400Hz. We
implemented the timing control for two, three, and
for users. For two users, each shutter (eye) was open
for one fourth of the time, for three users for one
sixth, and for four users for one eighth. The tests
were performed with two pairs of glasses and four
projectors, but the timing was already correct for
two, three and four users. The results of these tests:

 Two User Three
User

Four User

140 Hz flickering

160 Hz Very little
flicker

200 Hz no flicker

240 Hz No flicker,
good image

slight
flicker

flickering

280 Hz No flicker,
Very good
image

barely
flickering
(270 Hz)

Slight
flicker

300 Hz No flicker

320 Hz very slight
flicker

360 Hz dark image,
pumping

Dark image

Table 2: Flicker impressions
Above 320Hz our shutters did not open fully
anymore and the images got quite dark. At around
400 Hz the shutters started to show some stripe
patterns and did not work properly anymore.

It was amazing to see that these cheap LC-shutters
worked quite well even at such high frequencies. For
the two user scenario, our favorite frequency was
280Hz, which resulted in a stable and completely
flickerless image. But even at 160 Hz the flicker was
not really very disturbing, but we did not use the
system for long working periods. We did not
perceive any difference in brightness between 160Hz
and 280Hz for two users, even though the state
transition time of the shutter glasses should start to
play a role. In particular the transition from the
closed to open state is longer than the inverse
transition. For three users, the image was slightly
darker than for two users, since each eye was
exposed to an image for only one sixth of the time.
There was little flicker above 270Hz. For four users,
the image was clearly darker and there was still slight
flicker at 320Hz. At higher shutter frequencies the
image got much darker, and it was hard to judge the
image quality.

We have also investigated two different sequences of
presenting the images to the left and right eye of each

user – similar to the approach in [Agr97]. The viewer
interleaved sequences display the left eye images of
all users in sequence and then the right eye images.
The viewer sequential method displays the left and
right eye images for each user directly in sequence.
Surprisingly, we did not notice any perceivable
differences, even when switching directly back and
forth.

Combined LC-Shutter and Polarization
It is obvious that proper orientation of shutters in
front of the projector and in the glasses immediately
leads to the desired polarization. The only difference
to a purely shutter based approach is a different
controller scheme for the shutters. The benefit is we
need only half the shutter frequency and obtain
double brightness. The FLC-shutters have much
faster switching times than the Elsa revelator glasses,
but they are also much more expensive. For real
world configuration it will depend on the number of
users. Based on the measurements a four user setup
might already be possible with the Elsa-Shutter.

As of now, we only have used this configuration for
pure proof of concept and have not built an entire
working environment. So far our experiments look
promising and they are confirmed by our
measurements. Nevertheless. formal results can only
be obtained with a working setup with more than two
users.

General Remarks on shutter techniques
When using LC-shutters in front of a LCD-projector
one can benefit from the optimized optical elements
described above. One advantage of a pure shutter
configuration is that in principle it is not necessary to
use a polarization preserving projection surface. The
consequence is also that when depolarized on the
projection surface, the system has no rotation
restrictions anymore. The trade off is very low
brightness. An equivalent for the polarization
approach is the introduction of retarder (λ/4) in the
open light path to obtain circular polarization, which
is also rotation invariant

It is important to notice the relation between the
shutter element and the actual image formation inside
the projection. As long as the shutters are not
synchronized with the video signal, artifacts as image
tearing or irregular flicker can occur. Also the usage
of color wheels will introduce color artifacts. Off the
shelf LCD-projectors seem to be very appropriate
because they follow a three LC-chip approach and
they are also slow enough to preserve the color
information in the LC-cell until the next image will
be generated.

Presenting the views with independent projectors has
the nice property that the synchronization of the

shutter system can be independent from the computer
graphics hardware, because no tight coupling of
frame buffer swaps and shutter activity is necessary.

Previous approaches have mainly used quadbuffer
stereo and active stereo components [Agr97][Blo02]
where such a synchronization is necessary.

Shutter techniques as described here can also be
easily combined with color multiplexing for left and
right view separation. If the Infitec separation has
overcome its color reproduction problems, it might
be a powerful alternative to polariziation techniques.

Driving Software
The projection systems were driven by two different
software systems Avango [Tra99] and Lightning
[Bla98]. Both application frameworks are capable to
support multiple views on multi pipe machines or on
clusters in a very generic way. We implemented
some basic test scenarios on both frameworks, which
were basic 3D object viewers.

Figure 8. An image taken directly from the projection
screen. It shows four images overlayed on top of each
other. Two images are displayed for the left user's eyes
and the other two images for the right user's eyes.

5. CONCLUSIONS AND FUTURE
WORK
We have shown that multi view environments with
more than two users are feasible and can be realized
with a reasonable amount of hardware. Three
different setups have been presented and discussed.
The combination of LC-shutter and polarization has a
shown to be the most promising approach
considering scalability and brightness.

An interesting approach to enhance the projector
shuttering is the usage of a pulsed light source which
is synchronized with the users glasses which has
been mentioned already in [Pal01b]. Major
advantages are better exploitation of light, static
crosstalk on projector side can be minimized to not
existent because of best contrast ratio and dynamic
crosstalk is not depending on mechanical properties
of the shutter. It is a combination of the contrast
properties of mechanical shuttering with the control
properties of fast LC-shutters. Stroboscopic light

bulbs or LED-Technology might be an interesting
path to follow.

We have experimented with a high luminous LED
array. Some issues are already obvious: heat, beam
guidance and the bundling of the light.

Besides further technical optimizations, we want to
integrate known collaborative 3D-interaction tools
and develop adapted tools for the new situation of
local 3D-collaboration in the same interaction space.

6. ACKNOWLEDGMENTS
The micro controller board was developed within the
VRIB project, which was funded by the German
government. We thank David Paneque and
Alexander Kulik for partly building the various
shuttering setups.

7. REFERENCES
[Agr97] Agrawala M., Beers A., Fröhlich B.,

Hanrahan P., McDowall I., Bolas M.: The Two-
User Responsive Workbench: Support for
Collaboration Through Individual Views of a
Shared Space, Computer Graphics (SIGGRAPH
'97 Proceedings), volume 31, pp. 327–332, 1997.

[Atm04] Atmel AVR microcontroller
http://www.atmel.com/products/AVR/

[Bar04] Barco: Virtual Surgery Table.
http://www.barco.com/VirtualReality/en/products
/product.asp?element=523

[Bla02] Blach R., Landauer J., Rösch A, Simon A.,
A Flexible Prototyping Tool for 3D Real-Time
User-Interaction. Proceedings of the
Eurographics Workshop on Virtual Environments
98 , 1998 pp. 195-203

 [Blo02] Blom K., Lindahl G., Cruz-Neira C.:
Multiple Active Viewers in Projection-Based
Immersive Environments. Immersive Projection
TechnologyWorkshop, March 2002

[Cru93] Cruz-Neira, C., Sandin, D.J., and DeFanti,
T.A. Surround-screen Projection-based Virtual
Reality: The Design and Implementation of the
CAVE. Proceedings of SIGGRAPH '93, 135-
142, 1993.

[Col04] Colorlink Filter
http://www.colorlink.com/products/pdfs/select.pd
f

[Elk02] . Elkhov V.A, Ovechkis J.: Light loss
reduction of LCD polarized stereoscopic
projection, Stereoscopic Display and Virtual
Reality Systems X , Proc. of SPIE Vol. 5006, pp.
45-48, 2003

[Fak04] Fakespace Systems: Active Stereo Digital
Projection Technology
http://www.fakespace.com/05162003.htm

[Ham24] Hammond L.: Stereoscopic Motion Picture
Device. U.S. Patent No. 1,506,524, Aug. 26,
1924.

[Ham28] Hammond L.: Stereoscopic Picture
Viewing Apparatus. U.S. Patent No. 1,658,439,
Feb. 7, 1928.

[Jor04]. Jorke H., Fritz M.: INFITEC - A new
Stereoscopic Visualisation Tool by Wavelength
Multiplex Imaging, Electronic Displays

[Krü94] Krüger, W., and Fröhlich B. The Responsive
Workbench. IEEE Computer Graphics and
Applications, 12-15, May 1994

[Kun01] Kunz A., Spagno C.: Novel Shutter Glass
Control for Simultaneous Projection and Picture
Acquisition. Immersive Projection Technology
and Virtual Environments 2001, Stuttgart,
Germany, May 2001, pp. 257-266.

[Kun02] Kunz A., Spagno C.: Technical System for
Collaborative Work. EGVE 2002, pp. 73-80;
May, 30-31 2002

[Lip91] Lipton L.: Selection devices for field-
sequential stereoscopic displays: a brief history.
Proc. SPIE Vol. 1457, p. 274-282, Stereoscopic
Displays and Applications II, John O. Merritt;
Scott S. Fisher; Eds. Aug. 1991.

[Lip01] Lipton L.: The Stereoscopic Cinema: From
Film to Digital Projection, SMPTE Journal, pp.
586-593, Sept 2001

[Pal01a] Palovuori, Karri: Apparatus based on
shutter function for projection of a stereo or
multichannel image. Patent number:
WO03003750,
http://v3.espacenet.com/textdoc?DB=EPODOC&
IDX=WO03003750

[Pal01b] Palovuori, Karri: Apparatus based pulsing
for projection of a stereo or multichannel image.
Patent number: WO03003751,
http://v3.espacenet.com/textdoc?DB=EPODOC&
IDX=WO03003751

[Paa97] Paastor S., Wöpking M.:3 -D Displays: A
review of current technologies, DISPLAYS, 17,
pp. 100-110, 1997

[Ste05] Stefani O., Bues M., Blach R: Low-loss
filter for stereoscopic projection with LCD-
projectors, to appear in Proc. of SPIE Vol. 5008,
2005

[Tam99] Tramberend, H. Avocado: A Distributed
Virtual Reality Framework. Proceedings of
VR’99 Conference, Houston, Texas, 14-21,
March 1999.

[Waa85] Waack, F.G., Stereo Photography, London
pp.72

Virtual Destruction of a 3D Object with a Stick

Tohru Miyazaki, Toyohisa Kaneko, and Shigeru Kuriyama

Dept. of Information and Computer Sciences
Toyohashi University of Technology

{miyazaki,kaneko,kuriyama}@vcl.ics.tut.ac.jp

Abstract

This paper is concerned with a real-time method for realizing virtual destruction of a 3D object with
external force. A target object is a soft tofu (bean curd) cube which is easily destructable or breakable
with a stick. A spring-mass network model is used to represent such an object. Destruction is realized
by cutting a spring when its length exceeds its maximum length due to excess stretch force. A system
was implemented on a PC with 2 CPU’s and a PHANToM, a force feedback device. A set of optimal
parameters are experimentally identified. It is concluded that real-time destruction realized with the
presented method can provide destruction close to real one.

Keywords
Virual Destruction, Spring Network, Real-time Destruction, Bubble Mesh

1 Introduction

Virtual reality (VR) technology has found its im-
portant applications in such areas as medicine
(e.g. virtual surgery), amusement (e.g. virtual
driving), and manufacturing (e.g. virtual factory).
It requires typically real-time interaction devices:
high speed CPU, visualization devices (e.g. pro-
jector, display), and force feedback devices (e.g.
PHANToM).

This paper addresses the problem of realizing

Permission to make digital or hard copies of all or

part of this work for personal or classroom use is

granted without fee provided that copies are not

made or distributed for profit or commercial ad-

vantage and that copies bear this notice and the

full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a

fee.

Conference proceedings ISBN 80-903100-7-9

WSCG’2005, January 31-February 4, 2005

Plzen, Czech Republic.

Copyright UNION Agency. Science Press

virtual real-time destruction of an object with ex-
ternal force. There have been a number of pa-
pers concerned with deformation [JP99, DDCB01,
SP86, KH96] and cutting [BM02, ML03, MK00,
THK98, WO04] in VR, but little works on de-
struction. For a cutting operation, the affected
part on an object is localized only on its touch-
ing part of a cutting device (e.g. a knife)[THK98].
However, for destruction, the affected part could
be on other parts.

In the area of Computer Graphics where real-
time operation is not required, there have been
works on deformable objects [TF88a] and frac-
ture [TF88b] using a spring network model. Based
upon a stress-strain FEM model, fracture of duc-
tile objects has been treated by O’Brien et al.
[OBH02]. A similar work is found on fracture on
brittle objects [OH99]. Cracks on drying objects
such as clay has been addressed by Hirota et. al.
[HTK98].

This paper deals with real-time virtual destruc-
tion of soft, brittle objects such as tofu and soft
cream cheese with a stick. We employ a PHAN-
ToM as a manipulator which enables force feed-
back with the acquisition capability of 3D posi-
tion.

(a) (b)

(c) (d)

Figure 1: Real Destruction of a tofu lump.

2 Method

2.1 Approach

As an initial step, we observed the destruction pro-
cess of a real tofu cube of 3cm edge length with
a stick of 8mm diameter. Figure 1 shows real de-
struction scenes.

Destruction of a tofu cube is shown in Figure
1. Figure 1(a) shows the original shape. Figure
1(b) shows the initial phase where external force
through a stick is placed on the top part of tofu
to start sinking down slightly. Figure 1(c) and (d)
show subsequent destruction by a half way and
completely to the bottom, respectively. The phe-
nomena will be physically simulated with a spring
network model as follows.

2.2 Geometric Model and Network

To simulate destruction, we adopt an approach to
represent an object with a network of springs. To
construct a spring network, an object of interest is
decomposed into a set of tetrahedrons with similar
sizes. Take a cube of 3cmx3cmx3cm as an exam-
ple. As shown in Figure 2(a), it is fitted with a
close-packed structure where the mutual distance
is 1.5mm. (The close-packed structure can pack
the largest number of balls or atoms in a fixed
volume.) It is analogous to carving a cube out of
a closed packed crystal solid. Figure 2(a) shows

balls of 2.2mm radius and Figure 2(b) shows the
resulting network. The number of balls is 306 on
the surface and 294 in the internal domain. The
resulting network contains 6994 edges or springs.

The second process is to move all the balls
situated within a radius of 1.7mm from the sur-
face to the surface. Then an iterative algorithm
called the bubble mesh algorithm[SG95, MIKK04]
is executed to align all the balls on the surface so
that their mutual distances are as equal as possi-
ble (to 3.4mm). Then the same iteration aligns
all the internal balls which are located three-
dimensionally. The resulting ball alignment and
network are shown in Figure 2 (c) and (d), respec-
tively. See reference [SG95, MIKK04] for details
of this iterative algorithm.

Since the mutual relationship between the
balls (or bubbles) in the close-packed structure is
known, the 3D structure resulting from the bubble
mesh algorithm can be broken in a set of tetrahe-
drons, which are the basic building block of a 3D
object. Then each tetrahedron is represented with
a network of four edges as shown in Figure 2(e). A
spring and a damper are allocated to each edge of
a tetrahedron as shown in Figure 2(f). Note here
only a set of a spring and a damper is assigned to
an edge, although an edge is shared by a multiple
of tetrahedron edges.

2.3 Kinematics

Once an object of interest is represented with a
spring network, then the next to be investigated
is its kinematics behavior. Consider node i. Its
force f i is given as:

fi = mi
dvi

dτ
+ civi (1)

ci = 2
√

kmaxmiα2 (2)

where mi is the mass assigned to node i, vi is
the velocity vector of node i, τ is a small incre-
mental time slice, ci is the viscosity of node i, and
kmax is the maximum spring constant among the
springs connected to node i. The damping coeffi-
cient α will be treated as a variable whose optimal
value is set experimentally (as will be described in
Section 3). Equation (1) can be rewritten as:

vi = vi
p +

(
vi

p − fi
ci

)
(3)

{
exp

(
− ci

mi
τ

)
− 1

}

(a) Initial balls with
close-packed structure

(b) The resulting
network

(c) Ball position after
bubble-mesh
algorithm

(d) The resulting
network

(e) Tetrahedron
structure

Spring

Damper

(f) Damper and
spring for each edge

of a tetraheron

Figure 2: Modeling of a destructive object.

xi = xi
p − mi

ci

(
vi

p − fi
ci

)
(4)

{
exp

(
− ci

mi
τ

)
− 1

}
+

fi
ci

τ

where vi
p and xi

p are the velocity vector and the
position vector, respectively, at time (t−τ). Then
fi , which is the sum of forces at node i from the
connected springs from node j, is given as.

fi = −
∑

j

kij
xi − xj

|xi − xj | (|xi − xj | − l0ij) (5)

where kij is the spring constant of node i to node
j, and l0ij is its natural length.

Figure 3: Manipulator position: some
object nodes are inside the manipula-
tor.

manipulator

node

soft object

Figure 4: Manipulator position:
Nodes are moved to the surface.

2.4 External Force

For the case of placing external force on an ob-
ject of interest with a manipulator, the first step
is to detect the collision between the object and
the manipulator. In order to reduce computation
time, the collision between nodes and surface poly-
gons is detected rather than that between two sets
of surface polygons, which is computationally very
time-consuming. While all the surface polygons of
the manipulator are considered, only those nodes
on the object that collided are considered by iden-
tifying them in the following manner. At time T,
some nodes shown with dotted circles in Figure 3
which are inside the manipulator can be detected
based upon the decision on which sides each node
is with respect to each polygon of the manipula-
tor. This decision needs to be carried out by the

number of polygons of the manipulator. Then the
nodes located inside are moved along the direc-
tion of the manipulator motion and placed on its
surface as illustrated with real lines in Figure 3.

The locational displacement of these nodes
changes the kinematics balance of the spring net-
work. Equations (3) and (4) are executed iter-
atively to find the new equilibrium as shown in
Figure 4. Here if some edges may be stretched be-
yond the maximum length allowed, they are cut
in the middle as shown in Figure 5.

F =
n∑

i=1

fi (6)

The force given to the force feedback device is
the average of the reaction forces between the cur-
rent T and (T − 4τ) in order to reduce possible
noise. Namely Fb is given as:

Fb =
∑4

i=0 FT−iτ

5
(7)

where FT−iτ is the reaction force at time (T − iτ).

2.5 Visualization

As was mentioned in section 2.1, the destruction of
an object is represented by cutting a set of springs
in the spring network model. A spring is cut when
its length exceeds its maximum length lmax. Ac-
tually, it is measured based on the ratio as:

lmax = l × lp (8)

As is shown in Figure 5(a), the reaction force is
generated at either end of the terminals if l ≤ lmax

holds. For the case l > lmax, the spring is cut as
shown in Figure 5(b). In this case, the reaction
force due to the spring at either end of the terminal
points becomes null.

When a spring is cut, a new end point is cre-
ated at the point from each formerly connected
end node point by a length of l0/2 as shown in
Figure 2(b). Visualization is carried out for each
tetrahedron as illustrated in Figure 6 where there
are 10 different patterns shown, depending upon
which springs are cut.

2.6 Process

The process for virtual destruction mentioned
above is summarized as:

lmax

l
(a)

lmax

l

Virtual Vertex

l0

2
l0
2

(b)

Figure 5: Cutting a spring to realize destruction.

1 edge 2 edge

3 edge

4 edge

5 edge 6 edge

Figure 6: The drawing pattern of a tetrahedron.

(1) The position and direction of the manipu-
lator is updated based on the force feedback.

(2) The collision detection is carried out. If
some nodes are inside the manipulator, they are
moved back to the manipulator surface.

(3) The reaction force is computed based upon
the above node motion. New node positions are
iteratively computed using Equations (3) and (4).

(4) If an edge exceeds its maximum length, it
is cut in the middle.

(5) The sum of reaction forces from all the
nodes on the manipulator surface is fed back to
the arm of the force feed device.

The above process must be carried out with a
frequency exceeding 300Hz[CDA99]. On the other
hand, the visualization speed needs to be in 60Hz.

3 Experiments

3.1 System

A system was implemented on a PC with 2 CPU’s
(Intel Xeon 2.8GHz) and Microsoft Windows XP.
The software was thread-based in order to exploit
full power of 2 CPU’s. The force feedback device
is a PHANToM(SensAble Technologies Inc.). The
total VR system is illustrated in Figure 7. The
manipulator position can be controlled with the

Figure 7: The situation of execution.

PHANToM shown on the right and the visualiza-
tion result is on the monitor on the left.

Three kinds of manipulator can be selected:(1)
a round stick of 8mm diameter, a square stick of
6mmx6mm, and a diagonal stick of 3mmx10mm.
The length of each stick is 5cm long.

The computation time per cycle (which is equal
to τ in Equations (3) and (4)) is proportional to
the number of edges in the spring network. It
was found that it is 2.9 msec. with 8000 edges,
resulting to a frequency of 350Hz.

3.2 Optimal parameters

For destruction of a tofu cube, it is difficult to
measure parameters such as spring constant k,
viscosity α, and maximum length ratio lp with-
out specially designed equipments. Therefore, we
estimated these parameters experimentally by ob-
serving the way of destruction visually.

For conducting these experiments, we employed
a cube of 3cmx3cmx3cm as an object and a stick
of 8mm diameter as the manipulator. The same
procedure described in section 2.2 was applied to
get a spring network where the node lengths are
reasonably similar. The weight of the object is
30 grams. The manipulator was moved downward
with a speed of 1mm/sec. with a control from the
application rather than manual operation in order
to avoid unnecessary human errors. 1.5 and 3.0
are set as dynamic and static friction, respectively
in order to account for the friction between tofu
and the manipulator surface.

Experiments for 500 variations were carried
out:(1) ten variations in spring constant k from 10
to 100 with an increment of 10, (2) ten variations

Figure 8: Simulation for deriving appropriate pa-
rameters.

Table 1: Parameter applied to a system.
name value
spring limit length ratio 1.3
spring coefficient 30
damper coefficient (α) 30
dynamic friction coefficient 1.5
static friction coefficient 3.0

in viscosity α from 5 to 50 with an increment of
5, and (3) five variations in maximum length ratio
lp from 1.1 to 1.5 with an increment of .1.

The 500 results were rated according to their
visual similarity with the actual (see Section 2).
Figure 9 shows the best, second best, and two
failed examples and their parameters.

Figure 10 shows a temporal change of the total
downward reaction force on the manipulator. The
downward reaction force generally increases as the
manipulator is pressed more downwardly. This
trend of reaction force agrees with the actual case.

3.3 Experimental Results

Based upon the parameters selected in the above,
experiments were conducted. In this experiment,
a stick is operated by human. The object is a hex-
ahedron with a dimension of 3cmx3cmx1cm, and
a weight of 11grams. The bubble mesh algorithm
was executed with the initial close-packed struc-
ture with a radius of 1.5mm. The total number
of balls was 382 on the surface and 314 internally.
And there are 7954 edges in the resulting spring
network. A stick of 8mm diameter and 5cm length
was used as the manipulator.

Figure 11 shows four phases of destruction sim-

(a) Best example where
k = 30, α = 30, lp = 1.3

(b) Second best example
where

k = 50, α = 30, lp = 1.3

(c) Failed example due to
oscillation where

k = 90, α = 30, lp = 1.3

(d) Failed example due to
excess pull force where
k = 60, α = 30, lp = 1.5

Figure 9: Simulation results

ilar to the real destruction shown in Figure 1.
Figure 11(a) is the initial state of the cube, (b)
shows the manipulator to start pressing the cube
slightly, and (c) shows the phase that the manip-
ulator moved downward about a half of the verti-
cal length, and (d) shows the final phase that the
manipulator was pressed to the bottom. The sim-
ilarity between the four phase figures in Figure 1
and Figure 11 is reasonably good.

Figure 12 shows a temporal change of the total
reaction force on the manipulator where the force
along X, Y, and Z axis is indicated by thin dotted
line, real line, and dense dotted line, respectively.
The X, Y, and Y axis represent left-right, down-
ward, and forward-back direction of the object,
tofu, shown in Figure 11. The downward trend
(Y-axis) agrees with that of Figure 10.

As an example of freeform objects, a tofu globe
of 2cm radius was employed. Balls of 2.2mm ra-
dius are packed in the globe for the bubble mesh
algorithm. The resulting globe contains 370 balls
on the surface and 305 in the internal domain.
The resulting network contains 8041 edges. The
total weight is set to be 36grams. This globe was
destructed with a stick of 8mm radius with 10cm
length. The resulting destruction is shown in Fig-

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 5 10 15 20 25 30 35 40

Fo
rc

e
[N

]

Time [sec.]

k=30 a=30 lp=1.3

Begin push Finish push

Figure 10: Reaction force along the downward di-
rection.

ure 13. It was judged that this destruction is rea-
sonably close to the real one, which is not shown
here, though.

It is seen that real-time virtual destruction is
possible using a force feedback device like PHAN-
ToM.

4 Conclusion and Future
Work

It has been shown that virtual real-time destruc-
tion of objects is possible by operating a manipula-
tor. It utilizes a spring network model, where de-
struction is represented by cutting edges. Visual-
ization is carried out on the basis of tetrahedrons,
the basic unit of objects. Appropriate parame-
ters such as spring constant and viscosity were
selected experimentally by observing the manner
of destruction with varying these parameters. A
system with 2 CPU’s and a force feedback device
was implemented and its real-time operability was
demonstrated.

Future works include treating more freeform
objects of various sizes.

References

[BM02] C. D. Bruyns and K. Montgomery.
Generalized interactions using virtual
tools within the spring framework:
Cutting. Medicine Meets Virtual Re-
ality, January 2002.

[CDA99] S. Cotin, H. Delingette, and N. Ay-
ache. Real-time elastic deformations
of soft tissues for surgery simulation.
IEEE Transactions on Visualization

(a) Initial object state (b) Starting position

(c)The stick pressed
downward about a

quater

(d)The stick pressed
downward almost

totally

Figure 11: Simulation results.

and Computer Graphics, 5(1):62–73,
January-March 1999.

[DDCB01] G. Debunne, M. Desbrun, M. P. Cani,
and A. H. Barr. Dynamic real-time
deformations using space and time
adaptive sampling. ACM SIGGRAPH
2001, pages 31–36, August 2001.

[HTK98] K. Hirota, Y. Tanoue, and T. Kaneko.
Generation of crack patterns with a
physical model. The Visual Computer,
14:126–137, 1998.

[JP99] D. L. James and D. K. Pai. Art-
defo: Accurate real time deformable
objects. ACM SIGGRAPH’99, pages
65–72, August 1999.

[KH96] T. Kaneko and K. Hirota. Simula-
tion of surgical operation onto soft and
transforming tissues. Proc. VSMM’96,
pages 283–287, 1996.

[MIKK04] I. Mizuno, Y. Iwasaki, T. Kaneko, and
S. Kuriyama. Volume preserving de-
formation of 3d elastic objects by ex-
ternal force. IEICE Tr. o Information
and Systems(Japanese Edition), J87-
D-II(6):1319–1328, June 2004.

0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 2 4 6 8 10 12

Fo
rc

e
[N

]

Time [sec.]

X axis
Y axis
Z axis

Figure 12: Temporal change of the reaction force
along three diections

(a) (b)

(c) (d)

Figure 13: Four phases of a sphere destruction.

[MK00] A. B. Mor and T. Kanade. Mod-
ifying soft tissue models: Progres-
sive cutting with minimal new element
creation. Medical Image Computing
and Computer-Assisted Intervention,
1935:598–607, October 2000.

[ML03] C. Mendoza and C. Laugier. Simulat-
ing cutting in surgery applications us-
ing haptics and finite element models.
IEEE Virtual Reality, 2003.

[OBH02] J.F. O’Brien, A.W. Bargteil, and J.K.
Hodgins. Graphical modeling and ani-
mation of ductile fracture. ACM SIG-
GRAPH 2002, pages 291–294, July
2002.

[OH99] J.F. O’Brien and J.K. Hodgins.
Graphical modeling and animation of
brittle fracture. ACM SIGGRAPH
1999, pages 137–146, August 1999.

[SG95] K. Shimada and D. C. Gossard.
Bubble mesh: automated triangular
meshing of non-manifold geometry by
sphere packing. Proc. Solid Modeling
and Applications, pages 409–419, Oc-
tober 1995.

[SP86] T. W. Sederberg and S. R. Parry.
Free-form deformation of solid geo-
metric models. ACM SIGGRAPH’86,
20(4):151–160, August 1986.

[TF88a] D. Terzopoulos and K. Fleischer. De-
formable models. The Visula Com-
puter, 1:306–331, 1988.

[TF88b] D. Terzopoulos and K. Fleischer. Mod-
eling inelastic deformation: viscoelas-
ticity, plasticity, fracture. ACM SIG-
GRAPH 1988, pages 269–278, 1988.

[THK98] A. Tanaka, K. Hirota, and T. Kaneko.
Virtual environment for cutting op-
eration with force feedback. Proc.
VSMM’98, 1:164–169, 1998.

[WO04] D. J. Weiss and A. M. Okamura. Hap-
tic rendering of tissue cutting with
scissors. Medicine Meets Virtual Re-
ality, Janualy 2004.

Novel Path Search Algorithm for Image Stitching and
Advanced Texture Tiling

Petr Somol
Dept. of Pattern Recognition

Inst. of Information Theory and Automation
Pod vodárenskou věží 4

 182 08, Prague 8, Czech Republic

somol@utia.cas.cz

Michal Haindl
Dept. of Pattern Recognition

Inst. of Information Theory and Automation
Pod vodárenskou věží 4

 182 08, Prague 8, Czech Republic

haindl@utia.cas.cz

ABSTRACT
We propose a fast and adjustable sub-optimal path search algorithm for finding minimum error boundaries be-
tween overlapping images. The algorithm may serve as an efficient alternative to traditional slow path search
algorithms like the dynamical programming. We use the algorithm in combination with novel adaptive blending
to stitch image regions. The technique is then exploited in a framework for sampling-based texture synthesis
where the learning phase is clearly separated and the synthesis phase is very simple and fast. The approach ex-
ploits the potential of tile-based texturing and produces good and realistic results for a wide range of textures.

Keywords
Path Search, Image Stitching, Image Transfer, Adaptive Blending, Texture Tiling, Texture Synthesis.

1. INTRODUCTION
Physically correct virtual model visualization can not
be accomplished without naturally looking color tex-
tures covering virtual or augmented reality scene
objects. These textures can be either smooth or rough
(also referred to as BTF, see e.g. [MMu03]). The
rough textures do not obey the Lambert law and their
reflectance is illumination- and view-angle-
dependent. Both types of textures occurring in virtual
scene models can be rendered either through digitali-
zation of natural samples or by synthesis from ap-
propriate mathematical models. Exact sample digi-
talization may become prohibitive due to consider-
able memory requirements, particularly in case of
BTFs where each texture is represented by a possibly
high number of illumination and view-angle-
dependent images. Therefore several texture synthe-
sis methods have been defined to reduce the memory
complexity. The related methods may be divided
primarily to either intelligent sampling or model-
based-

Figure 1. The picture is made of rectangular tiles.
Can you guess, what is the tiling grid size and how
many different tiles have been used ? (see Fig.10)

analysis and synthesis. The model-based techniques
(see, e.g., [Bes74], [Kas81], [BK98], [Hai91],
[PJ00], [GH03], [HH00], [HH02]) describe texture
data by means of multidimensional mathematical
models and later use an extremely compact represen-
tation for seamless synthesis of arbitrarily sized tex-
ture images. Intelligent sampling approaches (see,
e.g., [DB97], [EL99], [Efr01], [Hee95], [XGS00],
[CS03], [KS03]) rely on sophisticated sampling from
real texture measurements. Sampling based methods
currently achieve better visual quality at a cost of less
effective compression. Particularly the simpler intel-
ligent-sampling methods have been receiving con-
stant attention for their applicability in graphic hard-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

Conference proceedings ISBN 80-903100-7-9
WSCG’2005, January 31-February 4, 2005
Plzeň, Czech Republic.
Copyright UNION Agency – Science Press

ware. DeBonet’s method [DB97] constructs the tex-
ture in coarse-to-fine fashion, preserving conditional
distribution of filter outputs over multiple scales,
while another multi-scale method [Hee95] uses his-
tograms of filter responses. The “image quilting”
method [Efr01] by Efros et al. connects rectangular
pieces of the texture sample together while minimiz-
ing the boundary cut error. Similarly the algorithm
by Xu et al.[XGS00] uses regular tiling combined
with a deterministic chaos transformation. Very good
results can be achieved by employing Wang tiles
[CS03] or the so-called graphcut textures [KS03]. All
of these methods implement some sort of source tex-
ture sampling and the best of them often produce
very realistic synthetic textures.

However, no texture synthesis method can be con-
sidered ideal for all potential applications. Either the
performance, universality, visual quality of results or
applicability in current hardware may become the
prohibiting factor.

Our Motivation
Many of the current sampling methods involve image
operations that may result in visible seams, typically
when combining incompatible pieces of texture. A
good way to improve the visual quality in such cases
is to find (possibly irregular) boundaries between the
image pieces to minimize the visual error. In the fol-
lowing we propose a sub-optimal yet highly effective
alternative to traditional slow path-search algorithms.
Taking use of the algorithm we show a method of
developing the texture by visually unrecognizable
image transfers (to be referred to as patching). We
also show how to utilize this technique in a simple
way to obtain groups of mutually connectable tiles
representing the given texture. However, the main
part of the paper concentrates on the path search and
seamless boundary creation problem as we believe
the solution presented here is generally usable in
many different contexts and applications.
The paper is structured as follows: Section 2 dis-
cusses in detail how a virtually invisible transition
between two texture image regions can be created.
Section 2.1 shows a novel sub-optimal algorithm for
path search that can be used instead of slow expo-
nential algorithms like the dynamical programming.
Section 2.2 shows how to improve the visual transi-
tion quality in cases when minimum error path does
not suffice to prevent discontinuities. Section 2.3
extends the stitching technique to enable seamless
transfer of whole image regions (patching). In Sec-
tion 3 we show a trivial yet well-performing way of
seamless tile creation. Assuming one tile has been
created, we show in Section 3.2 how new, visually
different derivatives can be created based on it while
all of the tiles remain mutually connectable. Such tile

sets can then be used to synthesize texture images of
significantly higher quality than it is possible with
simple tiling approaches, as shown in the Experi-
ments Section 4. Section 5 summarizes the advan-
tages and discusses the drawbacks and perspectives
of the proposed methods.

2. IMAGE STITCHING
Consider image stitching a process of creating natu-
ral transitions between two image regions. This task
is simpler for naturally self-similar (e.g. homoge-
nous) textured images. The transition is to be made
as unnoticeable and indistinguishable from the
neighboring image areas as possible. We define the
technique based on the minimum error boundary cut
idea, as used in the “image quilting” algorithm
[Efr01]. Let us assume that each stitch between two
equally sized overlapped image regions R1 and R2 is
oriented. A right-oriented stitch image will consist
mostly of pixels from R1 along its left side and
mostly of pixels from R2 along its right side. Creating
such stitch can be imagined as attaching a cropped
part of R1 (source) to R2 (target) as demonstrated in
Figure 2. The following sections show in detail how
to crop and how to reduce unwanted visual errors for
cases when cropping itself is not sufficient.

tar
ge

t

so
ur

ce

Figure 2. Image stitching (right-oriented case).

The source image is cropped from the right along
the minimum error path and placed over the tar-

get background image.

Minimum Error Path Search
Let us consider a right-oriented stitch creation prob-
lem, as demonstrated in Figure 2. Suppose the source
region R1 is to be placed over target region R2 where
the overlap size is w×h pixels. Width w is considered
a user parameter that determines how relaxedly the
transition between R1 and R2 should be constructed
and thus trades the achievable visible quality for al-
gorithm efficiency. To make the transition as invisi-
ble as possible, R1 is cropped from the right side
along a minimum error path before attaching to R2.
The minimum error path is constructed to lead verti-
cally from the top row to the bottom row of error
map E, which represents the visual difference be-
tween R1 and R2 for each pixel of the overlap region:

where d(., .) is, e.g., the Euclidean distance of two
RGB pixel color values. Note: Error maps in Figures
2, 4, 5 and 6 depict higher error by darker grey lev-

els. We adopt a simplified path representation model,
as shown in Figure 3. Only the pixels lying to the left
of (and on) the path are to be copied from R1 to the
underlying R2.

R
1

R
2

1

1

2

2

h

.

.

.

.

. . w
Figure 3. Simplified path representation model
for the right-oriented stitch. Each row contains
one control point (black dot). Complementary

points (crossed dots) must be added to make the
path continuous.

Each path is represented unambiguously by a se-
quence of control points c, one for each row:

However, the complete path as a vertically oriented,
continuous sequence of pixels in E must include not
only the control points, but also complementary
points (marked by crossed dots in Figure 3). From
several possible complete path definitions we have
adopted the one that suits our oriented-stitch ap-
proach, i.e., where each control point becomes visi-
bly the rightmost point in its row:

where

For each path a criterion can be evaluated to asses
the expected visible transition inconsistency:

Now we can define a sub-optimal minimum path
search algorithm on error map E of w×h pixels. The
basic idea is to develop some initial Pathc in stepwise
manner by conditional shifting of the control points.
New control point position(s) get fixed only if
ε(Pathc) would decrease. This ensures the algorithm
to converge. The algorithm first evaluates single con-
trol point shifts in each step as long as the criterion
value can be decreased. Next it attempts to bypass
larger error areas by shifting small groups of con-
secutive control points forming a vertical line at
once. Whenever such step improves the criterion
value, fine tuning in form of single control point
shifts follows. The only user parameter omax (where 1
≤ omax ≤ h) depicts the maximum number of control
points processed in one step. Higher omax values lead
to better or equal solutions at a cost of longer compu-
tation.

We use this algorithm as a fast alternative to slow
optimal path search procedures like the dynamical
programming. The main reason is computational
speed. The oscillating search has polynomial com-
plexity while optimal search is always exponential.
The oscillating search is a step-wise procedure that
sequentially improves some actual solution and thus
can be stopped at any moment to yield a usable re-
sult. The visible differences between optimal and
suboptimal search results can be considered mar-
ginal, as demonstrated in Figure 4.

Error map dimensions: 512 x 33

Dynamical programming
(optimal, exponential complexity):

O sub-optimal, polynomial complexity)scillating search (:

a) b)

Figure 4. Sub-optimality vs. optimality of path

search.
The suboptimal search as defined here prohibits re-
turning path sections (Figure 4a). Differences, if any,
occur in areas of evenly distributed error (Figure 4b)
and thus remain visually unimportant. In the case
depicted in Figure 4 the sub-optimal search was
faster than dynamical programming by a factor of
5000 (depending on error map dimensions) while the
numerical difference between the sub-optimal and
optimal criterion values was about 10%. Moreover,
experiments show that numerical optimality of found
paths is not crucial for the visual appearance of tran-
sitions. It is more important to ensure that the overlap
image region itself is positioned and sized not to rule
out the existence of low error paths (for example of
such a difficult error map see Figure 5).
Remark: In the context of off-line texture analysis to
be discussed in the following (Section 4) the time
factor is not crucial. However, it is of key importance
in many other applications (see, e.g., [Efr01]).

Adaptive Boundary Blending
The minimum path based stitching often produces
good natural appearance of image transition areas.
However, if no good path exists in the error map,
visible artifacts can not be avoided (as demonstrated
in Figure 5–simple stitch).

targetsource error map
+ minimum
error path

simple
stitch

blend
intensity

map

blend
color
map

adaptively
blended

stitch

seamlessly connected image of a cloud

stitchstitch

Figure 5. Adaptive blending to improve visual

consistency of stitched image areas.
Therefore we have defined the adaptive boundary
blending as an attempt to reduce the visibility of such
unwanted and striking high-error artifacts, should
they emerge during the stitching process. The idea is
to interpolate between overlapped source region R1
and target R2 with a locally adjusted intensity while
utilizing the minimum error path both as a boundary
and as a coloring guideline. Our experiments show
that to prevent unnaturally smoothed appearance it is
better to keep the affected area minimal, just enough
to mask the high error artifacts. In the following we
consider a right-oriented stitch again. This is of im-
portance now, because the blending process we adopt
is targeted to one side (left in this case) of the path
only what helps to better preserve the original image
appearance.
Let us denote S the adaptively blended stitch region
of w×h pixels to be created from R1 overlapping R2.
We assume the minimum error path Pathc and error
map E are known (see the previous Section). The
blending range (maximum distance from the path
where pixels get affected) is to be set as parameter ρ.
The ρ value should be specified with respect to the
properties of the processed source image. Higher
image resolution should be reflected on higher ρ.
However, with ρ being too high the blending effect
can become visually too apparent. On the contrary,
too small ρ may not be sufficient to suppress the
worst visual stitching errors, should they appear. The
stitch is created row-wise, i.e., for each j = 1, . . . ,h:

where

The adaptive blending process can be visualized us-
ing the blend intensity and blend color maps (see
Figure 5). The blend intensity map represents the
weighing information on how R1 contributes to the
blended result in the area left from the path. In Fig-
ure 5 the darker pixels depict lower contribution. R2
contributes to the same area indirectly using the
blend color map that shows how color information is
extracted from R2 path pixels. As seen on examples
(Figures 5, 8 and 11), the boundary can be made al-
most unnoticeable in this way, except of cases when
the transition is made between principally incompati-
ble texture image areas.
Remark 1: We should note that simpler interpolation
algorithms have been tested as well but led to worse
results, usually emphasizing incompatibilities of R1
and R2 image contents alongside the minimum error
path. Remark 2: A little better visual quality can be
achieved if S[i, j] for 1 < i ≤ cj would depend not
only on the single closest on-path pixel (m,n) in
Pathc, but on several close neighboring pixels in
Pathc.

Image Patching
The image stitching method described in the previous
Sections can be extended to transfer general continu-
ous image regions while keeping the transition be-
tween the old and new unnoticeable.

inner
area

left
side
belt

right
side
belt

top side belttop left
corner

top
right

corner

bottom
left

corner

bottom
right

corner

bottom side belt

b)a)

S
T

S
L

S
TL

S
TR

S
BL

S
B

S
BR

S
R

Figure 6. Patch creation. The stitching technique
is used to create sides and corners of the patch;
the inner area is simply copied. White arrows

show stitch orientations (requires optimization).
For the sake of simplicity we define a patch as a part
of image surrounded by a continuous minimum error
path that does not extend out of a given surrounding
rectangle. Our image patching algorithm is illustrated
in Figure 6. The inner area is simply copied from
source position to the target. Side stitches are then
created inside the four side belts of a user-specified
width with obvious orientation (see the white arrows
in Figure 6). Finally the corner stitches are added,

with one additional restriction: the path initial and
final control points must be fixed to remain con-
nected to those of the side stitches to ensure the patch
is surrounded by one continuous path.

3. TEXTURE TILING
Texture tiling is extensively used for various pur-
poses ranging from simple web page design to realis-
tic 3D display of natural surfaces. Creating a single
seamless tile out of some source image is thus a tra-
ditional problem for which numerous algorithms
exist. One of the simplest is probably the “Photoshop
clone tool” approach. The idea is to half-shift the
image and then to use the manual clone tool to blot
out the now apparent horizontal and vertical seams
that have emerged inside the image. From the auto-
mated methods many take use of extensive blending
in not very sophisticated manner, what often results
in too striking visual change of the texture appear-
ance along the tile borders. The image stitching tech-
nique described in previous sections is well suited for
the purpose of seamless tile creation and can be ex-
pected to give considerably better results than simple
blending methods.

Tile Overlap Optimization and Stitching
First, we search for such rectangular region in the
source texture image, where the opposite border ar-
eas are the most visually consistent in both the hori-
zontal and vertical direction.

horizontal overlap error test

v
e
rt

ic
a
l
o
v
e
rl
a
p

e
rr

o
r

te
s
t

R
B

R
B

R
B

R
T

R
T

R
T

R
L

R
L

R
L

R
R

R
R

R
R

Figure 7. Tile template positioning on a source

image.
As depicted in Figure 7, the search procedure mini-
mizes the visual difference among image regions RL
and RR, and among RT and RB, respectively. The
overlap width is to be decided by the user, the width
and height of the candidate region is optimized by
the procedure. The tile (brightened region) is then cut
out and made seamless by overlapping and stitching
image region RR over RL, and RB over RT, respec-
tively. The tile sizing and positioning phase is trivial;
its purpose is mainly to provide for better stitching
results. We use the average RGB Euclidean distance
as a criterion of visual consistency. Remark: From

performance reasons we split the tile positioning and
sizing process to two sub-optimal independent
phases, vertical and horizontal.

Deriving Mutually Connectable Tile Sets
For many textures a single tile is not sufficient to
synthesize naturally looking images. Simple tiling
usually leads to unwanted emphasis of the rectangu-
lar grid, despite the seamlessness of tiles (see the left
image in Figure 8). Moreover, the character of many
textures makes it impossible to create a single tile
that would sufficiently represent all the texture vari-
ability. Our idea is to make tiling more realistic by
employing more than one tile per texture. The posi-
tive effect of increasing the number of tiles is dem-
onstrated in Figure 8.
New tiles can be obtained using the patching tech-
nique described in Section 2.3. New tiles can be cre-
ated by making a copy of the template tile and subse-
quently covering its inner area by patches taken from
different positions in the source texture image. Dif-
ferent algorithms can be defined to accomplish this
task, both deterministic and non-deterministic, with
different properties. It is possible to define sophisti-
cated algorithms aiming to build tile sets of specified
properties, e.g. representing well the variability of
original texture image contents. This algorithm defi-
nition problem can be considered outside the scope
of this paper. Therefore, we suggest here only the
simplest possibility. Each new tile is can be obtained
by applying one patch only, sized little less or equal
to the tile size and taken from a random source posi-
tion. Even if the patch and tile sizes are equal, the
original tile contents remain usually unaffected
alongside its borders (and thus the tile remains con-
nectable), because of the expected irregularity of
minimum error paths. This effect can be seen in
Figure 6b. Remark: The described tile set derivation
procedure is obviously independent on the particular
technique used to obtain the initial template tile.

4. EXPERIMENTS
We have tested the presented techniques on a set of
textures, mostly from VisTex and UTIA databases.
The benefit of using tile sets instead of single tiles is
demonstrated in Figure 8. The picture of pink bloom
over green grass can be considered a difficult texture.
A single tile is clearly insufficient to obtain a natu-
rally looking synthetic image. Adding two tiles im-
proves the result. However, no less than 5 tiles seem
sufficient to suppress the striking visibility of the
regular tiling pattern.
The examples in Figures 1, 8 and 11 have been ob-
tained as follows: the first tile for each texture has
been created automatically (see Section 3) with the
only restriction of some reasonable minimum and

maximum tile size. The overlap width was set to ca.
1/10 of the expected tile size. The first tile was then
used as a template for tile set generation (see Sec-
tion 3.2). 30 patched tiles had been generated per
texture from which the final tile subsets were se-
lected manually. In cases where the results had been
found unsatisfactory, the experiment was repeated
with modified parameters. The stitching region
width, both in the case of the first tile creation (see
Section 3.1) and subsequent tile patching
(see Sections 2.3 and 3.2) has proved to
be important and is therefore marked in
Figures 8 and 11 as wT and wP, respec-
tively. Patch source positions were ob-
tained randomly, but optimized subse-
quently on a small neighborhood of size
n to avoid worst possible visual prob-
lems. For the adaptive blending the parameter ρ had
been set to 3 in all cases, which has shown to be sat-
isfactory in most cases. Note: The synthesized im-
ages in Figs. 8 and 11 are cropped to fit in the page.
Time complexity of all computations is low. Each tile
can be generated typically in seconds on a 2GHz PC.
Once a good set of tiles has been found, texture syn-
thesis is reduced to assembling different tiles to the
grid according to some index matrix. This can be
done directly in the GPU at no additional time cost.
Expectably good results have been obtained with
most of the regular textures (Fig. 11c). Very good
results have been obtained even for some more diffi-
cult textures, where the irregular texture nature
(chocolate, Fig. 11e) could have caused problems.
Some of the most difficult textures displaying natural
objects like tomatoes can be synthesized surprisingly
well (Figs. 11b, 11d). However, with some textures it
showed impossible to prevent unnatural artifacts (see
in detail Fig. 11f, which looks fine at first sight). We
have also experienced problems with textures where
good overlapping regions could not be identified to
create the initial tile, or with textures containing very
distinct particles or structure that has a negative im-

pact on the tile grid visibility (Figure 9). Neverthe-
less, the technique proved to be well capable of syn-
thesizing broad range of natural textures. Some of
the possible visual problems follow from principal
reasons and cannot be avoided; others can be re-
moved or suppressed by repeating the experiments
with modified parameters, in particular with different
stitch widths and patching sources. The quality of
output also depends on the size of the original texture

sample. Too small a source image would
result in too homogenous and regular
results. Small source images usually im-
ply the necessity to create more tiles to
compensate the effect of denser and thus
more apparent tile grid. To capture low
frequency information, larger tiles are
necessary. To prevent the visibility of the

tile grid the tiles in a set must have sufficiently varied
content, i.e., the patching process must affect most of
the tile image surface. No tiling can overcome certain
principal problems like, e.g., the problem of source
texture images containing slightly rotated linear
structures (Figure 9) from which no smoothly con-
nectable tile can be derived. In general, if the texture
exhibits some apparent linear structure then it should
be either vertically or horizontally aligned. Skewed
and rotated linear structures require sufficiently large
samples or are not manageable at all.

tile 1

tile 5

tile 4

tile 8

tile 3

tile 7

tile 2

tile 6
Figure 10. The front page image is composed of 8
different tiles in a 4×4 grid according to the index

matrix: ((7,6,1,5), (3,7,5,8), (5,1,6,2), (4,3,2,3)).
Finally, the answer to the front page Figure 1 ques-
tion is in Figure 10.

synthesised using 1 tile synthesised using 3 tiles synthesised using 5 tiles

wT= 25
wP= 7
n = 20

original

tile 1

1 2 3 2 3 2
3 1 2 3 2 1
1 3 1 2 1 3
2 1 3 1 3 1
3 2 1 3 1 2
2 3 2 1 2 3

tile 3

tile 2

+

+

3 2 1 4 5 4
2 3 4 5 4 3
4 1 5 1 5 2
2 5 3 2 1 5
1 3 4 3 4 2
2 5 2 5 3 1

tile 5

tile 4

+

+

Figure 8. Visual improvement of synthesis results by combining an increasing number of tiles.

Figure 9. Example of a
problem structure in

source texture images.

5. CONCLUSION
We have presented a novel fast path search algorithm
and adaptive blending technique that are suitable for
seamless image transfer, in particular in the context
of texture synthesis. Using these tools we have dem-
onstrated a relatively simple technique that enables
synthesis of naturally looking textures by means of
advanced image tiling. We show how a set of mutu-
ally connectable yet differently looking rectangular
tiles can be obtained for a broad range of source tex-
ture measurements. We show that even very irregular
textures can by represented well using such tile sets.
The main advantage of the presented technique is the
clear separation of the off-line texture analysis, while
the synthesis is reduced to trivial combination of pre-
computed tiles. The visual quality of output is close
or comparable to the best of current techniques as
shown in Figures 8 and 11.
The tiling technique is scalable. The trade-off be-
tween the visual quality and computational complex-
ity can be controlled by changing the number of tiles
in the tile set. For each texture some minimum num-
ber of tiles is usually necessary to ensure sufficient
quality of results. Regular (possibly rectangular) tex-
tures without much detail can be represented by
fewer tiles than highly irregular stochastic textures.
Most of the algorithms presented here are extendable
or modifiable. We have found the technique to be
extendable for BTF modeling (bidirectional texture
fields, see, e.g. [MMu03], [MMe03]) to enable par-
ticularly accurate display of natural surfaces with
respect to view- and illumination- angles.

6. ACKNOWLEDGMENTS
This work has been supported by the EC project IST-
2001-34744 RealReflect, FP6-507752 MUSCLE,
grant No. A2075302 and 1ET400750407 of the
Grant Agency of the Czech Academy of Sciences.
We thank Alexei Efros for permission to reproduce
illustrations from [Efr01] (Figure 12).

7. REFERENCES
[Bes74] Besag J.: Spatial interaction and the statisti-

cal analysis of lattice systems. Journ. of the Royal
Statistical Society, B-36, 2 (1974), 192–236.

[BK98] Bennett J., Khotanzad A.: Multispectral ran-
dom field models for synthesis and analysis of
color images. IEEE Trans. on PAMI 20, 3 (Mar.
1998), 327–332.

[CS03] Cohen M.F., Shade J., Hiller S. and Deussen
O.: Wang Tiles for image and texture generation.
In ACM Transactions on Graphics 22, 3, SIG-
GRAPH 2003, 287-294.

[DB97] De Bonet J.: Multiresolution sampling pro-
cedure for analysis and synthesis of textured im-

ages. In Proc. SIGGRAPH 97 (1997), ACM
Press, 361–368.

[Efr01] Efros A.A., Freeman W.: Image quilting for
texture synthesis and transfer. In SIGGRAPH 01
(2001), Fiume E., (Ed.), ACM Press, 341–346.

[EL99] Efros A. A., Leung T. K.: Texture synthesis
by non-parametric sampling. In Proc. Int. Conf.
on Computer Vision (2) (1999), 1033–1038.

[GH03] Grim J., Haindl M.: Texture modelling by
discrete distribution mixtures. Computational Sta-
tistics & Data Analysis 41, 3-4 (2003), 603– 615.

[Hai01] Haindl M.: Texture synthesis. CWI Quar-
terly 4, 4 (Dec. 1991), 305–331.

[HH00] Haindl M., Havlíček V.: A multiresolution
causal color texture model. In Advances in Pat-
tern Recognition, LNCS 1876. Springer-Verlag,
Berlin, (Aug. 2000), ch. 1, 114–122.

[HH02] Haindl M., Havlíček V.: A multiscale color
texture model. In Proc. 16th Int. Conf. on Pattern
Recognition (2002), Kasturi R., Laurendeau D.,
(Eds.), IEEE Computer Society, 255–258.

[Hee95] Heeger D.J. Bergen J.: Pyramid based tex-
ture analysis/synthesis. In Proc. SIGGRAPH 95
(1995), ACM Press, 229–238.

[Kas81] Kashyap R.: Analysis and synthesis of im-
age patterns by spatial interaction models. In Pro-
gress in Pattern Recognition 1 (North- Holland,
1981), Kanal L., A.Rosenfeld, (Eds.), Elsevier.

[KS03] Kwatra V., Schödl A., Essa I., Turk G., Bo-
bick A.:Graphcut Textures:Image and Video Syn-
thesis Using Graph Cuts. In ACM Transactions
on Graphics 22, 3, SIGGRAPH 2003, 277-286.

[LLX*01] Liang L., Liu C., Xu Y.-Q., Guo B., Shum
H.-Y.: Real-time texture synthesis by patchbased
sampling. ACM Transactions on Graphics (TOG)
20, 3 (2001), 127–150.

[MMu03] Meseth J., Müller G., Sattler M., Klein R.:
BTF Rendering for Virtual Environments. Virtual
Concepts 2003, (2003), 356–363.

[MMe03] Müller G., Meseth J., Klein R.: Compres-
sion and real-time Rendering of measured BTFs
using local PCA. Vision, Modeling, and Visuali-
zation, (2003), 271–280.

[PJ00] Portilla J. S. E.: A parametric texture model
based on joint statistics of complex wavelet coef-
ficients. Int. Journal of Computer Vision 40, 1
(2000), 49–71.

[SP00] Somol P., Pudil P.: Oscillating search algo-
rithms for feature selection. In Proc. 15th Int.
Conf. on Pattern Recognition (2000), vol. 2,
IEEE Computer Society, 406–409.

[Wei01] Wei L. Levoy M.: Texture synthesis over
arbitrary manifold surfaces. In Proc. SIGGRAPH
01 (2001), ACM Press / Addison Wesley.

[XGS00] Xu Y., Guo B., Shum H.: Chaos Mosaic:
Fast and Memory Efficient Texture Synthesis.
Tech. Rep. MSR-TR-2000-32, Redmont, 2000.

original

index matrix

wT= 33 wP= 7
n = 15

3 1 3 4 2 4

2 3 2 5 4 1

4 1 3 2 3 2

5 4 1 5 2 1

4 3 5 2 5 2

1 4 1 5 3 5

synthesised

ti
le

5

ti
le

3
ti
le

4
ti
le

2
ti
le

1

a)

index matrix

wT= 22
wP= 13
n = 35

3 2 3 1 2 1 3 1 2

1 3 2 3 1 2 1 2 3

2 1 3 2 3 1 2 3 1

1 2 1 3 2 3 1 2 3

2 1 2 1 3 1 2 3 1

3 2 1 3 2 3 1 2 1

2 3 2 1 3 2 3 1 3

1 2 3 2 1 3 2 3 2

2 3 1 3 3 2 1 2 3

synthesised

original

tile 1

tile 3

tile 2

c)

original

index matrix

wT= 15 wP= 7
n = 7
5 4 2 3 2 1 4 3

3 2 1 2 5 3 1 5

1 4 5 4 1 5 4 2

3 1 4 2 4 1 2 4

5 4 2 4 2 4 5 3

4 3 5 2 1 2 3 2

5 2 1 4 5 4 5 4

1 3 2 5 4 2 1 2

synthesised

ti
le

5

ti
le

3
ti
le

4
ti
le

2
ti
le

1

e)

original

index matrix

wT= 18 wP= 6
n = 15
1 4 1 2 1 5 3 5

3 5 2 5 3 2 1 3

5 2 4 2 1 3 2 1

1 5 3 4 2 1 4 2

4 1 5 3 5 2 1 4

1 5 3 1 2 4 5 1

4 1 4 5 3 1 2 4

1 2 3 2 5 2 3 5

synthesised

ti
le

5

ti
le

3
ti
le

4
ti
le

2
ti
le

1

b)

index matrix

wT= 33
wP= 13
n = 30

1 3 1 3 2

2 1 3 2 1

3 2 1 3 2

1 3 2 1 3

3 1 3 2 1

synthesised

original

tile 1

tile 3

tile 2

d)

index matrix

wT= 33
wP= 13
n = 30

3 2 3 1 2

1 3 2 3 1

2 1 3 1 3

1 3 1 3 2

2 1 2 1 3

synthesised

original
tile 1

tile 3

tile 2

f)
Figure 11. Examples of tilings obtained with the proposed method.

aQ) bQ) cQ) dQ) fQ)
Figure 12. Image Quilting [Efr01] results for comparison.

Interpolation Search for Point Cloud Intersection

Jan Klein
University of Paderborn, Germany

janklein@uni-paderborn.de

Gabriel Zachmann
University of Bonn, Germany

zach@cs.uni-bonn.de

ABSTRACT

We present a novel algorithm to compute intersections of two point clouds. It can be used to detect collisions between implicit
surfaces defined by two point sets, or to construct their intersection curves. Our approach utilizes a proximity graph that allows
for quick interpolation search of a common zero of the two implicit functions.
First, pairs of points from one point set are constructed, bracketing the intersection with the other surface. Second, an inter-
polation search along shortest paths in the graph is performed. Third, the solutions are refined. For the first and third step,
randomized sampling is utilized.
We show that the number of evaluations of the implicit function and the overall runtime is in O(log logN), where N is the point
cloud size. The storage is bounded by O(N).
Our measurements show that we achieve a speedup by an order of magnitude compared to a recently proposed randomized
sampling technique for point cloud collision detection.

Keywords: Collision detection, weighted least squares, proximity graphs, implicit surfaces.

1 INTRODUCTION
In the past few years, point clouds have had a renais-
sance caused by the wide-spread availability of 3D
scanning technology. Interaction with objects thus rep-
resented often requires intersection tests between pairs
of objects. Other applications, such as Boolean oper-
ations [1] or physically-based simulation [10], require
fast construction of points on the intersection curves.

In order to do that, one must define an appropri-
ate surface (even if it is not explicitly reconstructed).
The simple weighted least-squares (WLS) definition of
point cloud surfaces is quite attractive and can be eval-
uated very fast [3]. In order to overcome a problem
caused by Euclidean distances in the weighting func-
tions, [12] proposed a method that utilizes (concep-
tually) a Voronoi diagram and a geometric proximity
graph to approximate geodesic distances between the
query point and the cloud points.

In this paper, we present a method that can quickly
find intersection points on objects represented by point
clouds. It converges even if the sampling is sparse,
compared to the surface areas, and even if the distance
between the surfaces contains local minima.

The idea is to utilize a proximity graph over the point
clouds and perform interpolation search along geodesic
paths through these graphs. The search is initialized
by randomized sampling that tries to find two points on

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

WSCG 2005 conference proceedings, ISBN 80-903100-7-9
WSCG’2005, January 31–February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

Figure 1: One of our point clouds for benchmarking our
novel intersection method (> 137000 points).

one object and on different sides of the other object.
Then, our interpolation search converges quickly to an
approximate intersection point. Finally, the space sur-
rounding that is sampled to get very accurate (discrete)
intersection points.

Our new algorithm can be combined very easily with
any acceleration data structure for collision detection or
intersection construction. For instance, with bounding
volume hierarchies [11], the algorithm presented here
would be invoked at the leaves.

In the following, we will first give a review of related
work. Section 3 gives a quick recap of the WLS surface
definition and the proximity graph we are using. Sec-
tion 4 describes the details of our new algorithm while
Section 5 shows its performance.

2 RELATED WORK
An attractive way of handling point clouds is to define
the surface as the zero set of an implicit function that is
constructed from the point cloud. Usually, this function
is not given analytically but “algorithmically” [2, 3, 4].

This is a general method that can be used for recon-
struction as well as ray-tracing or collision detection.
Another very popular method is to define the surface as
the set of fixed points of a projection operator based on
local polynomial regression [5].

Geometric queries on point clouds have been studied
extensively. An interesting result related to our problem
can be found in [7, p. 908f]. They use a divide-and-
conquer algorithm to find the closest pair of n points
in time O(n logn) which is, of course, not applicable to
realtime collision detection.

However, there is very little literature on geometric
queries on the implicit surfaces defined by such object
representations. The work most related to ours is [21].
They sample an implicit function with a stochastic dif-
ferential equation to detect intersections. Since it is a
method for general implicit surfaces, they do not ex-
ploit the proximity graph available here. In addition,
our new method is much simpler.

In [11] a bounding volume (BV) hierarchy for point
cloud collision detection was proposed. The BV traver-
sal first visits leaves where intersections are more likely.
Then, a sampling technique similar to [21] determines
the intersection points.

An algorithm to perform Boolean operations on
solids was presented in [1]. However, their algorithm
does not work for surfaces implicitely defined, and it
requires closed surfaces.

As mentioned above, our method is based on prox-
imity graphs, which have been studied extensively in
the past decade. There is a broad spectrum of them,
including the Delaunay graph, nearest-neighbor graph,
γ-graph, α-shape, and the spheres-of-influence graph,
to name but a few; see [9] for a good survey.

3 IMPLICIT SURFACE MODEL
In this section, we give a quick recap of the weighted
least-squares (WLS) method [2, 3], which was origi-
nally introduced by McLain [13] in the context of con-
touring, plus its geodesic extension based on proximity
graphs [12].

3.1 Weighted Least Squares
Let a point cloud P with N points pi ∈ R3 be given.
Then, an appealing definition of the surface from P is
the zero set S = {x | f (x) = 0} of an implicit function

f (x) = n(x) · (a(x)− x) (1)

where a(x) is the weighted average of all points P

a(x) = ∑
N
i=1 θ(x, pi)pi

∑
N
i=1 θ(x, pi)

. (2)

Usually, a Gaussian kernel (weight function)

θ(x, p) = e−d(x,p)2/h2
, d(x, p) = ‖x− p‖, (3)

is used, but other kernels work as well.
The bandwidth h of the kernel allows us to tune the

decay of the influence of the points. It should be chosen
such that no holes appear.

The normal n(x) is defined as the direction of
smallest weighted covariance, which is the small-
est eigenvector of the centered covariance matrix
B(x) = {bi j(x)} with

bi j(x) =
N

∑
k=1

θ(x, pk)(ei(pk−a(x)))(e j(pk−a(x)))

(4)
where ei, i ∈ {0,1,2} is a basis of R3.

The above definition can produce artifacts in the sur-
face S, which are mainly caused by the Euclidean dis-
tance function d(x, p) that does not take the topology
of S into account. This problem can be solved by us-
ing a different distance function dgeo(x, p) in (3) that
is based on geodesic distances on the surface S. There-
fore, a geometric proximity graph can be utilized where
the nodes are points ∈P . Then, geodesic distances be-
tween the points can be approximated by shortest paths
on the edges of the graph.

We use the following geodesic kernel :

θ(x, p) = e−dgeo(x,p)2/h2
(5)

when computing f by (1)–(4).

3.2 Geodesic Distance Approximation
There is a whole spectrum of different proximity graphs
over a set P of points. We decided to use the the
sphere-of-influence graph (SIG) as it has reduced ar-
tifacts in WLS point cloud surfaces dramatically [12].
In this section, we will give a short overview of this
fairly little known proximity graph [6, 14]. Moreover,
we will shortly summarize how to precompute and store
the geodesic distances.
The Sphere-of-Influence Graph (SIG). The idea is to
connect points if their “spheres of influence” intersect.
More precisely, for each point pi the distance di to its
nearest neighbor (NN) is determined and two points pi
and p j are connected by an edge if ‖pi− p j‖ ≤ di +d j.

As a consequence, the SIG tends to connect points
that are “close” to each other relative to the local point
density. In noisy or irregularly sampled point clouds,
however, a lot of isolated “mini-clusters” can appear,
even though there are no holes in the original surface.
Because our root bracketing will utilize the graph, it
would fail in such a situation.

Therefore, we use the r-SIG(P): instead of comput-
ing the distance to the NN for each node, we compute
the distance to the r-nearest neighbor and then proceed
as in the case of r = 1. That means, the larger r, the
more nodes are directly connected by an edge. In our
experience, it seems best to choose r = 3 or r = 4, and

Point clouds
A and B

Root bracketing

Pairs of points

(p,p) A lying

on different
sides of B

i j �

Interpolation
search along
paths in graph

Intersection
areas

Randomized
sampling

Discrete
intersection
points

Figure 2: Outline of our point cloud collision detection.

then prune away all “long” edges by an outlier detection
algorithm [22].
Precomputing Geodesic Distances. Computing short-
est paths on-the-fly during the collision detection pro-
cess would be, of course, prohibitively expensive, so we
pre-compute and store them in a close-pairs shortest-
paths (CPSP) map [12].

Since the Gaussian (3) decays fairly quickly, we need
to store only paths up to some length for defining the
surface. The contribution of nodes in Equations 2 and 4
that are farther away can be neglected. That means, for
each point pi we have to run a single-source-shortest
path algorithm, but only for points whose influence in
pi is larger than some small threshold.

In [12] it is shown that all these geodesic distances
for a whole point cloud of size N can be computed and
stored in O(N) time and space.

4 CONSTRUCTING POINTS ON THE
INTERSECTION

Given two point clouds A and B, the goal is to deter-
mine whether or not there is an intersection, i.e., a com-
mon root fA(x) = fB(x) = 0, and, possibly, to compute
a sampling of the intersection curve(s), i.e., of the set
Z = {x | fA(x) = fB(x) = 0}. Both can be achieved
very quickly by exploiting the proximity graph.

First, our algorithm tries to bracket intersections by
two points on one surface and on either side of the other
surface (see Figure 2). Second, for each such bracket,
it finds an approximate point in one of the point clouds
that is close to the intersection (see Figure 3). Finally,
this approximate intersection point is refined by subse-
quent randomized sampling. This last step is optional,
depending on the accuracy needed by the application.

In the following, we describe each step in detail.

4.1 Root Bracketing
Finding common roots of two (or more) nonlinear func-
tions is extremely difficult [17]. Even more so here, be-
cause the functions are not described analytically, but
algorithmically.

As mentioned before, our algorithm starts by con-
structing random pairs of points on different sides of
one of the surfaces. The two points should not be too
far apart, and, in addition, the pairs should evenly sam-
ple the surface.

+
+

-
-

p1

p2

I1 I2

B

A

Figure 3: Two point clouds A and B and their inter-
section spheres I1 and I2. Our root finding procedure,
when initialized with p1, p2 ∈A, will find an approximate
intersection point inside the intersection sphere I1.

An exhaustive enumeration of all pairs is, of course,
prohibitively expensive. Therefore, we propose the fol-
lowing randomized (sub-)sampling procedure.

Assume that the implicit surface is conceptually(!)
approximated by surfels (2D discs) of equal size [16,
19]. Let Box(A,B) = Box(A)∩Box(B) and A = A∩
Box(A,B). Then, we want to randomly draw points
pi ∈ A such that each surfel si gets occupied by at least
one pi; here, “occupied by pi” means that the projec-
tion of a(pi) along the normal n(pi) onto the supporting
plane of si lies within the surfel’s radius.

For each pi we can easily determine another point p j
(if any) in the neighborhood of pi so that pi and p j lie
on different sides of fB. We represent the neighborhood
of a point pi by a sphere ci centered at pi.

An advantage of this is that the application can spec-
ify the density of the intersection points that are to be
returned by our algorithm. From these, it is fairly easy
to construct a discretization of the complete intersection
curves (for instance, by utilizing randomized sampling
again).

Note that we never need to actually construct the
surfels, or assign the points from A explicitly to the
neighborhoods, which we describe in the following.
Section 4.2 describes how to choose the radius of the
spheres ci.

In order to find a p j ∈ A∩ ci on the “other side” of
fB, we use fB(pi) · fB(p j) ≤ 0 as an indicator. This, of
course, is reliable only if the normals n(x) are consis-
tent throughout space. If the surface is manifold and
connected, this can be achieved by a method similar
to [8].

Utilizing our proximity graph (which is a supergraph
of the nearest-neighbor graph), we can propagate a nor-
mal to each point pi ∈ A. Then, when defining f (x),
we choose the direction of n(x) according to the normal
stored with the NN of x in A.1

1 Surprisingly, the direction of n(x) is consistent over fairly large vol-
umes without any preconditioning.

A

B
(i)

(ii)

Figure 4: If the spherical neighborhoods ci (red) are
too small, not all collisions can be found. (i) adjoin-
ing neighborhoods do not overlap sufficiently, their in-
tersection contains no cloud point. (ii) surface is not
covered by neighborhoods ci.

In order to sample A such that each (conceptual) sur-
fel is represented by at least one point in the sample, we
use the following

Lemma 1
Let A be a uniformly sampled point cloud. Further,
let SA denote the set of conceptual surfels approxi-
mating the surface of A inside the intersection volume
of A and B, and let a = |SA|. Then, in order to oc-
cupy each surfel with at least one point with probability
p = e−e−c

, where c is an arbitrary constant, we have
to draw n = O(a · lna + c · a) random and independent
points from A.

Proof: see Appendix A.
For instance, if we want p≥ 97%, we have to choose

c = 3.5, and if a = 30, then n≈ 200 random points have
to be generated.

Now, given a point pi ∈ A, we have to determine an-
other point p j ∈ A∩ ci on the other side of fB.

This is done by testing fB(pi) · fB(p j) ≤ 0 for all
points p j ∈ A∩ ci. In the next section, we show that
ci∩A is only a small, constant number of points. There-
fore, a point p j on the other side of fB can be deter-
mined in time O(1) (if it exists). We utilize our proxim-
ity graph and a breadth-first search to access the points
in the spherical neighborhood ci.

4.2 Size of Neighborhoods

The radius of the spherical neighborhoods ci has to be
chosen so that, on the one hand, all ci cover the whole
surface defined by A. On the other hand, the intersec-
tion with each adjoining neighborhood of ci has to con-
tain at least one point in A to miss no collisions lying in
the intersection of two neighborhoods. The situation is
illustrated in Figure 4.

To determine the minimal radius of a spherical neigh-
borhood ci, we introduce the notion of sampling radius.

Definition 1 (Sampling radius)
Let a point cloud A as well as a subset A′ ⊆ A be given.
Consider a set of spheres, centered at A′, that cover the
surface defined by A (not A′), where all spheres have
equal radius. We define the sampling radius r(A′) as
the minimal radius of such a sphere covering.

Remember that we draw n = O(a · lna + c · a) random
and independent points from A. Let A′ denote the point
cloud consisting of these random points. Then, spheres
with radius 2 · r(A′) centered at points in A′ contain al-
ways points of the neighboring spheres and, of course,
cover the surface.

The sampling radius r(A′) can obviously be estimated
as the radius r of a surfel si ∈ SA.

Let FA denote the surface area of the implicit surface
over A. Then, the surfel radius r can be determined by

FA

a
= π · r2 ⇒ r =

√
FA

a ·π
.

Assume that the implicit surface over A can also be
approximated by surfels of size r(A). Then, FA can be
estimated by

FA = |A| ·πr(A)2.

Overall, r(A′) can be estimated by

r(A′) = r(A) ·

√
|A|
a

≈ r(A) ·

√
Vol(A,B)
Vol(A) ·a

· |A| .

The size of A can easily be estimated depending on the
ratio of Vol(A) and Vol(A,B), the sampling radius r(A)
can easily be determined in the preprocessing.

In [12] it has already been shown that for uniformly
distributed points pi ∈R3 and a sampling radius of r(A)
only O(d

√
2 ·me2) points ∈ A lie in a sphere with ra-

dius m · r(A). If we choose m = 2r(A′)/r(A), then at
most O(d

√
2 ·2r(A′)/r(A)e2) = O(1) points ∈ A lie in

a spherical neighborhood with radius 2 · r(A′) because
m = 2r(A′)/r(A) is constant.

4.3 Interpolation Search
Having determined two points p1, p2 ∈ A on different
sides of object B, the next goal is to find a point p̂ ∈ A
“between” p1 and p2, such that the approximate dis-
tance from B is small enough, i.e., | fB(p̂)| < ε . In
the following, we will call such a point approximate
intersection point (AIP). The true intersection curve
fB(x) = fA(x) = 0 will pass close to p̂ (usually, it does
not pass through any points of the point clouds).

Depending on the application, p̂ might already suf-
fice. If the true intersection points are needed, then we
refine the output of the interpolation search by the pro-
cedure described in Section 4.5.

If B does not have boundaries (e.g., holes) and A is
sufficiently densely sampled, then there must be a point

l,r = 1,n
dl,r = fB(P1), fB(Pn)
while |dl |> ε and |dr|> ε and l < r do

x = l + d −dl
dr−dl

(r− l)e {*}
dx = fB(Px)
if dx < 0 then

l,r = x,r
else

l,r = l,x
Algorithm 1: Pseudo-code of our root finding algorithm
based on interpolation search. P is an array containing
the points of the shortest path from p1 = P1 to p2 = Pn,
which can be precomputed. di = fB(Pi) approximates
the distance of Pi to object B. (*) Note that either dl or
dr is negative.

p̂ ∈ A lying on the shortest path between p1 and p2 for
which | fB(p̂)| < ε . Let us assume that fB is mono-
tone along the path p1 p2 (this can always be ensured
by making the surfels small enough). Then, instead of
doing an exhaustive search along the path, we could uti-
lize binary search to find p̂. Better yet, we can utilize
interpolation search, which makes sense here, because
the “access” to the key of an element, i.e., an evaluation
of fB, is fairly expensive [20]. The runtime of interpola-
tion search is in O(log logm), m = number of elements.

Algorithm 1 for our interpolation search assumes that
the shortest paths are precomputed and stored in the
CPSP map (Section 3.2). Analogously to [12], it is easy
to see that the storage is still linear.

However, in practice, the memory consumption could
be too large for huge point clouds. In that case, we
can compute the path P on-the-fly at runtime by Algo-
rithm 2. Theoretically speaking, the overall algorithm
is now in linear time. However, in practice, it still be-
haves sublinear because the reconstruction of the path is
negligible compared to evaluating fB (see Section 5.3).

4.4 Models with Boundaries

If the models have boundaries and the sampling rate
of our root bracketing algorithm is too low, not all in-
tersections will be found (see Figure 5). In that case,
some AIPs might not be reached, because they are not
connected through the proximity graph.

Therefore, we propose to modify the r-SIG. After
constructing the graph, we usually prune away all
“long” edges by an outlier detection algorithm (see
Section 3.2). Now, we only mark these edges as
“virtual”. Thus, we can still use the r-SIG for defining
the surface as before. For our interpolation search,
however, we can also use the “virtual” edges so that
small holes in the model are bridged.

q.insert(p1); clear P
repeat

p = q.pop
P.append(p)
for all pi adjacent to p do

if dgeo(pi, p2) < dgeo(p1, p2) then
insert pi into q with priority dgeo(pi, p2)

until p = p2

Algorithm 2: This algorithm can be used to initialize P
for Algorithm 1 if storing all shortest paths in the CPSP
map is too expensive. (q is a priority queue.)

4.5 Precise Intersection Points
If two point clouds are intersecting, our interpolation
search returns a set of AIPs. Around each of them, an
intersection sphere of radius r = ‖x− p1‖ where

x =
1

d1 +d2
(d2 p1 +d1 p2)

contains a true intersection point (p1 and p2 are the
points ∈ A with smallest distance to B lying on differ-
ent sides of B, di = fB(pi)). The idea is illustrated in
Figure 6. If AIPs are not precise enough, then we can
sample each such sphere to get more accurate (discrete)
intersection points.

More precisely, if a precise collision point’s distance
from the surfaces is to be smaller than ε2, we cover a
given intersection sphere by s smaller spheres with di-
ameter ε2 and sample that volume by s · lns+c ·s points
so that each of the s spheres gets a point with high prob-
ability (see Appendix A). For each of these, we just
determine the distance to both surfaces.

Rogers [18] showed that a sphere with radius a ·b can
be covered by at most s = d

√
3 ·ae3 smaller spheres of

radius b. Since we would like to cover the intersec-
tion sphere by spheres with radius b = ε2/2, we have to
choose a = 2r/ε2, so that a ·b = r. As a consequence,

s = d
√

3 · 2r
ε2
e3.

For example, if we would like to cover an intersection
sphere with spheres of radius ε , then ε2 = 2 · ε and s =
d
√

3 · r/εe3.

4.6 Complexity Considerations
In this section we analyze the runtime of our novel ap-
proach and the number of evaluations of the implicit
function that are necessary to detect all intersections for
a given sampling density described by the number a of
surfels.

In general, evaluating f (x) takes O(logN) time, even
if the support of the kernel is bounded, because the NN
of x has to be determined (using, for instance, a kD-
tree). Here, fortunately, one evaluation can be done in

p1
p2

B

A

I1

Figure 5: Models with boundaries can cause errors (I1
could remain undetected), which can be avoided by
“virtual” edges in the proximity graph.

x

r
d1

r2

p1

d2

p2

Figure 6: An intersection sphere centered at an AIP pi.
Its radius r can be determined approximately with the
help of a second point on the other side of B.

only O(1) time: the root bracketing and interpolation
search evaluate f (x) only at points x ∈ A∪B, and com-
puting the precise intersection points can use a brute
force NN search in constant time, starting from the AIP.

Our root bracketing algorithm looks O(a lna) times
for a pair (pi, p j) of points lying on different sides.
Each time, f (x) has to be evaluated only O(1) times, as
the spherical neighborhood around pi contains only a
constant number of points. As a consequence, O(a lna)
evaluations of fB have to be performed which is also the
overall runtime of our root bracketing algorithm.

Then, for at most O(a lna) many pairs, our interpo-
lation search has to be started. Each single interpola-
tion search needs O(log logm) evaluations of fB where
m denotes the number of points along the shortest path
between pi and p j.

Overall, the fB has to be evaluated at most O(a lna ·
log logm)) times. As N � m and a is constant, this
number can also be bounded by O(log logN).

5 RESULTS
We implemented our new algorithm in C++. As of yet,
the implementation is not fully optimized. All results
were obtained on a 2.8 GHz Pentium-IV.

For timing the performance, we used a set of ob-
jects (see Fig. 11), most of them with several resolu-
tions. Benchmarking was performed by the procedure
proposed in [23], which computes average collision de-
tection times for a range of distances between two iden-
tical objects, which are scaled uniformly so that they fit
into a cube of size 23.

happy budha

0

3

6

9

12

15

0 0,5 1 1,5 2 2,5

distance (relative to bbox size)

e
r
r
o
r

/
%

n=20

n=50

n=100

n=150

Figure 7: If the sampling density is too small, our ap-
proach can miss some intersections (n = O(a lna), see
Section 4.1).

5.1 Minimal Bracket Density
As mentioned before, if the number of (conceptual) sur-
fels is too small, then the size of their neighborhoods
can become too large,and, as a consequence, the like-
lihood can become too large that the normal n(x) flips
its sign without x actually changing sides. In that case,
our method could fail to find pairs of points on different
sides of the surface.

Therefore, we propose to estimate the minimal num-
ber of surfels (which directly influences the radius of
the spherical neighborhoods) by the following prepro-
cessing procedure. For each distance, a large number of
collisions tests is performed, each with a different con-
stellation between the objects. A collisions test stops
after the first intersection has been found. Each of these
tests is performed with a different sampling density, ex-
pressed by the number n = O(a lna) (see Section 4.1).
Then, we use the minimal sampling density for which
all collisions have been found.

The results for one object can be found in Figure 7,
which shows the error rate depending on different sam-
pling densities. All our other models of our test suite
show a similar behavior and it turned out that nmin =
200 is the minimal number, so that the error rate of all
intersection tests for all our models is only 0.1%. This
number was used for all further tests.

5.2 Interpolation Search vs Randomized
Sampling

In order to evaluate the performance of our new algo-
rithm, we compared it to the simpler randomized sam-
pling technique (RST) proposed in [11]. No BV hierar-
chies were used.

The number of sample points ns that have to be gen-
erated for the RST can be determined as proposed in
Section 4.5, depending on the same ε that is used for
our new approach. As this number would always be
large, we once again terminate both collision detection
algorithms after the first intersection is found.

timings (dino)

0

5

10

15

20

25

0 0,5 1 1,5 2 2,5 3

distance (relative to bbox size)

t
i
m

e
/
m

s
e

c
.

RST (old)

iSearch (new)

timings (happy buddha)

0

5

10

15

20

25

0 0,5 1 1,5 2 2,5 3

distance (relative to bbox size)

t
i
m

e
/
m

s
e

c
.

RST (old)

iSearch (new)

timings (grid)

0

0,5

1

1,5

2

2,5

0 0,5 1 1,5 2 2,5 3

distance (relative to bbox size)

t
i
m

e
/
m

s
e

c
.

RST (old)

iSearch (new)

Figure 8: Timings for different models. Comparison of our novel technique and RST [11].

complexity (grid)

0

50

100

150

200

250

0 0,5 1 1,5 2 2,5 3

distance (relative to bbox size)

#
e

v
a

l
u

a
t
i
o

n
s

f
(
x
)

RST (old)

iSearch (new)

complexity (dino)

0

200

400

600

800

1000

0 0,5 1 1,5 2 2,5 3

distance (relative to bbox size)

#
e

v
a

l
u

a
t
i
o

n
s

f
(
x
)

RST (old)

iSearch (new)

complexity (happy buddha)

0

150

300

450

600

750

0 0,5 1 1,5 2 2,5 3

distance (relative to bbox size)

#
e

v
a

l
u

a
t
i
o

n
s

f
(
x
)

RST (old)

iSearch (new)

Figure 9: The number of evaluations of f (x) can be decreased by an order of magnitude by our new approach.

However, in the case of non-collision, in particular in
the case of small distances between the objects, the run-
time of the RST would be very long because of the large
ns, which is a big drawback of the old method. There-
fore, if ns is too large, we bound this number by 500.
Note that in such cases the old method fails to report
all intersection tests correctly, in contrast to our new
method, which is another drawback of the old method.

Figure 8 shows that the collision queries can be an-
swered much more quickly by our new approach.

The corresponding number of evaluations of the im-
plicit function can be found in Figure 9. Note that the
number of evaluations can exceed ns in the case of the
RST, since for each random point two evaluations are
necessary.

5.3 Timings depending on Point Density
Figure 10 shows the runtime for detecting all intersec-
tions between two objects, depending on different den-
sities of the point clouds. We define the density of an
object A with N points as the ratio of N over the number
of volume units of the AABB of A (which is at most 8
as each object is scaled uniformly so that it fits into a
cube of size 23). This experiment supports our theoret-
ical considerations of Section 4.6.

Note that the CPSP maps (see Section 3.2) were built
so that the time for evaluating the implicit function re-
mains constant.

We also measured the time that would be needed to
compute all nodes on the shortest path between (pi, p j)
used to initialize the interpolation search (see Algo-
rithm 2). For all our models, this was at most 10% of
the overall runtime. Therefore, one can save a signifi-
cant amount of memory in the CPSP map by computing
array P in Algorithm 1 during run-time.

6 CONCLUSION AND FUTURE
WORK

We have presented a novel algorithm for sampling the
intersection curves between surfaces defined implicitly
by point clouds with the weighted least-squares method
plus proximity graph. It can be used, for instance, to ac-
celerate hierarchical collision detection or Boolean op-
erations on this kind of object representation.

Our approach exploits the proximity graph by inter-
polation search along shortest paths in the graph. The
technique of randomized sampling has proven to be ef-
ficient for initializing that search.

Our measurements show that the number of function
evaluations is reduced by an order of magnitude and a
speedup of factor 5–10 is achieved in many cases, com-
pared to a previous randomized sampling technique.

Moreover, theoretical and experimental evidence is
given that the runtime grows only as log logN, (N = the
size of the point clouds).

We believe that this work opens up a number of fur-
ther avenues for future work. Our new approach could
be a way to handle deformable point clouds, since it
does not utilize any spatial acceleration structure and
the SIG can be updated in time O(log3 N). From a the-
oretical point of view, a mathematically more rigorous
estimation of the minimal sampling density would be
appealing.

ACKNOWLEDGEMENTS
This work was partially supported by DFG grant
DA155/29-1 “Benutzerunterstützte Analyse von
Materialflußsimulationen in virtuellen Umgebun-
gen” (BAMSI), and the DFG program “Aktionsplan
Informatik” by grant ZA292/1-1.

0

0,5

1

1,5

2

2,5

1000 2500 4000 5500 7000 8500

density / points per volume unit

a
v
g
.

t
i
m

e
/

m
s
e
c
.

buddha

aphrodite

Figure 10: The plot shows the runtime depending on
the size of the point clouds. The runtime is the average
of all timings for distances between 0 and 1.5.

A PROOF OF LEMMA 1

We can reduce the problem to a simple urn model.
Given a bins (corresponding to the number of surfels),
how many balls (corresponding to the number of points
to be drawn) have to be thrown i.i.d. into the bins so that
every bin gets at least one ball with high probability?

Let X denote the number of drawings required to put
at least one ball into each bin. It is well known that
the expectation value of X is a ·Ha where Ha is the a-th
harmonic number [15, p. 57f].

Let c be an arbitrary constant. The a-th harmonic
number is about lna ±1 which is asymptotically sharp,
and so c · a additional balls are enough to fill each bin
with probability p which depends on c. Therefore, n =
a · lna+ c ·a points ∈ Vol(A∩B) have to be generated.

To compute the dependence of p on c, we refer to
the proof given by Motwani and Raghavan [15, p. 61ff].
They showed that the probability p = Pr[X ≤ n] = e−e−c

for a sufficiently large number of bins.

REFERENCES
[1] Bart Adams and Philip Dutré. Interactive boolean operations

on surfel-bounded solids. In Proc. of SIGGRAPH, volume 22,
pages 651–656, July 2003.

[2] Anders Adamson and Marc Alexa. Approximating and inter-
secting surfaces from points. In Proc. Eurographics Symp.
on Geometry Processing, pages 230–239, Aachen, Germany,
June23–25 2003.

[3] Anders Adamson and Marc Alexa. Approximating bounded,
non-orientable surfaces from points. In Shape Modeling Inter-
national, pages 243–252, 2004.

[4] Anders Adamson and Marc Alexa. On normals and projection
operators for surfaces defined by point sets. In Eurographics
Symp. on Point-Based Graphics, pages 149–155, 2004.

[5] Nina Amenta and Yong Kil. Defining point-set surfaces. In
Proc. of SIGGRAPH, pages 264–270, 2004.

[6] Elizabeth D. Boyer, L. Lister, and B. Shader. Sphere-of-
influence graphs using the sup-norm. Mathematical and Com-
puter Modelling, 32(10):1071–1082, 2000.

[7] Thomas H. Cormen, Charles E. Leiserson, and Ronald L.
Rivest. Introduction to Algorithms. The MIT Press, 1990.

89 036 27 727 62 299 197 315
Figure 11: Some of the models of our test suite (cour-
tesy of Polygon Tech. Ltd and Stanford). The numbers
are the sizes of the respective point clouds.

[8] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald,
and Werner Stuetzle. Surface reconstruction from unorganized
points. In Proc. of SIGGRAPH, pages 71–78, 1992.

[9] J. W. Jaromczyk and Godfried T. Toussaint. Relative neigh-
borhood graphs and their relatives. In Proc. of the IEEE, vol-
ume 80, pages 1502–1571, 1992.

[10] Richard Keiser, Matthias Mueller, Bruno Heidelberger,
Matthias Teschner, and Markus Gross. Contact handling for
deformable point-based objects. In Vision, Modeling, Visual-
ization (VMV), pages 315–322, Stanford, USA, November16–
18 2004.

[11] Jan Klein and Gabriel Zachmann. Point cloud collision detec-
tion. In Computer Graphics Forum (Proc. of EUROGRAPHICS
2004), pages 567–576, 30 August - 3 September 2004.

[12] Jan Klein and Gabriel Zachmann. Proximity graphs for defin-
ing surfaces over point clouds. In Eurographics Symposium on
Point-Based Grahics (SPBG’04), pages 131–138, June 2004.

[13] D. H. McLain. Drawing contours from arbitrary data points.
Computer Journal, 17(4):318–324, 1974.

[14] T. S. Michael and Thomas Quint. Sphere of influence graphs
and the l∞-metric. Discrete Applied Mathematics, 127(3):447 –
460, 2003.

[15] R. Motwani and P. Raghavan. Randomized Algorithms. Cam-
bridge University Press, 1995.

[16] Hanspeter Pfister, Jeroen van Baar, Matthias Zwicker, and
Markus Gross. Surfels: Surface elements as rendering primi-
tives. In Proc. of SIGGRAPH, pages 335–342, 2000.

[17] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and
William T. Vetterling. Numerical Recipes in C. Cambridge
University Press, Cambridge, England, 2nd edition, 1993.

[18] C.A. Rogers. Covering a sphere with spheres. Mathematika,
10:157–164, 1963.

[19] Szymon Rusinkiewicz and Marc Levoy. QSplat: A multires-
olution point rendering system for large meshes. In Proc. of
SIGGRAPH, pages 343–352, 2000.

[20] Robert Sedgewick. Algorithms. Addison-Wesley, 1989.

[21] Sotoshi Tanaka, Yasushi Fukuda, and Hiroaki Yamamoto.
Stochastic algorithm for detecting intersection of implicit sur-
faces. Computers and Graphics, 24(4):523 – 528, 2000.

[22] T. Lewis V. Barnett. Outliers in Statistical Data. John Wiley
and Sons, New York, 1994.

[23] Gabriel Zachmann. Minimal hierarchical collision detection. In
Proc. ACM Symp. on Virtual Reality Software and Technology
(VRST), pages 121–128, Hong Kong, China, November 2002.

Achieving Consistency in a Combined IK/FK
Interface for a Seven Degree-of-Freedom

Kinematic Chain

John McDonald, Rosalee Wolfe, Karen Alkoby, Jaceck Brzezinski, Roymieco Carter,
Mary Jo Davidson, Jacob Furst, Damien Hinkle, Bret Kroll, Glenn Lancaster,

Lori Smallwood, Jorge Toro, Nedjla Ougouag, Jerry Schnepp

School of CTI, DePaul University
{jmcdonald@cs.depaul.edu | asl@cs.depaul.edu}

ABSTRACT

Many applications in computer animation portray the motion of a human arm and torso. Often such applications
can benefit from a combination of Inverse (IK) and Forward (FK) Kinematics controls to manipulate the arms of
the model. The human arm is a kinematic chain with seven degrees of freedom. The previous analytic solution
to this kinematic chain gives highly detailed IK controls, but problems arise when integrating it with FK controls.
These problems impede the artistic process when creating expressive animations.

This work improves on the previous analytic solution to create a hybrid FK/IK control interface for manipulating
the chain, and enables the recalculation of all the parameters necessary for the IK solution. Thus IK and FK con-
trols can interact seamlessly to manipulate the arm. The torso is modeled as a separate kinematic chain, and is
integrated with the arm linkages. User tests demonstrate the effectiveness and efficiency of the combined FK/IK
control interface.

Keywords
Character Animation, Expressive Animation, Inverse Kinematics Forward Kinematics

1. Introduction
Many applications in computer animation portray the
actions of a virtual human model. Such models are
required to perform an incredible array of tasks, from
manipulating objects in a virtual world to conveying
emotional context and meaning. Much of the expres-
siveness of virtual actors is conveyed through the
torso and arms. Therefore the control interface for
the arms and torso is a key component of any system
for animating a human model.

The flowing motions of the human arm and torso
require a complex manipulation of a multitude of
joints including the wrist, shoulder, elbow, collar,
and spinal articulations [Van98]. To model these
joints, computer graphics applications often use ki-
nematic chains such as those found in robotic link-

ages, and rely on a variety of methods to control
these joints to achieve the desired positions [Gir85]
[Bad93] [Kog94] [Kon94] [Mur94].

Two general categories of controls exist for such
kinematic chains, depending on the type of informa-
tion they use as input:

1. Forward Kinematics (FK) Controls. These
controls specify input data consisting of a col-
lection of angles for the joints in the kinematic
chain. The final orientation of any segment
can be computed by multiplying the transfor-
mations in the joints.

2. Inverse Kinematics (IK) Controls. This class
of control identifies an end effector in the
chain, and a target at which the end effector
should be positioned. Analytic or iterative IK
solutions require the computation of the joint
angles necessary to position the end effector at
the target subject to various constraints, which
restrict the space of possible solutions [Gir85].

The choice of control depends on the application.
For example, in ergonomics simulations, the arms
and torso need to be positioned so that the hands of
the model can manipulate some object in space.
These applications are most conveniently modeled
using inverse kinematics [Bad93] [Tol00].

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy other-
wise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

WSCG 2005 conference proceedings, ISBN 80-903100-7-9
WSCG’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

However, when positioning the body for expressive
postures or narrative pantomime, the precise posi-
tioning of an end effector is not as important as the
movements of the joints, which must look natural. In
these kinds of applications, changes in the orientation
of intermediate joints in the chain can dramatically
alter the expression or emotion displayed by the fig-
ure. Animators must have complete control over all
the degrees of freedom available in a model. Tradi-
tionally, for these types of applications forward kine-
matics has been the control of choice [Mae96]
[Jon00].

2. Hybrid Interfaces
Many applications can benefit from a combination of
these two types of controls. Character animation is a
case in point. Consider a figure peering through a
window with her fingertips touching the glass. If the
character is curious or frightened, her posture will
draw her elbows in towards her body, whereas if she
is angry, her elbows will tend to flare out. Both pos-
tures place the character's fingertips on the glass in
front of her. Therefore the animator would want IK
control over the position of the fingertips, and direct
control over the orientations of the intermediate
joints.

To further illustrate the different kinds of controls
required in expressive character animation, consider
the following two examples:

1. Moving the arm so that a finger on one hand is
placed in contact with the body, the face or the
other hand, as in Figure 1A. An IK control eas-
ily achieves this contact.

2. Moving the hand away from the body in a natu-
ral arcing motion, as in Figure 1B. An FK con-
trol easily achieves this effect.

Forward kinematics has the advantage of being a
straightforward process of building an object hierar-
chy. Rotating a single joint, as in Figure 1B, will
move the joint and all of its children in a natural arc-
ing motion. However, altering multiple joint angles
causes the end effector to follow complicated arcs.
While generally useful for positioning the body ex-
pressively, forward kinematics is cumbersome when
used for placing an end effector at a specific location.

At the same time, these natural arcs may be precisely
what the animator wants, but these arcs can be diffi-
cult to describe to an IK engine. If an IK rig ani-
mated the motion between the endpoints in Figure
1B, it would move the tip of the pinky along a
straight line, and would introduce unwanted move-
ment at the elbow. While one could describe this arc
by a spline, the result is more cumbersome, and can
involve more extraneous joint movement than simply
letting FK have its way. On the other hand, when
animating linear motions, as when the hands trace the

rectangular shape of an object, an IK solution is far
more effective.

A: IK to Target

B: FK to Move Joint

Figure 1: IK and FK Applications

For these reasons, a system for expressive animation
must provide an integrated set of FK and IK controls
to support both kinds of movements. Therefore, it
must conform to the following criteria:

1. Provides IK controls for the arms, which allow
the specification of a target for any point on the
end effector.

2. Provides the animator direct control over all re-
dundant degrees of freedom, while preserving
end effector/ target contact.

3. Provides FK controls for direct movement of
each joint.

4. Provides the seamless integration of these FK
and IK controls so that they may be used in any
combination.

3. Available Techniques
Most comprehensive IK systems allow an animator
to break out of IK control to manipulate the model
with FK [Mae96]. However, the kind of control pro-
vided does not always conform to the criteria out-
lined in the last section.

Building a hybrid interface suitable for such applica-
tions requires the consideration of the available IK
techniques in relationship to these four criteria. This
includes investigating how well the IK solution pro-
vides for control over all the available redundant de-
grees of freedom and how well it integrates with FK
controls.

Inverse Kinematics
IK techniques fall into two categories: analytic and
iterative solutions. A great deal of work has been
done in developing both types of solutions for the
kinematic chains in the arm and torso [Kon94]
[McD00] [McD02] [Tol00].

Iterative IK solutions work from a given configura-
tion of the model and incrementally move the end
effector towards a given target. Such systems will
generally try to calculate a set of “best” angles for the
redundant degrees of freedom in the linkage. How-

ever, the criteria from Section 2 require that these
angles be under direct control of the animator, allow-
ing interactive exploration of the entire collection of
postures that fix the end effector [McD02].

Another problem arises because certain targets on the
body or in space will correspond to singular configu-
rations for the iterative solution. When the joints
approach such configurations the model will behave
in a chaotic manner. Artists are quite familiar with
the unfortunate choices that an iterative IK solution
can make, as the final configuration of the model is
not uniquely determined by the position of the end
effector [Tol00]. While implementations reduce
these effects using range limiting and optimization
techniques [Gir85] [Mur94] [Zha94], analytic solu-
tions, when available, are preferable [McD02]
[Tol00].

Several analytic solutions have been investigated for
different types of kinematic chains. The first analytic
solutions were developed for robotic linkages
[Mur94] and do not model the complete expressive-
ness of the human arm and torso.

Most of the analytic solutions for the human arm in
modern software work with linkages of just two
bones, leaving the third segment, the hand, to be ma-
nipulated by FK or to be specified as a global orienta-
tion in space [Kon94] [Tol00]. This type of linkage
has one redundant degree of freedom in the two
joints of the linkage itself. This degree of freedom
allows the user to raise and lower the model's elbow
about the axis through the shoulder and wrist.

Such analytic solutions do not, however, take the full
linkage of the human arm including the wrist into
account in the solution itself. The full linkage has
four redundant degrees of freedom. This case was
considered in [McD02] where an analytic IK solution
was presented for the entire seven degrees of freedom
in the human arm.

[McD02] gives the animator direct control over the
four redundant degrees of freedom in the linkage.
The wrist orientation and the elbow elevation can
both be altered while preserving end effector/target
contact. Thus the solution satisfies three of the four
criteria for an IK control outlined in Section 2.

Unfortunately problems arise when integrating this
method with forward kinematic controls for the arm.
Such integration was not considered in [McD02].
Forward kinematic manipulation of the shoulder,
elbow, or wrist will cause the IK parameters to
change. The system must recompute these parame-
ters if the interface for manipulating the model is to
work seamlessly. If it does not, and the user subse-
quently manipulates the IK controls, the model's arm
will jump discontinuously as the recorded IK pa-
rameters reassert themselves.

For example, consider choosing the tip of the index
finger with a bent wrist. Choose a target for the fin-
gertip out in front of the body. Then straighten the
elbow with an FK control. This moves the fingertip,
and so the system records its new position. Then
reapply the method from [McD02] using this new
position as a target. Since the solution does not need
to move the fingertip, it should not move the model
at all. Instead, the position of the elbow jumps.
Figure 2 shows the disparity between the resulting
position and the correct one.

Figure 2: Discontinuity Caused by [McD02]

Such recalculations must always be considered when
integrating an IK solution with FK. An advantage of
iterative solutions is that their only input is the end
effector’s position, which can be easily recalculated
from the model’s joints. But, as described above, the
unpredictable nature of iterative solutions makes
them unsuitable for expressive animation.

The analytic solutions such as those outlined in
[Tol00] and those found in many commercial pack-
ages must also recalculate all of the IK parameters if
they are to be integrated with FK, and many do.
However, they only work with the shorter two-
segment IK chains, which do not extend to include
the wrist's rotation in the IK solution itself.

4. Extending the IK Solution
To see why problems arise in the current techniques,
we must carefully investigate the method presented
in [McD02].

The Previous Analytic IK Solution for the Arm
The human arm has three main joints: the wrist, el-
bow and shoulder. Together, these joints have a total
of seven degrees of freedom. A discussion of these
joints can be found in [McD02], where the following
solution to the kinematic chain was developed. The
algorithm requires the following input:

1. The position A, on the model's hand, called an
articulator, to be used for targeting

Correct

IK Result

2. The target point T in space or on the body
3. The local orientation of the model's wrist includ-

ing the radial twist of the forearm
4. The elevation angle δ for the elbow, which raises

and lowers the elbow while keeping the chosen
articulator fixed in space.

The solution then computes the remaining angles
necessary to position the arm so as to place the ar-
ticulator A at the chosen target T. Note that if the
articulator is chosen at the wrist, then the system de-
generates to the previous two-segment cases such as
in [Tol00] and those implemented in several com-
mercial packages.

The method assumes that a coordinate system has
been chosen with its origin at the model's shoulder,
and with the z-coordinate axis corresponding to the
primary vertical axis of the body but pointed down-
wards, i.e. running parallel to the line from the neck
through the hips. The y-axis will protrude straight
out of the body perpendicular to the plane formed by
the two shoulders and the hips. See Figure 3.

Figure 3: The Shoulder Coordinate System

With this setup, the method calculates the transforms
for both the elbow and the shoulder. Let S be the
position of the shoulder in space and let d = dist(S, T)
be the distance from the shoulder to the desired tar-
get. The solution is calculated in four steps:

1. Calculate the bend angle γ of the elbow, as
shown in Figure 4. With this, the articulator will
lie at a distance of d from the shoulder.

2. Position the articulator on the y-axis in front of
the body by calculating two angles in a spherical
coordinate system φs and θs for the shoulder, as
shown in Figure 4.

3. Rotate the shoulder by the elevation angle δ
about the y-axis, which is currently the axis
through the shoulder and the articulator.

4. Use the spherical coordinates of the articulator's
target to calculate two more spherical angles φa
and θa for the shoulder, which will rotate the ar-
ticulator from the y-axis to the chosen target.

S

E

γ

A

A0
W

y

z

x

d

Figure 4: The Spherical Angles of the Upper Arm
in the Default Position

Thus, the method decomposes the shoulder rotation
into five angles, φs, θs, δ, φa, and θa about the axes x,
z, y, x and z respectively. The final transformation of
the shoulder is computed as the product

aass
RRRRRRM Ds θφδθφ=

where RD is the default rotation of the shoulder. The
benefits of this parameterization were detailed in
[McD02].

Effects of FK Controls
The method presented in [McD02] alone is sufficient
if the only interface given to the user is:

1. The IK controls for the position of the articula-
tor

2. The elbow elevation angle
3. The local orientation of the wrist.

It is important to note that wrist orientation, while
under direct control, results in a call to the IK system
so that the articulator position remains fixed as dem-
onstrated in the left image in Figure 6 of Appendix
A. This is distinctly different from the desired FK
control for the wrist, which would move the articula-
tor as in the left image of Figure 7.

In addition to these IK controls, we wish to allow the
user to rotate the elbow, wrist and shoulder through
FK. We will work with the underlying IK parameters
as our basis since the IK solution will still be the
primary means for controlling the model. Any for-
ward kinematic moves made later will be recast in
terms of the IK parameters so that if the user then
moves back to the IK controls, the model will not
jump as the IK system reasserts itself. This is the
step that is missing from the previous method and
which will satisfy the final criterion from section
two.

Consider the effect of moving the model's arm with
the above analytic IK method, followed by an ad-
justment of one of the joints with an FK control. All
of the IK parameters will change:

1. The position of the articulator will change. This
is not a problem since we can simply recompute

the articulator's position from the model and set
the IK target to the new position.

2. The elbow bend angle and wrist orientation
might change as the result of an FK move.
Again, we can read their new values straight out
of the FK data.

3. The elevation angle δ will change. This can not
be directly read from the FK data.

Certainly, the elevation angle will change if the
shoulder is rotated, but even if the shoulder does not
move, as when the wrist is flexed, δ will change.
Recall that this analytic solution decomposes the
shoulder into five angles: two pairs of spherical an-
gles and the elevation angle. There are many subtle
interactions that can occur in the shoulder to change
these angles, including δ.

Suppose that the user has chosen an articulator on the
tip of the index finger, and uses the IK solution to
place the tip of the finger at a point out in space in
front of the body. What happens if the user subse-
quently flexes the model's wrist via FK? The articu-
lator target A will change position. Call the new tar-
get A'. This causes the spherical angles of the target,
φa and θa, to change to match the new location.

Note that flexing the wrist does not actually change
the orientation of the shoulder, and so the total shoul-
der transformation Ms remains constant. Since the
default rotation of the shoulder has not changed, one
or more of the other three angles φs, θs and δ, have
changed to compensate. In fact, most often the
change in φa and θa will be compensated by a change
in all three of the other angles.

In order to integrate FK and IK controls seamlessly
for this method, we need to recompute all five of the
angles in the shoulder transformation's decomposi-
tion, φs, θs, δ, φa, and θa. All five must be recalcu-
lated each time the user moves the model using the
FK control. This will complete the recalculation of
the IK parameters in this analytic method and will
correct the jumping problem seen in Figure 2.

Extending the Method: Recomputing the Angles
To recompute the five angles in the IK solution, we
need to take a close look at the decomposition of the
shoulder transformation. Suppose that the user has
made a sequence of FK changes to the arm's joint
rotations. These FK moves on the model result in a
new local transformation M ' at the shoulder.

We know from the development of this analytic IK
solution that whatever this matrix is, it can be de-
composed into a product of six rotations:

' ' ' ' ''
s s a aDM R R R R R Rφ θ δ φ θ=

The first transformation in this product is the default
rotation for the shoulder, which is a constant and is

therefore known. It remains to recompute the other
five angles in the decomposition.

On the right side of the chain, we have the rotations
for the two spherical angles corresponding to the new
articulator position A' = (x', y', z'). Therefore, these
angles may be calculated from the coordinates of A'.

() () ()2 2 2

'
' arctan

'

'
' arccos

2 ' ' '

a

a

x
y

z

x y z

θ

πφ

⎛ ⎞−= ⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟= −
⎜ ⎟⎜ ⎟+ +⎝ ⎠

The differences in these formulas from their normal
spherical coordinate presentation are due to the fact
that the spherical coordinates of the articulator's tar-
get are measured from the y-axis.

Next, the first stage of the original analytic solution
can be run to find the values of φs' and θs'. See
Figure 4. Determining these angles is accomplished
by first calculating the projection of A to the plane
SEW. Call this projection A0. Then φs' and θs' can be
calculated as

0

0

0

0

' / 2 arccos

' arccos

s

s

SE SA
SE SA

SA SA
SA SA

φ π

θ

⎛ ⎞•= − ⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞•= ⎜ ⎟⎜ ⎟
⎝ ⎠

These calculations are most conveniently accom-
plished in the elbow's coordinate system, in which A'
and W have a known representation in terms of the
initial input data.

Finally, we come to the elevation angle 'δ . While
we could try to use elementary trigonometry to calcu-
late the new elevation angle, the decomposition of M'
admits a more elegant solution with fewer special
cases. Since each of the transformations in the de-
composition is a rotation and is therefore invertible,
the rotation matrix for the elevation angle can be cal-
culated from the decomposition

' ' ' ' ''
s s a aDM R R R R R Rφ θ δ φ θ=

by multiplying both sides of the equation by the in-
verses of the rotations for φs, θs, φa, θa and the default
rotation. Thus,

 () () () () ()1 1 1 11
' ' ' ' ''

s s a aDR R R R M R Rδ θ φ θ φ

− − − −−=

This gives us the transformation as a matrix. To cal-
culate the elevation angle for the elbow, we use a
surprising fact arising from the construction of the
analytic solution. 'Rδ is a rotation about the y-axis,
and will therefore be of the form

' '

'
' '

cos 0 sin
0 1 0

sin 0 cos
Rδ

δ δ

δ δ

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟−⎝ ⎠

Therefore, we can find δ ' by taking

 ()() ()()' '1,3 1,1
' sgn arccosR Rδ δδ =

This completes the recalculation of the IK parameters
after a forward kinematic move. Applying this recal-
culation finishes the computation of the five IK pa-
rameters.

5. The Integration with the Torso
The completion of the control interface requires the
integration of the arm's IK chain with the linkages for
the torso and back. The FK and IK controls should
continue to work seamlessly as the animator manipu-
lates the model's torso.

The interface uses a simplified model of the torso
consisting of a sequence of three evenly spaced joints
starting at the hips, and having three degrees of free-
dom, corresponding to flexion, abduction and radial
twist about the local tangent to the spinal column.

The sterno-clavicular joint in the collar is modeled as
a rotational joint at the top of the spine and articulat-
ing with the shoulder joint. It has three degrees of
freedom, a rotation that moves the shoulder forwards
and backwards, a rotation that moves the shoulder up
and down, and a small amount of radial twist.
Though simplified, this model is capable of repre-
senting many movements of the shoulder and torso.

This method is also compatible with more realistic,
physically based models, as described in [Mau00]
and [Sha03]. Other torso and neck models such as
[Nef04], which use IK methods incorporating bal-
ance control into the torso, are also compatible with
this method.

The first step of the new IK solution calculates the
coordinates of the target relative to this hierarchy, i.e.
relative to the arm's rest orientation, which has been
rotated by the torso and collar joints. Figure 5 dis-
plays two examples of the added expressivity enabled
by integrating the FK/IK system with the torso.

6. The Interface
We implemented the FK and IK controls enabled by
these techniques in a custom software package allow-
ing animators to control a human model interactively.
The integrated FK/IK interface adds FK controls for
the wrist, elbow, shoulder and torso to the IK con-
trols. Figures 6 and 7 in Appendix A show the ef-
fects of the wrist and elbow controls in the combined
FK/IK interface, emphasizing the differences in ef-
fect from the FK and IK controls for these joints.

The remaining shoulder and torso controls are slider
controls accounting for all the degrees of freedom.

Figure 5: Torso Movement

7. Testing the Interface
A usability test evaluated the effectiveness of the
integrated FK/IK interface for positioning a model’s
arms. The test compared the integrated interface
with the controls found in the most recent version of
a widely used, commercially-available animation
package, which allowed the subjects to use either FK,
a traditional IK solution, or a combination of both to
move the model.

The test participants had previous experience with
the commercial package ranging from six months to
three years. While three of the participants also had
substantial experience in using the integrated FK/IK
interface, three of them had minimal prior exposure.
See Table 1 in Appendix B.

The participants created two versions of three Ameri-
can Sign Language (ASL) signs: FOOD, IDEA and
CLOTHES. Each sign contained successively more
complicated motion. The first, FOOD, required a
small arcing of the forearm and a localized oscillation
of the wrist along a single axis. The second, IDEA,
required a twisting and arcing motion of the forearm.
The last sign, CLOTHES, required a circling motion
of the wrists as well as a twisting and arcing motion
of the forearms. For a background on ASL animation
see [McD00] and [Wol99]. Each participant created
one version of the sign using the commercial pack-
age, and another using the integrated FK/IK inter-
face, yielding a 3x2 experimental design.

As a guide for creating the animations, participants
received videotaped demonstrations of each sign re-
corded from side and front views. For each sign,
participants received a model whose fingers were
already in the correct position. They began the task
of creating the animation from that point. Only the
time required to position the arms was recorded.

Each participant completed the two versions of a
sign, and then proceeded to complete two versions of
the next sign. To control for transfer of learning, the

order in which they used the commercial software
and the integrated FK/IK interface was randomized.

After the participants completed the animations, a
team of two animators familiar with ASL critiqued
the results jointly. This team had access to both the
completed animations and the reference video foot-
age. They examined the accuracy of the arm place-
ment. The reviewers were unaware of which soft-
ware was used to create each animation.

Table 2 and Table 3 of Appendix B display the re-
sults. For the simplest sign, FOOD, the average com-
pletion times were the same. However, for the more
complex signs, participants required less time when
using the integrated FK/IK interface. For the sign
IDEA, participants using the integrated interface re-
quired only 57 percent of the time that they needed to
complete the same sign using the commercial soft-
ware. This percentage dropped even further with the
sign CLOTHES. When using the integrated FK/IK
interface, participants required less than 50 percent of
the time they needed when using the commercial
software.

While the completion times examined the efficiency
of the new interface, the reviewer's critique evaluated
its effectiveness. Table 3 in Appendix B shows the
results. The preferred versions of each animation are
listed for each test participant. When both versions
were judged to be of equal quality, the word “tie”
appears.

For all three signs, the new integrated interface pro-
duced better results, but it is particularly striking for
the most complex sign, CLOTHES. For all six par-
ticipants, the preferred animation was the one created
with the new FK/IK interface. Since five of the six
participants were more familiar with the commercial
package, this clearly demonstrates the advantages of
the new approach.

8. Conclusion and Next Steps
The techniques in this paper extend the results from
[McD02] to build an integrated FK/IK control inter-
face for a three segment kinematic chain with seven
degrees of freedom, such as the human arm. These
controls allow animators to create expressive motions
in less time than with previous FK/IK techniques.

Next steps include the incorporation of a system of
joint correlations similar to those described in
[McD00] and [Sha03] to help animators coordinate
the movements of various segments of the arms and
torso. This would increase the efficiency of the inter-
face. Also, while the controls for the arm are inte-
grated into a simple model for the spine and shoul-
ders, a more realistic model of the torso, collarbone
and neck as in [Mau00] would further expand the
expressiveness of the model.

We would also like to investigate the added expres-
siveness that could be gained from sophisticated bal-
ance-control methods such as the one in [Nef04].

9. Acknowledgements
The authors wish to express their thanks to Tahseen
Basheeruddin, Ryan Burnett, Cynthia Dwyer, Bret
Kroll, Jerry Schnepp and Prabhakar Srinivasan for
their participation in the user test.

10. References
[Bad93] Badler N, Phillips C, Webber B. Simulating

Humans: Computer Graphics Animation and Control.
Oxford University Press. New York, NY. 1993.

[Gir85] Girard M, Maciejewski A. Computational Mod-
eling for the Computer Animation of Legged Figures.
Computer Graphics. 19(3), July 1985, Pages 253-270.

[Jon00] Jones A, Bonney S. 3Dstudio Max 3 Profes-
sional Animation. New Riders, Indianapolis, 2000.

[Kog94] Koga Y, Kondo K, Kuffner J, and Latombe J.
"Planning Motions with Intentions," Proc., SIG-
GRAPH'94, Orlando, FL, July 24-29, 1994. Pages
395-407.

[Kon94] Kondo K. Inverse Kinematics of a Human
Arm. Technical Report STAN-CSTR-94-1508, Dept.
of Computer Science, Stanford University.

[Mae96] Maestri G. Digital Character Animation. New
Riders, Indianapolis, 1996.

[Mau00] Maurel W, Thalmann D. Human Shoulder
Modeling Including Scapulo-Thoracic Constraint and
Joint Sinus Cones. Computer & Graphics, New York,
Vol 24, No 2, p. 203-218, 2000.

[McD00] McDonald J, Toro J, Alkoby K, Berthiaume A,
Carter R, Chomwong P, Christopher J, Davidson MJ,
Furst J, Konie B, Lancaster G, Roychoudhuri L,
Sedgwick E, Tomuro N, Wolfe R. An Improved Ar-
ticulated Model of the Human Hand. Proceedings of
the 8th International Conference in Central Europe on
Computer Graphics, Visualization and Interactive
Digital Media. 2000. Pages 306 – 313.

[McD02] McDonald J, Alkoby K, Carter R, Christopher
J, Davidson MJ, Ethridge D, Furst J, Hinkle D, Lan-
caster G, Smallwood L, Ougouag-Tiouririne N, Toro
J, Xu S, Wolfe R. A Direct Method for Positioning
the Arms of a Human Model. Graphics Interface
2002, Proceedings, 99-106, 2002.

[Mur94] Murray R, Li Z, and Sastry S. A Mathematical
Introduction to Robotic Manipulation. CRC Press,
Inc., 1994.

[Nef04] Neff M, Fiume E. Methods for Exploring Ex-
pressive Stance. Proceedings of the Eurograph-
ics/ACM SIGGRAPH Symposium on Computer
Animation, 2004, pp. 49-58.

 [Sha03] Shao, W, Ng-Thow-Hing, V. A General Joint
Component Framework for Realistic Articulation in
Human Characters. Proceedings of the 2003 sym-

posium on Interactive 3D graphics, 2003, pp 11-
18.

[Tol00] Tolani D, Goswami A, and Badler N. Real-
time inverse kinematics techniques for anthropomor-
phic limbs. Graphical Models 62 (5), September
2000, Pages 353-388.

[Van98] Van De Graaff, K, Human Anatomy 5th Edi-
tion. WEB McGraw-Hill. Boston, MA. 1998.

[Wol99] Wolfe R, Alkoby K, Berthiaume A, Chomwong
P, Christopher J, Davidson MJ, J. Furst, Konie B,
Lancaster G, Lytinen S, McDonald J, Roychoudhuri
L, Sedgwick E, Tomuro N, Toro J. An Interface for
Transcribing American Sign Language. SIGGRAPH
99 Sketches, August 11, 1999, Page 229.

[Zha94] Zhao J, Badler N, Inverse kinematics posi-
tioning using nonlinear programming for highly ar-
ticulated figures, ACM Transactions on Graphics, Vol
13, No 4, October 1994, pp. 313-336.

Appendix A: Interface Examples

Figure 6: The IK Interface

Figure 7: The FK Interface

Appendix B: Data from User Test

Participant Commercial
Package

Integrated
FK/IK control

1 18 Months 1 Hour
2 36 Months 18 Months
3 36 Months 1 Hour
4 12 Months 12 Months
5 6 Months 2.5 Hours
6 36 Months 20 Hours

Table 1: Previous Experience of Test Participants

Sign Commercial
package

Integrated FK/IK
control

FOOD 20.2 20.7
IDEA 21.8 12.5

CLOTHES 42.2 21.0

Table 2: Average Completion Times.

Participant FOOD IDEA CLOTHES
1 Commercial Commercial FK/IK
2 FK/IK Commercial FK/IK
3 FK/IK Tie FK/IK
4 FK/IK FK/IK FK/IK
5 Tie FK/IK FK/IK
6 FK/IK FK/IK FK/IK

Table 3: Results of Animation Critique, Software
Resulting in Preferred Animation

A Multi-Scale Singularity Bounding Volume Hierarchy

Kerawit Somchaipeng
3D-Lab, School of Dentistry
Dept. of Pediatric Dentistry
University of Copenhagen

Nørre Alle 20, DK-2200
Copenhagen N, Denmark

kerawit@lab3d.odont.ku.dk

Kenny Erleben
Dept. of Computer Science
University of Copenhagen

Universitetsparken 1
DK-2100, Copenhagen N

Denmark
kenny@diku.dk

Jon Sporring
Dept. of Computer Science
University of Copenhagen

Universitetsparken 1
DK-2100, Copenhagen N

Denmark
sporring@diku.dk

ABSTRACT

A scale space approach is taken for building Bounding Volume Hierarchies (BVHs) for collision detection. A
spherical bounding volume is generated at each node of the BVH using estimates of the mass distribution.
Traditional top-down methods approximates the surface of an object in a coarse to fine manner, by recursively
increasing resolution by some factor, e.g. 2. The method presented in this article analyzes the mass distribution
of a solid object using a well founded scale-space based on the Diffusion Equation: the Gaussian Scale-Space. In
the Gaussian scale-space, the deep structure of extremal mass points is naturally binary, and the linking process is
therefore simple.
The main contribution of this article is a novel approach for constructing BVHs using Multi-Scale Singularity
Trees (MSSTs) for collision detection. The BVH-building algorithm extends the field with a new method based on
volumetric shape rather than statistics of the surface geometry or geometrical constructs such as medial surfaces.

Keywords
Collision Detection, Bounding Volume Hierarchies, Gaussian Scale Space

1 INTRODUCTION
In physics-based animation, collision detection often
becomes the bottleneck, since a collision query needs
to be performed in every simulation step in order to
determine contacting and colliding objects. Anima-
tions can have many objects, all of which may have a
complex geometry, such as polygonal soups of several
thousands facets, and it is therefore a computationally
heavy burden to perform collision detection especially
for real-time interaction.
Bounding Volume Hierarchies (BVHs) are widely
used in computer graphics, e.g. for ray tracing [GS87],
and they are quite popular in animation (e.g. [BMF03]
uses them for cloth animation), since they are applica-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Conference proceedings ISBN 80-903100-7-9
WSCG’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency–Science Press

ble of handling more general shapes than most feature-
based and simplex-based algorithms, they tend to gen-
erate smaller hierarchies than spatial subdivision algo-
rithms, and they offer a graceful degradation of ob-
jects, which is highly useful when accuracy is to be
traded for performance. New performance improve-
ments of BVHs is therefore of great practical and theo-
retical interest to the computer graphics and animation
community.
The main contribution of this paper is a novel algo-
rithm for bottom-up construction of spherical approx-
imating BVHs. We prefer our hierarchies, firstly be-
cause they save memory, and therefore increases sim-
ulation performance, when compared to traditional
BVH, and secondly because they are a direct imple-
mentation of the mass of objects rather than their
boundary representation.
In this article we will restrain ourselves from the n-
body problem and only consider narrow phase [Hub93]
collision detection of solid non-deformable objects.

1.1 PREVIOUS WORK

There is a wealth of literature on collision detec-
tion, and many different approaches have been in-
vestigated. Spatial subdivision algorithms like Bi-

nary Space-Partitioning (BSP) tree [Mel01], octree
[TC96, GDO00, ES03], k-d trees and grids [GDO00,
ES03], feature-based algorithms like polygonal inter-
section [MW88], Lin-Can [PML97], VClip [Mir98],
SWIFT [EL01], recursive search methods [SL00],
simplex-based such as GJK [GJK88, vdB01], gener-
alized Voronoi diagrams [HKL

�
99], and signed dis-

tance maps [GBF03, BMF03, Hir02]. Finally there are
algorithms based on BVHs such as ours.
BVHs have been around for a long time. Consequently
there is a huge wealth of literature about BVHs. Most
of the literature addresses homogeneous BVHs and
top-down construction methods. A great variety of
different types of bounding volumes have been re-
ported: Spheres [Hub96, Pal95, DO00], axed aligned
bounding boxes (AABBs) [Ber97, LAM01], oriented
bounding boxes (OBBs) [GLM96, Got00], discrete
orientation polytypes (k-DOPs) [KHM

�
98, Zac98],

Quantized Orientation Slabs with Primary Orienta-
tions (QuOSPOs) [He99], Spherical shell [KPLM98],
and swept sphere volumes (SSVs) [LGLM99]. In gen-
eral, it has been discovered that there is a trade-off be-
tween the complexity of the geometry of a bounding
volume and the speed of its overlap test and the num-
ber of overlap tests in a query.
In contrast to bounding volumes types, there has only
been written little on approximating BVHs. To our
knowledge [Hub93] pioneered the field, where octrees
combined with simulated annealing were used to con-
struct a sphere tree, followed by [PG95, Pal95], cumu-
lating with a superior bottom-up construction method
based on medial surface (M-reps) [Hub96]. More
recently [OD99, DO00] used approximating sphere-
trees built in a top down fashion based on an octree for
time critical collision detection, and [BO04] used an
adaptive m-rep approximation-based top-down con-
struction algorithm.
There have been written even less about heteroge-
neous bounding volume hierarchies, although object
hierarchies of different primitive volume types are
a widely used concept in most of todays simulators
[Ode, Vor, Kar]. The SSVs [LGLM99] are one of the
most recent publications. The general belief is, how-
ever, that heterogeneous bounding volumes does not
change the fundamental algorithms, but merely intro-
duces a raft of other problems. It is also believed that
heterogeneous bounding volumes could provide better
and more tightly fitting bounding volumes resulting in
higher convergence towards the true shape volume of
the objects. This could mean an increase in the prun-
ing capabilities and a corresponding increase in per-
formance.
Most of the work with BVHs has addressed objects
that are represented by polygonal models. Many ex-
periments also indicate that OBBs (and other rectangu-
lar volumes) provide the best convergence for polygo-

nal models [GLM96, Got00, Zac98, LGLM99], while
spherical volumes are believed to converge best to-
wards the volume. The underlying query algorithms
for penetration detection, separation distance and con-
tact determination of BVHs have not changed much.
In its basic form, these algorithms are nothing more
than simple traversals.
To our knowledge, the trees based on the deep struc-
ture of Gaussian Scale-Space has not been used pre-
viously for generating BVHs in collision detection.
An alternative to Gaussian scale-space is curvature
scale-spaces, from which M-reps are derived. M-
reps based methods are state of the art for bottom-
up construction method [Hub96] and top-down con-
struction [BO04]. For deformable objects such as
cloth, bottom-up construction based on mesh topology
[VM95, VMT00, BFA02] are the preferred choice. In
[Ber97] a median based top-down method was pro-
posed for building an AABB tree. [LAM01] suggested
using a mesh connectivity-tree in a top-down construc-
tion method.

2 GAUSSIAN SCALE-SPACE
The

�����
dimensional Gaussian scale-space, ���	�
 ���� 	

, of an
�

dimensional image, ��� 	�
 �	
, is an ordered stack of images, where each image is

a blurred version of the former [Iij62, Wit83, Koe84].
The blurring is performed according to the diffusion
equation, ��� ����������� (1)

where
� � � is the first partial-derivative of the image in

the scale direction � , and � � is the Laplacian operator,
which in 3 dimensions reads

� � � � �! � � �" .
An example of the scale-space of a three-dimensional
solid cow is shown in Fig. 1. The continuous scale pa-
rameter enables smooth degradation of the object de-
tail.
The Gaussian kernel is the Green’s function of the heat
diffusion equation, i.e.

�$#&%(')�&*+�,�-#.%/*10324#&%(')�&*5� (2)

24#761'&�&*8�
�

#:9�;<�&*
�= � >�?
 A@B =DC(E �:F � (3)

where �$#&%(�)�&* is the image at scale � , �-#.%/* is the origi-
nal image, 0 is the convolution operator, 24#&%(')�&* is the
Gaussian kernel at scale � , � is the dimensionality of
the problem, and �G�IH �AJLK , using H as the standard
deviation of the Gaussian kernel. The Gaussian scale-
space is henceforth called the scale-space in this arti-
cle. The information in scale-space is logarithmically
degraded, the scale-parameter is therefore often sam-
pled exponentially using HM�IHON >�P . Since differen-
tiation commutes with convolution and the Gaussian

Figure 1: An example of the scale-space of a solid cow [Bra]. From left to right, the images show the zero iso-
surfaces of the solid cow at scales H � � � K �������	� ��� . The small red, green, and blue spheres denote maxima,
minima, and saddles, respectively

kernel is infinitely differentiable, differentiation of im-
ages in scale-spaces is conveniently computed,� �
 � #.% '&�&*+� � �
 #7�-#.%/*10324#&%(')�&*&* �,�-#.%/* 0 � �
 24#&%(')�&*�

(4)
Alternative implementations of the scale-space are
multiplication in the Fourier Domain, finite differenc-
ing schemes for solving the heat diffusion equation,
additive operator splitting, and recursive implementa-
tion [Der92]. We prefer the spatial convolution, since
it is guaranteed not to introduce new extrema in homo-
geneous regions. Typical border conditions are Dirich-
let, Cyclic repetition, and Neumann boundaries. We
use Dirichlet boundaries, where the image is extended
with zero values in all directions.
Although the dimensionality of the constructed scale-
space is one higher than the dimensionality of the orig-
inal image, critical points, in the image at each scale
are always points. A critical point is e.g. an extremum,� � � � ! � � � " � � �

. Critical points are classified
by the eigenvalues of the Hessian matrix, the matrix of
all second derivatives, computed at that point. As we
increase the scale parameter, the critical points move
smoothly forming critical paths. Along scale, critical
points meet and annihilate or are created. Such events
are called catastrophe events, and the points where
they occur are called catastrophe points. The collec-
tion of events is called the deep structure of the image.
The notion of genericity is used to disregard events
that are not likely to occur for typical images, i.e.
generic events are stable under slight perturbation of
the image. There are only two types of generic catas-
trophe events in scale-space namely pairwise creation
events and annihilation events [Dam97], and it has fur-
ther been shown that generic catastrophe events only
involves pairs of critical points where one and only
one eigenvalue of the Hessian matrix changes its sign,
e.g. the annihilation of a minimum (+, +, +) and a sad-
dle (+, +, -). The implementation detail of the method
for extracting critical paths and catastrophe points in
3+1D scale-space can be found in [SSKJ03].

3 MSSTs
Multi-Scale Singularity Trees (MSSTs) are scale-space
based multi-scale image representation. They are con-
structed based on the nesting of image features in the
scale-space to represent the deep structure of the orig-
inal image. Two kinds of MSSTs are introduced in
[SSKJ05]: Extrema-Based MSSTs and Saddle-Based
MSSTs. Extrema-Based MSSTs will be discussed in
this article. The method produces rooted ordered bi-
nary trees with catastrophe points as nodes. In 3+1D
scale-space, catastrophes are also possibly caused by
creations or annihilation of saddle points, e.g. between
critical points with eigenvalues of the Hessian matrix
(+, +, -) and (+, -, -). These saddle-saddle annihilation
catastrophes together with all creation catastrophes are
ignored.
Other scale-space based methods that produce tree
structure but only for up to 2+1D scale-space can be
found in [LP90, Kui02].

3.1 Extrema Partitions

Given an image an any scale, we would like to parti-
tion the image at one scale into segments so that each
segment contains only and exactly one extremum. Let��� 	

be a compact connected domain and define� � � � 	 �
to be an image, �>�� �

as an extremum,
and �6 � � as an image point in the domain. Consider
a set of continuous functions � ��� � ����� � �

for which��# � *+���> and ��#�� *+���6 , � ���! " , where �! " is the set
of all paths in the domain from the extremum �> to the
point �6 , and � is parameterized using Euclidean arc-
length. We define the energy # " #��6-* with respect to an
extremum �> evaluated at �6 as,# " #76-* �$&%(')+*	,�-. -/ 021

N43 #657 � *!8 � ��#�94*� 9 8 � � 5:8 � �O#;��#<9-*&*� 9 8 �>= 9?�
(5)

Note that the energy functional is independent of pa-
rameterization. When 5�� �

, the energy functional is

N�� � # �# N�� � # � # � ����#��
Figure 2: The Extrema-Based MSST of a three-dimensional image of four Gaussian blobs. The 2.0 iso-surfaces
of the image at scale H ��� is shown in blue, on the left panel. The small red and blue spheres are the maxima
and saddles respectively. The blue lines are the critical paths (the scale axis is projected away) and the small black
spheres are the catastrophe points. The black line and the red line denote the left-child linking and the right-child
linking in the tree. A schematic drawing of the extracted MSST is shown on the right panel. Note that there is a
saddle-saddle catastrophe which is ignored

also known as the path variation, a generalization of
the total variation [AC03]. The path variation depends
solely on the image intensity and is invariant to affine
transformation of the underlying space. Moreover, it
is co-variant with scaling of the image intensity. If5 � �

, the energy functional will increasingly depend
on the spatial distance, and therefore become increas-
ingly localized in space.
Let � � �

be the set of all extrema in the image. The
extrema partition [AC03]., �	� , associated with an ex-
trema �> � � � is defined as the set of all points in the
domain, where the energy # "�
 #��64* is minimal,

� � �� �6 � ���� # "
 #��6-*��:# "
 #��64*D��� �>�� � �+���������� �
(6)

An approximation of the energy map � � � � � 	 �
,

which defines the energy at every point in the image
associated with an extremum �> � , can be efficiently cal-
culated using the Fast Marching Methods [Set99].

3.2 Constructing MSSTs

MSSTs are defined by nodes and their relations. Each
MSST node consists of three components: The im-
age segment(i) that immediately covers the area of the
image segment(ii) disappearing at the catastrophe(iii).
For algorithmically convenience we denote the ‘sur-
viving’ image segment the leftport, the catastrophe for
the body, and the disappearing image segment for the
rightport. Because there is exactly one image seg-
ment associated with an extremum and exactly one ex-
tremum disappears at an annihilation catastrophe, then
exactly one image segment also disappears.
A node #�� "! � ��"$#&% ! #�' �)(�* � is generated if an image seg-
ment of #�' �)(+* � disappears at the catastrophe ��"$#,% ! in-
side an image segment of #�� "! � . The inclusion is eas-
ily determined by calculating the energy map with re-
spect to the catastrophe ��"$#&% ! : the image segment of

#�' �-(�* � is nested in side the image segment of #�� "! �
if the energy evaluated at #�� "! � is minimal among all
extrema existing at that scale.
Assuming that critical paths and catastrophe points in
the scale-space are already and correctly detected, then
the MSST building algorithm is as follows:

1. Set the root of the tree as #��).0/ � � � #$1	#�.+232 , where#��).�/ � denotes the last extremum that remains in
the scale-space, �

�
#$1 denotes the highest catas-

trophe in scale, and #4.+252 denotes the extremum
that annihilates at the catastrophe.

2. At the highest unprocessed catastrophe ��2 " � in
scale, calculate the energy map with respect to
the catastrophe and create a node #76�#�8 " '9��2 " �#4.+232 , where #�.+252 is the extremum that disap-
pears at ��2 " � , and the energy evaluated at the
extremum #46�#�8 " ' is minimal among all extrema
existing at that scale.

3. Link the new created node as the leftchild of a
node in the tree that does not have the leftchild
and where #46�#&8 " ' equals its leftport, or as the
rightchild of a node in the tree that does not have
the rightchild and where # 6�#�8 " ' equals its right-
port.

4. Repeat 2., 3., and 4. until all catastrophe points
are processed.

An example of the Extrema-Based MSST constructed
from a simple three-dimensional image of four Gaus-
sian blobs is shown in Fig. 2. The constructed MSST
has three nodes corresponding to the three relevant
catastrophes in the scale-space. An annihilation catas-
trophe of a pair of saddles is ignored.

� �
� �# N # � � �# � # �

Figure 3: An extended Extrema-Based MSST example

4 BVHs from MSSTs
Given a MSST, we produce a BVH as follows. The
MSST is extended with a set of leaves according to the
leftport and the rightport representing each extremum
in the original image. The newly added leaves rep-
resent the finest scale for the BVH. All free ports are
extended with a leaf for the corresponding extremum,
and then all ports are removed. The result is that the
MSST is extended with one leaf for each extremum.
All the extrema will appear in the extended MSST one
and only one time. The extended MSST of the image
in Fig. 2 is shown in Fig. 3.
We can denote the catastrophe scale as a size measure
of the corresponding extremum. That is, at the catas-
trophe scale, the corresponding Gaussian will have a
size that dominates the underlying image structures.
We may also give a statistical interpretations using
Tchebycheff’s inequality [BM93]. It states that for
a random variable � with standard deviation H , the
probability of finding values outsize a bound propor-
tional to its standard deviation is inversely small:� #�8 � 7�� 8���� H *�� �

� � (7)

We take this as a guide to set the size of the leaf bound-
ing volumes, i.e. a leaf will be given a sphere, who’s
radius is proportional to the catastrophe scale. There
will be one extremum, which does not disappear in a
catastrophe, which is the last extremum in the scale-
space. We set the bounding volume of the final ex-
tremum to be proportional to the distance to its only
sibling in the MSST minus the already known sibling’s
radius in the BVH.
Since the BVH is binary, we find bounding volume for
the non-leaf nodes in the tree as the smallest sphere
that encloses the two child spheres. Although tighter
bounds may be found, this is left for further develop-
ment.

5 RESULTS
Currently, our algorithm is capable of producing trees
from objects that are sampled on a K �
	 � grid, for a
reasonable computation time, we only use 	L9 � grids.
We demonstrate our algorithm on the cow polygonal
mesh [Bra]. Figure 4 shows a schematic drawing of
the extracted BVH of a solid cow and Fig. 5 shows a

�

�

Body Head

�

Leg I
�

Leg II
�

Leg III Leg IV

Figure 4: A schematic drawing of the extracted BVH
of a solid cow

solid cow together with the spherical bounding volume
at each level in the hierarchy.
In the scale-space of the cow, the legs of the cow ap-
pears in a sequential manner from coarse to fine. This
makes the tree building process simple, however, in
this particular example, it would possibly be more nat-
ural to let the leg-nodes appear at the same time in a
4-ary tree node. In our tree, such decisions can be en-
forced by post-processing, and a useful indication in
this case would be that the catastrophes occur within a
very narrow scale-band.
There are many properties which are interesting when
evaluating the quality of a BVH. Unfortunately some
of them are contradicting each other.

� Smallest possible bounding volumes

� Smallest possible overlap between volumes at
the same depth in the hierarchy

� Small sized BVH, i.e. as few nodes as possible

� Complete coverage versus sampling based cov-
erage

� “balanced” trees

The last property is one we challenge, although it has
been proved that balanced trees provide best worst
case queries, a balanced tree do not represent the scale
of the object. Working with time critical or approxi-
mating queries this become an important property. We
suggest that the tree should be balanced with respect
to the density of the object.

6 DISCUSSION
Most recent work with BVHs has focused on: Try-
ing out new kinds of bounding volumes, figuring out
better methods for fitting a bounding volume to a sub-
set of an object’s underlying geometry, finding faster
and better overlap test methods, and comparing homo-
geneous BVHs of different bounding volume types.

Figure 5: A solid cow and the hierarchical bounding volumes at each level of the BVH. The surface of the original
cow, the links between catastrophes in the scale-space and the spherical bounding volumes are shown from left to
right for the level one to five of the BVH

In order to improve the performance of traversal al-
gorithms, depth control, layered bounding volumes,
caching bounding volumes, and shared bounding vol-
umes have been studied. We have chosen to classify
our method as being a mixed bottom-up and top-down
method, because the scale-space is built bottom-up,
and the MSST are found in a top-down manner. The
corresponding BVH is then built in a straightforward
incremental way, by doing an order traversal of the
MSST, and creating bounding volume nodes as catas-
trophes are encountered.
The computational complexity for our algorithm is
currently high. Using

� � as the number of pixels in
the image, � as the number of scales to be evaluated,H as the largest scale, � as the number of critical line-
pieces found, and # as the number of extrema at the
lowest scale, the computational complexity for each
part of our algorithm is as follows:

Computation of the Scale-Space: � #���H � � � *
It may be possible to improve the calculation
time for the Gaussian scale-space, e.g. using
sub-sampled image for approximating scaled
image at high scales or using faster alternatives
to spatial convolution. However, we have not
yet found alternatives that does not introduces
spurious extrema in homogeneous regions.

Storage of the Scale-Space: � # K � � *
The most memory intensive part of our algo-
rithm is the storage of the scale-space. We only
require the storage of two neighboring scales in
order to find the critical paths in our current im-
plementation.

Extracting Critical Paths: �G#�� � � � � � *
The critical paths can be extracted considerably
faster by tracking each extremum from the finest
scale, however this would require either to store
the full Scale-Space or perform local calcula-
tions during the tracking process. Since this is
by far not the slowest part of our algorithm, we
have left this for further research.

Finding a Euclidean Tree, 5�� �
in (5): � #�# � *

It is fastest to use the Euclidean metric in (5),
for

� �:5 � � see below.

Finding a General Tree: �G#6# � �����
	 � � *
This is the most computationally expensive part
of our algorithm. However, we expect that the
speed of the Fast Marching Method can be im-
proved by a narrow band implementation.

Gaussian scale space provides us with a continuous
degradation of an object, other algorithms fail com-
pletely on this point, they typical control their scale by
saying that at the next level of the BVH should have
50% less number of volumes, or at the next level the
volumes should fit 20% better. A direct study of scales
seems to be a more proper representation.
Medial surface (M-reps) based methods for building
BVHs have been the approach to use for bottom-up
construction. Our method differs from M-reps signif-
icantly by being a density based method, whereas M-
reps is more a surface-based method. Furthermore our
method provides us with a natural scale that is eas-
ily used to determine both bounding volumes and the
topology of the hierarchy. M-reps do not provide this
scale information nor can they tell one about the den-
sity of an object.
The well-established foundation on scale-space the-
ory provides us with a well-defined concept of scale,
shape, and detail of an object. These concepts are valu-
able tools as our work hopefully demonstrates.
The main contribution of our work is a new method for
building bounding volume hierarchy, however, there
is still much need to be done. So far our work has
been a feasibility study showing that the construction
of BVHs from MSSTs actually can be done. We have
not yet made any attempt towards comparing the qual-
ity of the multi-scale singularity BVH with other al-
gorithms. Future research will be on the tightening of
the bounding volumes utilizing information in scale-
space.

7 ACKNOWLEDGMENTS
This work is part of the DSSCV project sponsored by
the IST Programme of the European Union (IST-2001-
35443).

References
[AC03] P. A. Arbelaez and L. D. Cohen. The Extrema

Edges”. In Scale Space 2003, LNCS 2695,
pages 180–195, 2003.

[Ber97] G. van den Bergen. Efficient collision
detection of complex deformable models using
AABB trees. Journal of Graphics Tools,
2(4):1–13, 1997.

[BFA02] R. Bridson, R. Fedkiw, and J. Anderson.
Robust treatment of collisions, contact and
friction for cloth animation. Proceedings of
ACM SIGGRAPH, 21(3):594–603, 2002.

[BM93] L. Brøndum and J. D. Monrad. Statistik I -
Sandsynlighedsregning og statistiske
grundbegreber. Den private ingeniørfond,
1993.

[BMF03] R. Bridson, S. Marino, and R. Fedkiw.
Simulation of clothing with folds and
wrinkles. In Proceedings of the 2003 ACM
SIGGRAPH/Eurographics Symposium on
Computer Animation, pages 28–36.
Eurographics Association, 2003.

[BO04] Gareth Bradshaw and Carol O’Sullivan.
Adaptive medial-axis approximation for
sphere-tree construction. ACM Transactions
on Graphics, 23(1), January 2004.

[Bra] Gareth Bradshaw. Polygonal mesh of a cow. .

[Dam97] James Damon. Local Morse theory for
Gaussian blurred functions. In Jon Sporring,
Mads Nielsen, Luc Florack, and Peter
Johansen, editors, Gaussian Scale-Space
Theory, chapter 11, pages 147–163. Kluwer
Academic Publishers, Dordrecht, The
Netherlands, 1997.

[Der92] R. Deriche. Recursively Implementing the
Gaussian and its Derivatives. In V. Srinivasan,
Ong Sim Heng, and Ang Yew Hock, editors,
Proceedings of the 2nd Singapore
International Conference on Image
Processing, pages 263–267. World Scientific,
Singapore, 1992.

[DO00] John Dingliana and Carol O’Sullivan.
Graceful degradation of collision handling in
physically based animation. Computer
Graphics Forum, 19(3), 2000.

[EL01] Stephan A. Ehmann and Ming C. Lin.
Accurate and fast proximity queries between
polyhedra using convex surface
decomposition. In A. Chalmers and T.-M.
Rhyne, editors, EG 2001 Proceedings, volume
20(3), pages 500–510. Blackwell Publishing,
2001.

[ES03] Kenny Erleben and Jon Sporring. Collision
detection of deformable volumetric meshes. In
Jeff Lander, editor, Graphics Programming
Methods. Charles River Media, 2003.

[GBF03] E. Guendelman, R. Bridson, and R. Fedkiw.
Nonconvex rigid bodies with stacking. ACM
Transaction on Graphics, Proceedings of ACM
SIGGRAPH, 2003.

[GDO00] Fabio Ganovelli, John Dingliana, and Carol
O’Sullivan. Buckettree: Improving collision
detection between deformable objects. In
Spring Conference in Computer Graphics
(SCCG2000), pages pp. 156–163, Bratislava,
April 2000.

[GJK88] E.G. Gilbert, D.W. Johnson, and S.S. Keerthi.
A fast procedure for computing the distance
between complex objects in three-dimensional
space. IEEE Journal of Robotics and
Automation, 4:193–203, 1988.

[GLM96] S. Gottschalk, M. C. Lin, and D. Manocha.
Obb-tree: A hierarchical structure for rapid
interference detection. Technical Report
TR96-013, Department of Computer Science,
University of N. Carolina, Chapel Hill, 8,
1996.

[Got00] Stefan Gottschalk. Collision Queries using
Oriented Bounding Boxes. PhD thesis,
Department of Computer Science, University
of N. Carolina, Chapel Hill, 2000.

[GS87] Jeffrey Goldsmith and John Salmon.
Automatic creation of object hierarchies for
ray tracing. IEEE Computer Graphics and
Applications, 7(5):14–20, May 1987. see
Scherson & Caspary article for related work.

[He99] Taosong He. Fast collision detection using
quospo trees. In Proceedings of the 1999
symposium on Interactive 3D graphics, pages
55–62. ACM Press, 1999.

[Hir02] Gentaro Hirota. An Improved Finite Element
Contact Model for Anatomical Simulations.
PhD thesis, University of N. Carolina, Chapel
Hill, 2002.

[HKL � 99] Kenneth E. Hoff, III, John Keyser, Ming Lin,
Dinesh Manocha, and Tim Culver. Fast
computation of generalized voronoi diagrams
using graphics hardware. In Proceedings of
the 26th annual conference on Computer
graphics and interactive techniques, pages
277–286. ACM Press/Addison-Wesley
Publishing Co., 1999.

[Hub93] P. M. Hubbard. Interactive collision detection.
In Proceedings of the IEEE Symposium on
Research Frontiers in Virtual Reality, pages
24–32, 1993.

[Hub96] Philip M. Hubbard. Approximating polyhedra
with spheres for time-critical collision
detection. ACM Transactions on Graphics,
15(3):179–210, 1996.

[Iij62] T. Iijima. Basic theory on normalization of a
pattern (in case of typical one-dimensional
pattern). Bulletin of Electrotechnical
Laboratory, 26:368–388, 1962. (in Japanese).

[Kar] Karma. MathEngine Karma,
http://www.mathengine.com/karma/.

[KHM � 98] J. T. Klosowski, M. Held, J. S. B. Mitchell,
H. Sowizral, and K. Zikan. Efficient collision
detection using bounding volume hierarchies
of

�
-DOPs. IEEE Transactions on

Visualization and Computer Graphics,
4(1):21–36, 1998.

[Koe84] J. J. Koenderink. The Structure of Images.
Biological Cybernetics, 50:363–370, 1984.

[KPLM98] S. Krishnan, A. Pattekar, M. Lin, and
D. Manocha. Spherical shell: A higher order
bounding volume for fast proximity queries.
In Proc. of Third International Workshop on
Algorithmic Foundations of Robotics, pages
122–136, 1998.

[Kui02] Arjan Kuijper. The deep structure of Gaussian
scale space images. PhD thesis, Image
Sciences Institute, Institute of Information and
Computing Sciences, Faculty of Mathematics
and Computer Science, Utrecht University,
2002.

[LAM01] Thomas Larsson and Tomas Akenine-Möller.
Collision detection for continuously deforming
bodies. In Eurographics, pages 325–333,
2001.

[LGLM99] Eric Larsen, Stefan Gottschalk, Ming C. Lin,
and Dinesh Manocha. Fast proximity queries
with swept sphere volumes. Technical Report
TR99-018, Department of Computer Science,
University of N. Carolina, Chapel Hill, 1999.

[LP90] L. M. Lifshitz and S. M. Pizer. A
multiresolution hierarchical approach to image
segmentation based on intensity extrema.
IEEE Transaction on Pattern Analysis and
Machine Intelligence, 12(6):529–541, 1990.

[Mel01] Stan Melax. Bsp collision detection as used in
mdk2 and neverwinter nights. Gamasutra,
March 2001. Online article.

[Mir98] Brian Mirtich. V-clip: Fast and robust
polyhedral collision detection. ACM
Transactions on Graphics, 17(3):177–208,
July 1998.

[MW88] M. Moore and J. Wilhelms. Collision
detection and response for computer
animation. In Computer Graphics, volume 22,
pages 289–298, 1988.

[OD99] C. O’Sullivan and J. Dingliana. Real-time
collision detection and response using
sphere-trees, 1999.

[Ode] Ode. Open Dynamics Engine,
http://q12.org/ode/.

[Pal95] I.J. Palmer. Collision detection for animation:
The use of the sphere-tree data structure. In
The Second Departmental Workshop on
Computing Research. University of Bradford,
June 1995.

[PG95] I.J. Palmer and R.L. Grimsdale. Collision
detection for animation using sphere-trees.
Computer Graphics Forum, 14(2):105–116,
1995.

[PML97] M. K. Ponamgi, D. Manocha, and M. C. Lin.
Incremental algorithms for collision detection
between polygonal models:. IEEE
Transactions on Visualization and Computer
Graphics, 3(1):51–64, /1997.

[Set99] J. A. Sethian. Fast Marching Methods. SIAM
Review, 41(2):199–235, 1999.

[SL00] K. Sundaraj and C. Laugier. Fast contact
localisation of moving deformable polyhedras.
In IEEE Int. Conference on Control,
Automation, Robotics and Vision, Singapore
(SG), December 2000.

[SSKJ03] K. Somchaipeng, J. Sporring, S. Kreiborg, and
P. Johansen. Software for Extracting
Multi-Scale Singularity Trees. Technical
report, Deliverable No.8, DSSCV,
IST-2001-35443, 15. September 2003.

[SSKJ05] K. Somchaipeng, J. Sporring, S. Kreiborg, and
P. Johansen. Extrema-Based Multi-Scale
Singularity Trees: Soft-linked Scale-Space
Hierarchies. In Submitted to Scale-Space
2005, 2005.

[TC96] C. Tzafestas and P. Coiffet. Real-time
collision detection using spherical octrees : Vr
application, 1996.

[vdB01] G. van den Bergen. Proximity queries and
penetration depth computation on 3d game
objects. Game Developers Conference, 2001.

[VM95] Pascal Volino and Nadia Magnenat Thalmann.
Collision and self-collision detection: Efficient
and robust solutions for highly deformable
surfaces. In Dimitri Terzopoulos and Daniel
Thalmann, editors, Computer Animation and
Simulation ’95, pages 55–65. Springer-Verlag,
1995.

[VMT00] Pascal Volino and Nadia Magnenat-Thalmann.
Virtual Clothing, Theory and Practice.
Springer-Verlag Berlin Heidelbarg, 2000.

[Vor] CMLabs Vortex.
http://www.cm-labs.com/products/vortex/.

[Wit83] A. P. Witkin. Scale–space filtering. In Proc.
8th Int. Joint Conf. on Artificial Intelligence
(IJCAI ’83), volume 2, pages 1019–1022,
Karlsruhe, Germany, August 1983.

[Zac98] G. Zachmann. Rapid collision detection by
dynamically aligned dop-trees, 1998.

Dynamic Coordinated Email Visualization

Simone Frau
Computing Laboratory,

University of Kent,
Canterbury,

Kent CT2 7NF, UK

sf31@kent.ac.uk

Jonathan C. Roberts,
Computing Laboratory,

University of Kent,
Canterbury,

Kent CT2 7NF, UK

j.c.roberts@kent.ac.uk

Nadia Boukhelifa
Computing Laboratory,

University of Kent,
Canterbury,

Kent CT2 7NF, UK

n.boukhelifa@kent.ac.uk

ABSTRACT
Many computer users receive hundreds (if not thousands) of emails per week; users often keep these emails and
have many years of personal emails archived: users use their stored emails to manage appointments, to-do lists,
and store useful information. In this paper we present an interactive email visualization tool (Mailview) that
utilizes filter and coordination techniques to explore this archived data. The tool enables users to analyze and
visualize hundreds of stored emails, it displays the emails on time-dependent plots enabling users to observe
trends over time and perceive emails with similar features. Interaction is an important aspect of finding meaning
within information, hence the tool utilizes focus+context views, dynamic filters, detail-on-demand techniques
and coordinated views, finally, we discuss various methods that enable the system to be designed such that it can
display hundreds of objects at interactive rates.

Keywords
Email visualization, information visualization, coordinated views, exploration, email archive

1. INTRODUCTION
The use and growth of email is staggering, even

with the divergence and growth of other
communication technologies such as the mobile
phone and short messaging, still the use of email is
growing. According to the University of California
Berkeley “How much information?” 2003
evaluation, about 31 Billion emails were sent per day
in 2002 and a prediction of 60 billion will be sent per
day in 2006 [HMI03]. Many users store past emails
for reference: archiving them in folders for future
observation, they may store hundreds and thousands
of emails in these archives; indeed the authors
themselves have a joint archive of approximately
100,000 emails. They are stored such that
information can be referenced for future use.

This personal email archive provides a rich and
diverse dataset, and it is both interesting and
potentially useful to analyze and visualize this
information. First, visualization can help with

information retrieval. There are known problems
with email archiving [Whi96] that could be
overcome by visualization. Such problems include,
generating appropriate folder names, reconstructing
these labels when they are needed to search for the
required data, and being consistent in grouping
similar material in the same folder, indeed, there is
an ontology issue (as some mails could be
legitimately stored under different categories).
Second, visualization can be used to help the user
analyze the information for trends or make
observations. These observations could be utilized to
control and influence work-patterns or to potentially
benefit the effectiveness of spam-filters or automatic
mail transfer (such as Exim) and archiving engines.
For instance, if it was observed that the majority of
spam messages arrived between a certain times of
day then the spam filter could be dynamically
adapted appropriately to catch more spam during that
period.
Many email programs, like for example Outlook
Express, Exmh, Mutt or Pine, besides showing the
content of the emails display some features of the
emails themselves; such as the receiving date and
time, sender name, email length, and information
about whether the email has attachments, etc. They
are very good at displaying information about single
emails, but do not traditionally depict aspects or
trends of multiple emails. Furthermore, time is an
important factor in emails: they are downloaded in
chronological order, often stored in order, email

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Conference proceedings ISBN 80-903100-7-9
WSCG’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

addresses may change when senders change
employers, and minutes of meetings or mail-shots
may be weekly occurrences. Thus, in contrast to
current email visualization tools, the aim of our
system is to visualize hundreds of emails displayed in
a chronologically based visualization.
This paper describes the type of data that can be
represented (section 2), related work (section 3), and
our Mailview application (the remainder of the
paper). Mailview provides a visualization of emails
focused on showing the emails chronologically and it
uses focus+context techniques and multiple views. It
includes (a) an overview of the multiple emails
represented by glyphs, (b) two zoomable and
coordinated views depicting the arrival time,
specifically the chronological order in which they
arrived, and the relative size of the emails and (c)
depicts specific details of selected single emails.
Mailview is not meant to replace a normal email
viewer, but to be used in partnership with their
standard mail reader; Mailview may enhance the
users understanding of their stored emails.

2. EMAIL DATA
Email data provides a rich and interesting source

of information. Indeed, there are many attributes and
statistics that can be calculated and visualized. We
classify this information into four categories: meta-
information, content, intra-email and inter-email.

First there is the straightforward information about
the mail itself, which is merely stored in the email
header. This meta-information includes the senders
email address (their familiar name may be retrieved
from an address book), recipient email address,
delivery date/time received date/time, the path of the
email through various servers, content mime types
and whether it contains attachments, subject line and
the content of the email body. Not only is it
interesting to investigate trends over every email
received, but also it would be useful to filter and
depict emails from specific senders, or by subjects.
Second, it is useful to view the content of the emails.
The content of the email may be stored in different
types (text, html, pdf etc), and the challenge of any
mail viewer is to seamlessly view each of these
different types. Moreover, although the average size
of an email may be 59KB [HMI03] some emails are
much larger. This means that many emails do not fit
into a single screen, the information needs to be
scrolled. Hence, there are opportunities to use
focus+context techniques to abstract and better
represent this text information.
Third, statistical information can be generated from
each email individually. We name this intra-email
analysis (within an email). Intuitively, we can easily

calculate the length or size of the email, e.g. we can
calculate the number of words or letters in the text,
the number of pages, and the amount of memory it
takes up. But, other statistical calculations can be
made on a single email. For instance, word
frequencies can be calculated to find common and
recurrent words in the email, or emails can be
classified based on an analysis of the content (such
email classification is a necessary part of spam
filtering).
Finally, observations and calculations can be made
on a collection of emails. We classify this as being an
inter-email analysis (between emails). Such analysis
is often used to help navigate news articles. For
example, some news reading programs display
threaded information, depicting an initial post with
all occurrences of replies to that post, more generally
threaded-visualization depicts all objects that
mention the same topic (thread) of information.

3. RELATED WORK
Electronic mail is a widely used communication

medium. Its role, however, has expanded from a
mere information carrier into a dynamic medium
where users can have conversation threads, delegate
tasks, plan meetings and exchange minutes and
multimedia files. As a result of the growing usage of
emails, users are overwhelmed by the increasing
traffic on their mailbox and the varied nature of
emails (from professional, personal and sales to spam
and harmful emails). Again referring to the “How
much information?” report [HMI03], by May 2003
almost 55% of emails sent were classified as spam.
Consequently, researchers are continuously working
on new interfaces to help users better manage their
emails.

Much recent development, that the general public
would be aware of, is the continued development of
facilities that allow users to browse, manage and
query emails more efficiently. Certainly, most
modern mail viewers permit users to filter or
highlight mail messages that conform to certain
search criteria (such as displaying all the messages
sent by a specific user, or on a particular subject).
The tools allow the user to quickly and efficiently
search through multiple folders and display exact and
partial matches to the queries. Other tools or add-ons
allow users to manage their mail, such as
automatically archiving or deleting emails.
In the research domain, one important strand of email
visualization research is the analysis and
visualization of relationships between emails
(detailed in section 2 as inter-email visualization and
analysis). One important area of study focuses on
clustering emails into meaningful groups. For
example, Sudarsky and Hjelsvold [Sud01] make use

of the hierarchical nature of the domain names
present in email addresses for the clustering criteria.
While others have investigated modeling and
characterizing email conversations (e.g. Venolia and
Neustaedter [Ven03]).
Another area of research is visualizing these threads
of conversation depicting, for instance, where users
hold ongoing discussions by email. Similar
techniques are applied to analyze and visualize social
networks such as determined from Internet relay chat
(IRC) and other forms of data. For example, Mutton
[Mut04] infers associations between IRC participants
based on parsing the conversation text. He utilizes
graphs to visualize the inferred relationships, with
the nodes being the participants and the edges the
associations.
EmViz [Hec97] also uses a graph-based layout to
visualize correspondence from email traffic within an
organization. EmViz uses a cone-tree to depict the
hierarchy of the organization. Additional information
is annotated onto this reference structure, including,
the quantity of emails sent/received by an individual
is denoted by the size of the node, and the color of
the edge depicts the frequency of peer-to-peer
correspondence. Similarly, the aim of eArchivarius
[Leu03] is to highlight existing communities of
people. The eArchivarius tool visualizes and
organizes collections of emails in various ways, one
example demonstrates a cluster-based visualization,
where each sphere glyph represents a person and the
more emails two people exchange the closer the
glyphs become. Colors can represent various
attributes such as the topic (where the confidence of
‘an email being correctly classified’ is realized by the
intensity of the color).
Thread Arcs [Ker03] is another graph-based tool that
visualizes relations between emails. In this
representation the threads are chains of emails where
each one (except the root) is a reply to another
belonging to the chain. Arcs link each ‘child’ (an
email being the reply to another one) to its ‘parent’'
(the email the child replies to) showing the
connections among them and the progress of a
conversation. The user can interact selecting any
email in the thread.
The emphasis of the aforementioned related work
focuses on intra-email visualization, however the
focus of our work in this paper is on visualizing the
personal email archive especially displaying the
emails on time related plots. So far, there has not
been much research investigating methods to
visualize this archive. Jovicic [Jov00] does describe a
system to visualize personal email data and indeed
discusses that time is important. In fact, email data
and metadata has a temporal nature, and thus
visualizing the mailbox can benefit greatly from the

already existing visualization tools for temporal
information.
We are in agreement with Jovicic [Jov00], who states
that users tend to ignore time as a crucial factor in
email communication. She added that most emails
tend to have personal and informational qualities.
When an email involves personal events, activity,
people involved and place of the event are typically
well remembered explicitly [Jov00]. This is often
known as episodic memory, which details the human
ability of remembering things that happened at a
particular time and place. Jovicic, discussing work by
Friedman [Fri93], mentions that the memory
reconstruction relies on ‘temporal cycles’ which are
used to estimate the time elapsed since the event and
to provide a frame of reference within which an
event can be placed. Jovicic plots the mails on
periods of ‘days’ and ‘weeks’ particularly
highlighting the weekends. In another study Begole
et al [Beg02] monitors computer activity minute-by-
minute in order to establish rhythms. Begole et al
display computer activity timelines coupled with
information about the location of the activity, online
calendar appointments, and email activity. This
linkage helps find patterns of individuals according
to time of day, location and day of the week.
Temporal based charts have been used to visualize
historic, and other chronological data in other
datasets. Email data has much similarity with this
information and thus we briefly mention other related
temporal/historic visualization research. For instance,
Weber et al [Web01] describe some of the popular
visualization tools for time-series data; these include
sequence charts, point charts, bar charts, line graphs
and circle graphs. One of the most utilized
techniques to visualize temporal data across various
fields is timelines.
A timeline is a linear visual representation of time-
varying events. According to Kumar et al [Kum98],
the earliest use of timelines in the published literature
can be traced to William Playfair. Timelines have
been used to display historical information very
efficiently. Extensions to this technique resulted in
3D dynamic timelines [Kul96], spiral timelines
[Web01], RiverThemes [Hec97] and lifelines
[Pla96]. Moreover, Kumar et al [Kum98] presented a
framework and interface for representing temporal
information. Finally, Karam [Kar94] suggested a
model to automate and generalize timelines.

4. DESIGN & IMPLEMENTATION
4.1. Data Gathering and Preparation

Various email readers store the emails in different
forms (from human readable files with one file per
message, tagged file including multiple messages, or
proprietary databases). In this paper we assume that

Figure 1 A screenshot of Mailview, depicting emails from the
spam directory from our personal email archive.

Figure 2 The user can zoom into a particular area
either by selecting a bounding region directly on
the visualization, or by dragging the mouse along
an axis line (position 1 to 2) as shown by this
screenshot of Mailview.

the emails are archived in individual files, the files
may be grouped together in folders, that the files are
MIME encoded (the Multipurpose Internet Mail
Extensions format allows enriched content such as
images, audio, and attachments) but they are stored
in essentially text documents.

Gathering and preparing data consists of first
choosing the mails to be viewed, then scanning the
mails to create a data-structure containing an abstract
representation of the mail data required for
visualization. The data-structure is hierarchically
organized mirroring the folders hierarchy, and each
node corresponds to an email and includes some of

its features, such as sender, receiver and
so on. It also contains fields concerning
the emails presentation (such as layout
coordinates). Besides extracting some
basic fields (date, sender, receiver and
subject), we calculate the size of the
email, and scan the whole body of the
email to obtain a frequency analysis of
the most common words and their
percentage.
4.2. Visualization

The overarching design was to depict
the emails in plots that demonstrated
temporal attributes. Hence we display
the emails in various temporal based
scatter plots that can be scaled and
zoomed. Figure 1 shows Mailview.

There are three main layers in the tool,
the upper layer (a) depicts details about
a specific email (sender, recipient, date,
time, and the frequency analysis) the

second (b) and third (c) layers depict two views: one
context view that shows an overview of the whole
display (right), and the other is a zoomed view (left).
Each of the plots display dates (days, weeks and
months) along the bottom (the x-axis). The plot in
the middle layer (b) displays time along the y-axis
(from 00:00 at the bottom to 24:00 midnight at the
top) and the plot on the bottom layer (c) represents a
stacked bar-chart representation (with the y-axis
representing the quantity of emails that day).
Each email is represented by a glyph (the user can
choose the glyphs) either vertical lines, circles or
squares. The relative size of the email is realized by
the size of the glyph (with larger emails being
realized by larger glyphs), the emails are also
colored, the color depends upon the folders in the
archive and is automatically allocated, but the user
can edit the allocated colors.
We took a design decision to not display too many
labels, as there could be potentially hundreds of
emails being display, there could be hundreds of
labels each denoting an email: which would quickly
become unreadable. However, labels are important
and a balance must be met. Thus, text information
about both the axis and particular details of the
highlighted email get displayed as the user brushes
over an email glyph. In fact, the use of glyphs
enables a large amount of information to be
displayed in a small space (which was one of the
original goals). Obviously, it would be useful to link
a regular email browser to this visualization (or to
embed this into such a browser) and again coordinate
everything together. However, we leave this

Figure 3 This screenshot shows Mailview displaying emails of laboratory meetings. After a quick
observation it is easy to see that most of the emails have arrived during traditional work hours (8.30am
to 5.30pm).

F
f
h
(
v
m
t
m

i
M

In fact, the tool was developed using Java, and
although Mailview currently includes four plots,
glyphs and mappings, each of the plots are inherited
from the same abstract class, because they have
similar properties and attributes, hence the system is
easily extensible.

4.3. Interaction, Coordination & Filtering

As the user brushes over the plots so the
underlying glyph is highlighted, the glyph doubles in
size, summary details of the appropriate email are
updated in the top view (Figure 1a), and the same
email (represented in the other window-view) is also
simultaneously highlighted. In fact, the user can
choose which views are coordinated together to
allow the users to compare disparate parts of the
plots. Figure 1 shows some emails, which are
designated as spam from our email archive; the plot
demonstrates that spam arrives throughout the day,
and throughout the week.

Furthermore, users can zoom into any area. Zooming
can be controlled either by dragging out a bounding
igure 4. This figure shows a subset of the data
rom Figure 3, (Upper) depicting the emails that
ave been sent by one member of staff, and
Lower) by a second member of staff. The
isualization clearly depicts when the first
ember of staff left and the second one took over

he role of sending out the regular meeting
inutes.
ntegration of the traditional mail reader and the
ailview visualization for future work.

box directly on the plot (allowing the user to change
the date and time range together), or by dragging the
mouse along an axis line (allowing the user to zoom
into either a date range or a time range

independently) as shown in Figure 2. Again, these
views can be coordinated together to allow the same
focused area to be visualized in each view. The
zoomed area is also depicted in the overview plots.
Every operation that has an effect to the display
(such as zooming, changing what is coordinated, or
changing the appearance of the glyphs) is stored in a
history list. The user can undo any operation that
they have made; this encourages the user to try out
scenarios and makes comparison easier.
The system allows emails to be filtered and selected
so trends about particular senders or subjects can be
spotted. This is different to the above zooming and
selection operations, which enable the user to see
trends in time. For instance, the user may wish to
observe repeating patterns such as to see the email of
weekly meetings, or occurrences when employees
have left a company. Filtering is achieved through
selection. The email is selected when the user clicks
on a glyph, this fixes the current detail information,
thus when the user thereafter brushes over a detail
field such as subject or sender, only those emails that
have been sent by that sender are displayed (all the
others are filtered out); the user can then select
another field and the information is thereafter
constrained by two fields.
We demonstrate this filtering mechanism through a
simple example. Figure 3 shows some emails that
relate to laboratory meetings, they are all stored in
one folder in the archive. From an initial observation,
it is easy to notice that the emails mostly arrive
between 8.30am and 5.30pm. There are some
outlyers, including one sent at 7.15 am (under the
displayed cursor in the screenshot of Figure 3). The
user can now brush over the elements to discover
different aspects of the emails. In browsing this
dataset we discovered that most of the emails on the
left-hand-side were sent by one member of staff, and
those to the right by another. This discovery is shown
in Figure 4 and in fact demonstrates the time when
one secretary left and another one joined the
laboratory. At any stage the user can undo the
operation to explore another constraint or scenario.

4.4. Performance challenges and solutions

With hundreds of emails it takes time to refresh
the display. The bottleneck seemed to be calculating
positions at runtime, so in order to speed up the
refresh rate we cache the positions in the hierarchical
data-structure. This way the positions only need to be
recalculated when a range change occurs. Further
problems occurred with brushing at interactive
speeds (especially finding the closest email to the
mouse pointer). Creating a grid, containing a two-
dimensional array of lists of emails, solved this.
Since we set the cell size to the maximum radius of

the shapes, we knew for sure that if we are hovering
with the mouse over a shape its center must be either
in that cell or in one next to it.

If the feedback is coordinated among windows, then
corresponding emails need to be highlighted in the
other diagrams. Even though emails datastructure
contains a unique identifier field that makes them
unambiguously distinguishable, it still would take
time to search for the corresponding element to
highlight. The chosen solution was to develop a new
class, similar to the coordination space of Boukhelifa
et al [Bou03], to manage the coordination.
Practically, this class stores a list of the email unique
identifiers as an associated array, so if on a check the
element contains -1, there is no similar email in that
diagram, otherwise the number contained will
represent the position the email has in the
hierarchical datastructure.

5. SUMMARY & FUTURE WORK
We have successfully developed a visualization

tool that displays email archive data. The tool
enables users to see trends and details of emails
within time and date plots. Users can interact, zoom
and filter the information in a coordinated
exploratory environment. We believe chronological
information is important within effective email data
perception. Most of our program's functionalities
have been developed to be as extendable as possible
(both for visualization and coordination), such that
the tool can be further developed in the future.
Although we have tested the tool on various users,
we have yet to accomplish a full user study. We plan
to do this in the near future.

There is much functionality, other views and
techniques that could be added to the system. In fact,
we believe aggregation is an important extension that
is missing from other tools and also missing from
Mailview at present, such ideas are important and
have been used by Larsen et al [Lar96] and Begole
et al [Beg02]. Additionally, we know that users do
not often remember exact dates of events (as
discussed in the related work, section 3) rather they
remember periods of time, and hence it would be
useful to allow the user to explore the data through a
rich set of aggregation commands.

REFERENCES
[Beg02] J.B. Begole, J.C. Tang, R.B. Smith, and

N.Yankelovich, “Work rhythms: analyzing
visualizations of awareness histories of distributed
groups,” Proc ACM CSCW'02, pp.334-343, 2002.
New Orleans.

[Bou03] N. Boukhelifa, J.C. Roberts, and P.Rodgers,
“A Coordination Model for Exploratory Multi-
View Visualization,” Proc International Conference

on Coordinated and Multiple Views in Exploratory
Visualization (CMV 2003), pp.76-85. J.Roberts,
ed., IEEE, July 2003.

[Fri93] W.J. Friedman, “Memory of time for past
events,” Psychological Bulletin 113(1), pp.44-66,
1993.

[Hec97] B. Heckel and B.Hamann, “Emviz - a visual
e-mail analysis tool,” Proc New Paradigms in
Information Visualization and Manipulation
Workshop, pp.36-38, 1997. Las Vegas, Nevada
USA.

[HMI03] “How much information? 2003,”
www.sims.berkeley.edu/research/projects/how-
much-info-2003/

[Jov00] S.Jovicic, “Role of memory in email
management,” Proc ACM CHI 2000, Interactive
posters, pp.151-152, 2000. The Netherlands.

[Kar94] G.M. Karam, “Visualization using
timelines,” Proc International Symposium on
Software Testing and Analysis ISSTA, T.Ostrand,
ed., pp.125-137, 1994.

[Ker03] B.Kerr, “THREAD ARCS: An Email
Thread Visualization,” in IEEE Symposium on
Information Visualization, pp.211-218, 2003.
Seattle, Washington.

[Kul96] R.L. Kullberg, “Dynamic timelines:
Visualizing the history of photography,” Proc ACM
CHI 96 Conference on Human Factors in
Computing Systems, VIDEOS: Visualization,
pp.386-387, 1996.Vancouver, Canada.

[Kum98] V. Kumar, R. Furuta, and R.B. Allen,
“Metadata visualization for digital libraries:
Interactive timeline editing and review,” in DL'98:
Proc ACM International Conference on Digital
Libraries, pp.126-133, 1998. Pittsburgh, USA.

[Lar96] S.F. Larsen, C.P. Thompson, and T.Hansen,
“Remembering our past,” in Studies in
autobiographical memory time in autobiographical
memory, D.C.Rubin, ed., Cambridge University
Press, 1996.

[Leu03] A.Leuski, D.W. Oard, and R.Bhagat,
“eArchivarius: Accessing Collections of Electronic
Mail,” Proc ACM SIGIR Conference on Research
and Development in Information Retrieval, Demos,
p.468, 2003. Toronto, Canada.

[Mut04] P.Mutton, “Inferring and visualizing social
networks on internet relay chat,” Proc Information
Visualization, IEEE Computer Society, 2004.
London, UK.

[Pla96] C.Plaisant, B.Milash, A.Rose, S.Widoff, and
B.Shneiderman, “Lifelines: Visualizing personal
histories,” Proc ACM CHI 96 Conference on
Human Factors in Computing Systems Papers:
Interactive Information Retrieval, pp.221-227,
1996.

[Sud01] S.Sudarsky and R.Hjelsvold, “Visualizing
electronic mail,” Proc Information Visualization
IV'02, pp.3-9, IEEE Computer Society, 2002.
London, UK.

[Ven03] G.D. Venolia and C.Neustaedter,
“Understanding sequence and reply relationships
within email conversations: a mixed-model
visualization,” Proc ACM CHI, pp.361-368, 2003.

[Web01] M. Weber, M. Alexa and W. Müller
“Visualizing timeseries on spirals,” Proc
InfoVis'01, pp.21-28, IEEE Computer Society,
2001.

[Whi96] S.Whittaker and C.Sidner, “Email overload:
Exploring personal information management of
email,” Proc of ACM CHI 96, pp.276-283, 1996.

Cellular Automata for 3D Morphing of Volume Data

SK Semwal
 Department of Computer Science

University of Colorado
Colorado Springs, CO. 80933, USA

semwal@cs.uccs.edu

K Chandrashekhar
Department of Computer Science

University of Colorado
Colorado Springs, CO. 80933, USA

kchandra@uccs.edu

ABSTRACT
Morphing involves the smooth transformation of one model, called the source to another, called the target.
Several methods have been employed in this field both for two and three dimensional morphing. This paper
performs morphing through the usage of cellular automata. The goal was to develop morphing algorithms that
would minimize the need for both the user input and correspondence specification between source and the
target. Two algorithms, the bacterial growth model and the core increment model have been designed and
implemented in C++. Both algorithms utilize simple automata rules and are stable over dissimilar data. Results
are presented that display the efficiency of the approach.

Keywords
Animating Volume Data, Local Interaction creating global phenomena.

1. INTRODUCTION
Morphing is a technique in graphics that results in
the transformation of an object, called the source
model, into another, called the target model, in a
gradual and smooth fashion. Apart from many
movies, morphing now finds usage in 3D games that
are in the market such as Alter Echo [outrage2003]
and Perimeter [K-DLab2004]. The concept of
morphing extends to other applications as well.
Some example applications are: Visualization during
cranio-facial surgery [Fang1996]; evolution by
morphing the skulls of primates and modern humans
[Rodier1997]; environmental changes on sea levels
and forest cover [geoplace2004]; continental drift
[Bourke2001] or erosion; and understanding
biological processes such as plant growth and fetal
development [pbs2004].

Both 2D and 3D morphing methods have been
developed. Several good papers can be found on 2D
Morphing 1992 [Beier1992,Sederberg1992] and

recently in [Abraham2004]. The biggest benefit of
3D morphing over 2D is that it is independent of
lighting and other environmental effects which are
inherent in the images. In addition, the view of the
camera can be changed in real-time in order to
provide a much clearer understanding of the
morphing process. We focus on the 3D variety.

Many 3D morphing algorithms require a
correspondence that maps features of the source
model to that of the target model. We wanted to
investigate approaches that are free of this restriction.
Most morphing algorithms also rely on user-defined
control points that guide the way the source model
morphs to the target model. While this is useful in
guiding morphing in the manner that the user desires,
we felt that there is room for exploring techniques
using minimal user input because this
correspondence process can be tedious and tiring for
the user. While this perhaps takes away from the
artistic impressions that users are allowed when the
correspondence is defined manually, minimal manual
specification has its own benefits. Our approach uses
the concept of cellular automata in order to perform
morphing. Cellular automata are dynamic systems
where an N dimensional space is created with each
cell containing a value which changes according to
pre-determined rules depending on the
neighborhood. From this simple local concept,
complex global patterns and behavior emerge as the
morphing animation considers the collective response
of the cells within the lattice. We developed two new

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Conference proceedings ISBN 80-903100-7-9
WSCG’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

algorithms morphing algorithms using the CA the
core-increment and the bacterial-growth model. The
rules that have to be written for each cell in the
automata to perform this morphing are simple and
hence easy to update or replace. There is no
correspondence required between models except that
identical 3 dimensional volume sizes are required of
the source and destination volumes. No control
points are needed to drive the morph. Our approaches
work really well in situations where there is no pre-
defined transformation path required between the
source and target.

2. PAST RESEARCH
Cohen et al [Cohen-Or1998] explain the problem of
morphing or metamorphosis as follows: ‘Given a
source model S and a target model T, morphing
constructs a series of transformations {Wt |1 t є
[0,1]} such that W0 = S and W1 = T’ [Lerios1995]. A
sample morph from one of our algotihms is displayed
below (Figure 1).

Figure 1: Gradual transition from source to target.

Mesh Morphing and Volume Data Morphing based
upon the data which they use. Polygonal morphing is
the process of metamorphosis where the source and
target are polygonal or polyhedral meshes. A mesh
can be defined as a linear surface that consists of a
set of polygons that can be described either as a set
of vertex/face/edge/graph structures or as a set of
vertices [Kanai2000]. One of the important
characteristics of a mesh model is that it describes the
topology of the model. It is the basis of intense
research with the majority of papers in the morphing
field concerning this area. Several methods have
already developed for entertainment industry. The
input mesh-models are easy to create and many
packages support model [Maya2004] creation in this
format and light effects are computationally faster to
process and render as they are well supported.
However, complex topologies are difficult to morph,
especially if they require user control. In addition,
many applications such as medical and geological
world produce large amount of volume data and may
have to be converted into polygonal mesh. Both
correspondence and interpolation problems are
documented in Kent et al [Kent1992]. Kanai et al use
the concept of merging of two meshes in a common

domain [Kanai2000] and use harmonic mapping
method [Kanai2000]. Lee et al [Lee1999] describe a
process of correspondence that uses both the source
and target meshes at several resolutions and coarse
base domains or simplified meshes.

3. VOLUMETRIC MORPHING

Volume morphing uses three dimensional volumes as
input for the morphing process. Models are
described in terms of voxels (short for volume pixels,
the smallest box shaped unit of volume). Chen et al
[Chen1995] define a volume as a collection of
scattered voxels, with each voxel being associated
with a set of values of size S, i.e, the volume V is
given by:

 V = {(xi, vi) | xi Є R3 , vi Є RS, i = 1 .. n }

The most popular format for representing volume
data is in the form of a 3 dimensional grid. Each
(i,j,k) position represents a voxel which has a value
associated with it.

The volumetric approach is not as popular as
polygonal formats in the entertainment industry. It is
computationally intensive to process and render.
However, volumetric approach is free of restrictions
of topology and geometries. Volume morphing can
easily be applied to meshes by converting them to
volumetric data while the reverse can result in
topologies which are difficult to morph. A large
amount of data in the medical, geological and energy
fields is generated in the volumetric format and needs
to be morphed directly. Most volumetric algorithm
do not need a bijective mapping between vertices of
the source and target formats like mesh morphing
techniques. The simple format allows implementation
ease.

4. CELLULAR AUTOMATA
Cellular Automata (CA) were originally proposed as
formal models of self-reproducing organisms
[Sarkar2000]. CAs are dynamical systems that
occupy a uniform, regular lattice, work in discrete
steps of time and are characterized by local
interactions [Wolfram1984]. They utilize a discrete
lattice of sites Discrete time steps drive the
simulation. Each site can only take a finite set of
values. Each site evolves according to the same
deterministic rules. The evolution of a site only
depends on the neighborhood. The main advantage
of CAs is that complex patterns and behaviors can be
achieved using simple local interactions. CAs have
been used in many applications [Sarkar2000,] ,
Bezzi2000, Sloot2002,Hamagami2003, Forsyth2002,
Droun2003]. Sosič and Johnson [Sosič1995] use the

concept of CA to describe a growing automaton.
Sloot et al [Sloot2002] describe a non-uniform model
used to simulate drug treatment for HIV infection.
Bezzi [Bezzi2000] describes the simulation of
several biological processes using CAs. Claudia et al
[Claudia2001] discuss the use of the CAs for
simulating the effects of a landslide. [Droun2003]
uses a cellular automaton to deforming 3 dimensional
objects, not 3D morphing.

Most 3D morphing techniques utilize the idea of
correspondence, which is mapping where each point
in the source model will end up in the target model
[Kanai2000, Lee1999, Kent1992, Chen1995, Cohen-
Or1998, Lerios1995]. This becomes inconvenient if
there are complex topologies that would require
many control-points to describe the morphing
accurately.

We looked at volumetric morphing as a collection of
voxels comprising the source model trying to achieve
similarity with the voxels in the target model. The
cellular automata which was used in our design has
the following characteristics: It is a 3 dimensional
lattice. The dimension of the lattice is that of the
volume. Each cell can either be empty or contain one
value. All cells are equal, in the sense that a change
of value within a position does not change the
behavior of the entities occupying the automata. The
cellular automaton is non-circular.

Using cellular automata as a base, we have
developed 2 algorithms that perform morphing. In
both cases, the volume is treated as a cellular
automaton. Each non-empty voxel is treated as an
independent agent.

5. CORE-INCREMENT ALGORITHM
The core-increment algorithm works using the
intersecting parts of the morphs as a base. The
intersection part of the source and the target is used
to create a core. The core is then grown or
incremented in a step-wise fashion so that it fills the
space of both the source and target models. More
specifically, for each voxel position present in the
core, the source and target models are checked to see
if any voxels within them surround the position. If
so, the voxels are added to the core at the same
position that they were found in the source or target.
At each step, the voxel positions that are needed to
occupy the space of the source and target are
recorded in the delete-array and add-array
respectively. The arrays contain the points added to
them as separate sets during each iteration. The core-
increment process completes when there are no more
positions either in the source or target that the core
can grow into.

Next, the source model is loaded into a new volume.
The add and delete-arrays are scanned, one forward
and the other in reverse. At each step, the voxel
positions mentioned in the delete-array for that
iteration is removed from the source model and the
corresponding voxels are added from the add-array.
In this way, gradually, voxels are removed from the
source model where they do not intersect with the
target model and voxels added where the target
model is supposed to be. The forward and reverse
iterations give the morphing a smooth, organic
quality. The pseudo-code is as follows:
proc core-increment

 // Loading of volumes and tests

 Load source volume as srcVol;

 Load target volume as tgtVol;

 If (dimension(srcVol) != dimension(tgtVol))

 print error and exit endif

 Create core with dimensions of srcVol

 // Initialization of core

 for each voxel position (i,j,k)

 if (both tgtVol and srcVol’s has object present)

 add (i,j,k) to the core at (i,j,k)

 endii

 end for

 // Iteration to create add and delete arrays

 do

 for each non-empty voxel position (i,j,k) in core

 if voxel found surrounding (i,j,k) in srcVol

 add to core at (i,j,k)

 add (i,j,k) to del-array

 end if

 if voxel found surrounding (i,j,k) in dstVol

 add to core at (i,j,k)

 add (i,j,k) to add-array

 end if

 end for

until core cannot increment further

Load source volume as morphVol

// Morph iterations.

 for i = 0 to sizeof(add-array)

 // iterating through the add-array

 get position at add-array[i] as (i,j,k)

 add voxel at (i,j,k) to morphVol

 // iterating through del-array in reverse

 get position at del-array[size(add-array)-i] as

 (i,j,k)

 add voxel at (i,j,k) to morphVol

 // Rendering the deformed volume

 Render morphVol

 endfor

endProc

The rules that define the behavior of the cellular
automata that makes up the core are simple, hence
easy to upgrade or replace. The algorithm uses 3
dimensional arrays containing the position data from
volumetric models. This means that most popular
formats of representation of volumetric data can be
used directly. No complex data-types or intensive
pre-processing is required. There is no
correspondence required between the source and the
target models. In the above example, it is clear that
there is no correspondence information present.

The morph can be controlled because of the add and
delete arrays containing the information of each
iteration as separate sets. In cases where many points
are added in the add array as compared to the del
array or vice versa, by controlling the sets released
per iteration from the arrays, the morph can be made
to be a gradual process. This is important in cases
where the source model is very small in comparison
to the target model or vice versa. In the normal case,
if the source were small, the non-intersecting parts of
the source would either disappear quickly while the
target would grow slowly, or if the target were small,
the target would grow to completion while the source
was still disintegrating. By coordinating the release
of points this problem can be avoided.

By using random probabilities in the points being
selected for each iteration, the morphing gains an
organic quality (Figures 4 and 5). The growth of the
morph can be made to start with an uneven texture to
the surface that clears up during the end of the morph
to give the texture of the target model. The method
requires the creation of four volumes, two for the
source and target models to be loaded, one for the
core and one for the source model during the morph
iterations. Since the implementation of the method
results in the first instances of the source and target
models being destroyed, the source cannot be reused
during the morph iteration. This makes the
implementation memory-heavy if very large models
are used. The algorithm requires the volumes

containing the source and target models to be of the
same dimensions. However, there is no restriction on
the size of the models themselves.

6. BACTERIAL GROWTH MODEL
Several papers during my research into cellular
automata have mentioned its use for simulating the
behavior of bacteria given certain environmental
conditions. Each bacterium is modeled as an entity
within a lattice and rules govern its reaction to the
environment and other bacteria. Researchers have
succeeded in simulating complex behavior for
bacteria using the simple rules required for CAs.
This gave rise to the idea of using the bacterial
growth model as a method of morphing (Figures 1
and 2).

The following rules govern the behavior of bacteria:

(a) Bacteria are non-motilee. (b)All bacteria are of
the same type and governed by the same rules. (c) A
bacterium has 2 needs, the need for food and the
need to reproduce, the latter being dependent on the
former. (d) A bacterium will reproduce if it finds
food and has space to place its offspring by making a
copy of itself. (e) A bacterium creates only one
offspring per iteration. (f) A bacterium with food at
its current location will live and reproduce infinitely
given enough space. (g) A bacterium will die if food
is not present in its current position. (h) Bacteria
cooperate to keep each other alive. If a bacterium is
completely surrounded by other bacteria, it does not
die even if its current position contains no food. (i)
Each non-empty voxel within the target volume is
considered as a source of food. Each source contains
an infinite supply of food.

Each ‘bacterium’ within the source volume checks to
see if it has food in its current position. If not, and if
it is not completely surrounded in 26 directions by
other bacteria, it dies with a certain probability. If it
finds food, it looks for a empty place in the
neighborhood to reproduce and place its progeny,
with a certain probability. In this way, bacteria in
parts of the source volume that do not intersect with
the target volume begin to die out, thus removing the
feature. Bacteria that intersect the target volume
begin to breed, placing their progeny in places where
the target volume is supposed to be. This results in
features of the target growing to form the final shape
of the target volume. The pseudo-code is as follows:

Proc core-increment

 // Loading of volumes and tests

 Load source volume as srcVol;

 Load target volume as tgtVol;

 if (dimension(srcVol) != dimension(tgtVol))

 print error; exit;

 endif

 for each non-empty voxel position (i,j,k) in srcVol

 do

 if (voxel at position (i,j,k) is non-empty)

 // food at current position

 if (voxels surrounding (i,j,k) have a

 non-empty position (i1,j1,k1))

 reproduce by placing copy of voxel at

 (i,j,k) in (i1,j1,k1) with probability p1.

 else if (not completely surrounded by

 voxels at position (i,j,k))

 die by removing voxel at (i,j,k)

 with probability p2

 endif

 endif

 render srcVol;

 enddo

 end core-increment

7. RESULTS AND ANALYSIS OF THE
PROPOSED APPROACHES
The above two algorithms that were developed were
implemented in C++ using the Visualization Tool Kit
[vtk2004] library as the rendering engine. The
Visualization ToolKitVTK [VTK2004] was free and
provided open-source C++ library that supports
several graphics related activities including image
processing and 3D visualization. It has inherent
support for volume data and runs on all popular
machine-platforms. The tests of algorithms were
done with the following datasets with certain
characteristics on a PC with dual Pentium III
processors running at 1 GHz with 1.5 Gb memory.
In both Table 1 and 2, these cases are identifies as
(a)-(d) as follows: Case (a) is the morph sequence
where source is Input.bin and target is Fuel.bin.
Both these data sets are are 64 x 64 x 64 datasets
with about 17,000 non-empty voxels (Figure 1). The
source model intersects to a large extent with the
target. Case (b) is the morph between
Cube256x256x256.bin to aneurism.bin. These are
256 x 256 x 256 sized datasets. There are about 1.1
million voxels in total. The target (aneurism.bin)
model is dissipated throughout the volume, being
branch-like. There is no central core volume as in
other models, hence there is very small amount of

overlap between the source (cube) and target
(aneurism) model. This leads to a large amount of
voxel additions and deletions. Case (c) morphs
Cube256x256x256.bin to MRI-head.bin. Once again
the data sets are of size 256 x 256 x 256. They have
around 7.1 million non-empty voxels between them.
The source is a cube that is centered across the
volume. The target volume is a MRI of a head that
envelops the cube; hence most of the voxel
manipulations are addition operations. Finally, Case
(d) is the morph between MRI-head.bin to
bonsai.bin. These are again 256 x 256 x 256 sized
datasets. The total of the non-empty voxels of both
source and target is 7.3 million. The source model
overlaps the target to a large extent and hence, most
of the operations in this morph involve the deletion
of voxels. Figures 2-5 show the results of our two
algorithms.

The best and worst case complexity of this algorithm
is n3 where n is the size of one dimension of the
source or target volume. As shown in Tables 1 and
2, normally we find that the amount of time taken for
each iteration as well as the number of iterations
depend on the size of the volume and the number of
non-empty voxels within it..

In case of test Case (b), the small amount of overlap
leads to a large amount of additions and deletions. In
this case, the number of iterations became large for
the bacterial growth algorithm, with the iterations
during the end of the morph yielding very small
numbers of voxels. These do not contribute
significantly to the quality of the morph. The
performance of this algorithm is better than the core
increment method described earlier. This should not
be assumed to be a reflection of the efficiency of the
algorithm. The main reason for this is that the
bacterial growth algorithm incorporates an iso-
surfacing algorithm. This means that only the voxels
on the surface of the intermediate volumes are
processed. The core increment algorithm does not
easily support such a scheme and hence the current
implementation processes all the voxels present in its
core. Bacteria growth algorithm seems to do well in
cases where there is a large percentage of overlap
between volumes. The quality of the morphs is in
general worse than the core-increment algorithm and
this can be assessed by looking at Figures 2-5.

Table 1 and 2 also show the time taken to create
morphing sequences, and the average time taken to
complete a sequence during morph.

Our implantation results indicated that the core
increment algorithm is more stable and provide better
visual results with a varied type of source and target
models than the bacterial growth models. In
comparison to other existing 3D algorithms, the

solution provides a morph which does not require
any human-intervention, and the morphing sequences
has better visual appearance as in both cases
morphing sequences are expected to grow gradually
in spatial domain, avoiding frequency interpolation
based aliasing completely.

8. CONCLUSIONS AND FUTURE
RESEARCH
We have presented two algorithms which
successfully demonstrate the 3D Morphing. The
methods presented in this paper can handle branching
structures and topological mismatches, which have
been a problem for the past algorithms, without any
human-intervention. Our current design requires that
the volumes intersect. An important improvement
would be to handle is that non-intersecting volumes.
Our method can be extended by merging the current
design with the distance field metamorphosis
technique [Cohen-Or1998] when the volumes do not
intersect. Parallelization has been performed on
cellular automata based models before [Telford1999]
and our method can benefit from that as well. We
will like to also consider non-homogenized mixture
of bone, tissue etc) in future as well. In addition, we
also plan to develop methods to handle color (rgb)
volume data sets.

9. REFERENCES

[Abraham2004] Abraham AW. Image View-Shift:

Three dimensional representation from a photo.
MS Thesis, University of Colorado, Colorado
Springs, pp. 1-274, 2004.

[Beier1992] Thaddeus Beier and Shawn Neely.
Feature-based image metamorphosis,
International Conference on Computer Graphics
and Interactive Techniques, pp. 35 – 42,1992

[Bezzi2000] Bezzi M. Modeling Evolution and
Immune System by Cellular Automata.
http://citeseer.nj.nec.com/429312.html

 [Breen2001] D. E. Breen and R. T. Whitaker. A
level-set approach for the metamorphosis of solid
models. IEEE Transactions on Visualization and
Computer Graphics Volume 7, Number 2, pp.
173, 2001

[Bourke2001] Paul Bourke. Terrain morphing.
http://astronomy.swin.edu.au/~pbourke/terrain/tm
orp

[Calionna2001] Claudia R Calionna ,Claudia Di
Napoli, Maurizio Giordano,Mario Mango Furnari
and Salvatore Di Gregorio. A network of cellular
automata for a landslide simulation. International
Conference on Supercomputing Proceedings of
the 15th international conference on
Supercomputing, pp. 419 – 426, 2001

[Chitttarao2001] Chitttaro L. Information
Visualization and its Application to Medicine.
Artificial Intelligence in Medicine, vol. 22, no. 2,
pp. 81-88, 2001.

 [Chen1995] M. Chen and M. Jones and P.
Townsend. Methods for Volume Metamorphosis.
In Image Processing for Broadcast and Video
Production, Y. Paker and S.Wilbur (Eds.),
Springer-Verlag, London, 1995.

 [Cohen-Or1998] Daniel Cohen-Or, Amira
Solomovic, David Levin. Three-Dimensional
Distance Field Metamorphosis. ACM
Transactions on Graphics (TOG), Volume 17, 2,
pp. 116 – 141, 1998.

[Droun2003] Druon S, Crosnier A, Brigandat L.
Efficient Cellular Automata for 2D / 3D Free-
Form Modeling. Journal of WSCG (Winter
School of Computer Graphics), 11, 1, pp. 102-
108 : 2003

 [Fang96] S. Fang and R. Raghavan and J.
Richtsmeier. Volume Morphing Methods for
Landmark Based 3D Image Deformation. SPIE
International Symposium on Medical Imaging,
1996

[Forsyth2002] Cellular Automata for Physical
Modeling. Game Programming Gems 3, 2002.

[Gagvani2001] Nikhil Gagvani and Deborah Silver.
Animating volumetric models. Volume modeling
Volume 63, Issue 6, November 2001, pp. 443–
458, 2001.

 [Hamagami2003] Tomoki Hamagami and Hironori
Hirata. Method of crowd simulation by using
multiagent on cellular automata. EEE/WIC
International Conference on Intelligent Agent
Technology, pp. 46 – 53, 2003

 [He1994] T. He and S. Wang and A. Kaufman
“Wavelet-Based Volume Morphing” Proceedings
of Visualization 94, Pages: 85-92,: 1994

[Java3D2003] Java 3D API ® Sun Microsystems
http://java.sun.com/products/java-media/3D/

 [Kanai2000] Takashi Kanai Hiromasa Suzuki
Fumihiko Kimura. Metamorphosis of Arbitrary
Triangular Meshes with User-Specified
Correspondence. IEEE Computer Graphics &
Applications, 20, 2, pp. 62-75, 2000.

[Kent1992] James R Kent ,Wayne E Carlson and
Richard E Parent. Shape transformation for
polyhedral objects. International Conference on
Computer Graphics and Interactive Techniques,
pp. 47 – 54, 1992

 [Kazakov2003] Maxim Kazakov,Alexander Pasko
and Valery Adzhiev. Interactive metamorphosis
and carving in a multi-volume scene. Proceedings
of the 1st international conference on Computer
graphics and interactive techniques in Austalasia
and South East Asia, pp. 103, 2003.

 [K-DLab2004] Perimeterv Developer: KD-LAB /
1C Company www.codemasters.com/perimeter

 [Lerios1995] Apostolos Lerios, Chase D. Garfinkle,
Marc Levoy. Feature-Based Volume
Metamorphosis. International Conference on
Computer Graphics and Interactive Techniques
Proceedings of the 22nd annual conference on
Computer graphics and interactive techniques,
pp. 449 – 456, 1995

[Lee1999] Aaron Lee and David Dobkin and Wim
Sweldens and Peter Schroder. Multiresolution
Mesh Morphing. Siggraph 1999, Computer
Graphics, pp. 343-350, 1999.

[Lee1988] F. Sweldns, W. Schorder, P. Cowsar, and
L., Dobkin. Multiresolution Adaptive
Parameterization of Surfaces. Computer
Graphics, pp. 95–104, 1998.

[Maya2004] Aliaswavefront Maya ®
http://www.alias.com/eng/products-
services/maya/index.shtml

[Outrage2003] Alter Echo Developer: Outrage
Games Publisher :THQ www.outrage.com

[Sarkar2000] Palash Sarkar. A brief history of
cellular automata. ACM Computing Surveys
(CSUR) Volume 32 , 1, pp. 80 – 107, 2000.

 [Sederberg1992] Thomas W Sederberg and Eugene
Greenwood. A physically based approach to 2–D
shape blending. International Conference on
Computer Graphics and Interactive Techniques
pp. 25 – 34, 1992

 [Sloot2002] Peter Sloot, Fan Chen, and Charles
Boucher. Cellular Automata Model of Drug
Therapy for HIV Infection. Lecture Notes In
Computer Science Proceedings of the 5th
International Conference on Cellular Automata
for Research and Industry, pp. 282 – 293, 2002.

 [Sosič1995] R. Sosic and Robert R. Johnson.
Computational properties of self-reproducing
growing automata. BioSystems, Volume: 36, pp.
7-17, 1995.

[Sussman2004] Alan Sussman, Michael
Beynon,Mary Wheeler, Steven Bryant,
Malgorzata Peszynska, Ryan Martino,Joel Saltz,
Umit Catalyurek, Tahsin Kurc,Don Stredney,
Dennis Sessanna. Exploration and Visualization
of Oil Reservoir Simulation Data, 2004.

 [Treece2001] Graham Treece and Richard Prager
and Andrew Gev. Volume-based three-
dimensional metamorphosis using sphere-guided
region correspondence. The Visual
Computer,volume 17, 7, pp. 397-414, 2001.

 [Ulgen1997] F Ulgen. A step towards universal
facial animation via volume morphing. Robot and
Human Communication, 1997. RO-MAN '97 6th
IEEE International Workshop, pp. 358 – 363,
1997

[Wolfram201984] Wolfram ,Stephen. Universality
and Complexity in Cellular Automata. Physica D
10, pp. 1-35, 1984.

 [vtk2004] The Visualization ToolKit (VTK)
http://www.vtk.org/

Figure 2: using bacterial growth model (Cube to

Aneurism)

Figure 3: using bacterial growth model (Head to

Bonsai)

Figure 4: Using core increment model (Cube to

Anuerism)

Figure 5: Using core increment model (Head to

Bonsai)

Table 1: Core element results

Table 2: Core element results

 Volume size Source
non-empty
Voxel
Count

Target
non-empty
Voxel
Count

No of
iterations

Avg
Morphing
Time per
iteration
(secs)

Total
Time
taken for
morphing
(secs)

Avg
Renderin
g Time
(secs)

a 64 X 64 X 64 4096 13731 32 0.02 0.64 0.76

b 256X256X256 1000000 168948 387 1.16 448.92 3.16

c 256X256X256 1000000 6198649 132 3.38 446.16 2.14

d 256X256X256 6176412 1298598 195 1.33 259.35 2.71

 Volume size Source
non-empty
Voxel
Count

Target
non-
empty
Voxel
Count

No of
iterations

Avg
Morphing
Time per
iteration
(secs)

Total Time
taken for
morphing
(secs)

Avg
Rendering
Time
(secs)

a. 64X 64 X 64 4096 13731 32 .0334 1.07 1.27

b. 256X256X256 1000000 168948 248 2.5027 620.67 4.46

c. 256X256X256 1000000 6198649 120 8.7642 1051.71 3.32

d. 256X256X256 6176412 1298598 175 11.24 1966.24 3.33

Enhancing Visual Exploration by Appropriate Color
Coding

Petra Schulze-Wollgast

University of Rostock
Institute for Computer Science

A.-Einstein-Str. 21
 18059 Rostock, Germany

psw@informatik.uni-
rostock.de

Christian Tominski
University of Rostock

Institute for Computer Science
A.-Einstein-Str. 21

18059 Rostock, Germany

ct@informatik.uni-rostock.de

Heidrun Schumann
University of Rostock

Institute for Computer Science
A.-Einstein-Str. 21

18059 Rostock, Germany

schumann@informatik.uni-
rostock.de

ABSTRACT

Visualization is an effective means for exploring and analyzing complex data. Color coding is a fundamental
technique for mapping data to visual representations. Although color coding is widely used in a large variety of
visualizations, it is often provided in a limited way only or it is not used effectively. Therefore, we describe in
this paper how appropriate (automatic) color coding can enhance the visual exploration of spatial-temporal data.
We demonstrate our techniques with a system for visualizing human health data by means of choropleth maps.
Furthermore, we focus on how to use color coding for facilitating comparison tasks in visualization.

Keywords
Visualization, Color Coding, Perception-Based Color Scales, Comparison.

1. INTRODUCTION
Visualization is an effective means for exploring and
analyzing complex data. Regarding this, color plays
an important role. Color coding is a fundamental
technique for mapping data to visual representations.
Although, color coding is widely used in a large va-
riety of visualizations, it is often provided in a lim-
ited way only or it is not used effectively. Further-
more, adapting color scales automatically by apply-
ing a simple minimum-maximum-scaling often re-
sults in visual representations of different views on
the data which cannot be compared with each other.

Therefore, we describe in this paper how appropriate
automatic color coding can enhance the visual explo-
ration of spatial-temporal data. This is achieved by
taking into account:

• Perception-based color schemes,

• User aims, and

• Characteristics of the data.

We use perception-based color schemes suggested in
[Bre94] and [Ber95], which have proven to be effec-
tive. From a collection of such schemes we choose
the most appropriate one with respect to the users’
visualization goal. In this context, we focus on com-
parison; on the one hand comparison is a major visu-
alization task for interactive data exploration, on the
other, comparison is not supported sufficiently by
most existing color-based visualization systems. By
considering data characteristics we have the ability to
combine our color scale legends with Box-Whisker
plots. By doing so, users intuitively get more insight
into the data. We demonstrate our techniques consid-
ering color coded maps, which represent human
health data.

The paper is structured as follows. In Section 2 we
give a general overview on color scales, describe
problems regarding the use of color in visualization
and give some guidelines on how color can be used
efficiently. Known approaches addressing these is-
sues are reviewed before presenting our approach in
Section 3. In Section 4 we describe a system for
visualizing spatial-temporal human health data on
maps. It is shown how our approach can enhance
visual exploration of such data. Section 5 concludes
the paper and gives an outlook for future work.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

WSCG 2005 conference proceedings, ISBN 80-903100-7-9
WSCG’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

2. COLOR SCALES
Color is a retinal variable, which is very effective for
mapping (abstract) data [Ber83]. This is due to the
spontaneous perception of color by the human visual
system. Since for now the interrelation between the
physical phenomena color and its perception by the
human visual system is not fully understood, color
scales have to be chosen carefully to fully utilize
effectiveness of color-based visual representations
and furthermore, to avoid misinterpretations.

A color can be described as a point in a 3-
dimensional color space. In technical applications the
primary colors red, green and blue (RGB) span the
dimensions of the color space. Hue, saturation and
brightness (HSB) are used as dimensions in percep-
tion-based applications. A color scale provides a
range of colors varying in hue, saturation, and/or
brightness. Color scales are defined by:

• A set of control points and

• A mapping function describing the transition
between colors.

Control points associate parameter values with col-
ors. They are utilized to add colors to a color scale
according to a parameter range : 0.0 1.0t t≤ ≤ . A
color scale consists of at least two control points, one
for 0.0t = and one for 1.0t = ; however, more con-
trol points could be used to create more sophisticated
color scales. The mapping function describes how
color is interpolated between two control points. A
requirement for color coding is that the value range
to be displayed must be scaled to [0.0;1.0] , the range
of parameter t .

Figure 1 A standard RGB-based color scale and a

rainbow color scale.
Nowadays visualizations mainly use, on one hand,
color scales that are created by linearly interpolating
two colors from the RGB color space (e.g.

(0.0)t black= and (1.0)t green= ; cp. Figure 1). On
the other, a rainbow color scale is used. This scale
contains all spectral colors from blue to red (i.e. the
colors appearing in a rainbow). Though these scales
are intended to linearly map colors to a scalar value
range, the resulting color scales are not perceived as
linear. Quite the contrary, users perceive differently

sized regions in the color scale, which show variance
not only in hue, but in saturation and brightness as
well (cp. Figure 1). Therefore, providing only stan-
dard color scales for visualization is not sufficient.

In literature several approaches are known address-
ing the creation of color scales or giving guidelines
for the use of color. Brewer describes the use of
color for mapping data on cartographic maps [Bre94,
Bre99]. Regarding this, binary, qualitative, sequential
and diverging color schemes are described. The
schemes are based on human perception and are,
therefore, a good basis for creating effective visuali-
zations. Additionally, the suggested color schemes
have been evaluated considering different output
devices like CRT screens, TFT displays or LCD pro-
jectors. However, all these scales aim on categorized
(i.e. segmented) maps; special scales for continuous
quantitative data are not provided. Such scales can be
found in PRAVDAColor [Ber95] developed by
Bergman et al.. The authors describe a rule-based
mechanism for supporting users in choosing appro-
priate color scales. In order to decide what scale fits
best, data type (ratio or interval data), spatial fre-
quency (low or high), and representation task (iso-
morphic representation, segmentation, highlighting)
are taken into account. Figure 2 shows how color
scales for different visualization tasks may look like.

Figure 2 Color scales for isomorphic representa-
tion (left), segmentation (middle), and highlight-

ing (right).
Though these works highly support developers in
designing as well as users in choosing effective color
scales for visualization, most of today’s visualiza-
tions barely utilize them. Another aspect currently
still underestimated is the dependency on properties
of the data (e.g. the distribution of data values).
Though a general solution is hard to find – if this is
possible at all – an integration of known concepts
complementing one another is a vital step to further
facilitating the use of colors in data representation.

A modern visualization system, therefore, should
provide all: potentially effective color scales, meth-
ods for choosing and adapting color scales according
to data characteristics, and intuitive interactive tools
to enable users to adapt color scales according to
their needs.

3. ENHANCED COLOR CODING
In this section we will review factors influencing
color scaling. Based on this, we introduce our ap-
proach for enhancing effectiveness of color-based
visualizations.

3.1. Factors influencing color scaling
Creating effective color scales for data visualization
is not a trivial task. There exist no general guidelines
or methods for choosing color scales automatically.
This is due to the complexity of factors influencing
the decision for a concrete color scale.

We identified 3 main categories of factors:

• Data properties,

• Visualization goal, and

• General context.

In the following, we will focus on these categories in
more detail. Regarding data properties we subcatego-
rize: scaling of the value range and statistical charac-
teristics.

The scaling of the value range is considered for each
variable within a data set. Data variables can be of
nominal, ordinal, or quantitative scaling. While for
nominal variables no ordering of data values is
given, ordinal variables comprise an order of the data
values. This has to be considered for the visualiza-
tion. For achieving effectiveness, color scales for
nominal variables must NOT and color scales for
ordinal variables must imply an ordered perception
of colors used. Furthermore, quantitative variables
allow for distances between data values. Therefore,
perceptual distances within a color scale must reflect
distances in the data. Moreover, a color scale should
reveal whether a data variable contains a special zero
value sectioning the value range (i.e. ratio data).

By considering statistical properties of a variable
(e.g. element count, minimum, maximum, average,
mean, quartiles, etc.) the effectiveness of color scales
can be improved. This can be realized mainly by
adapting the control points or the mapping function
rather than by choosing certain colors.

The goal a user wants to achieve when using visuali-
zation has much influence on the choice of color
scale. Bergman et al. [Ber95] differentiate between
isomorphic representations (user seeks an exact im-
age of the data), representations of segmentation
(user intends to detect segments within the data), and
representations for highlighting (user is interested in
particular values). Besides these goals a variety of
further tasks are possible (e.g. comparison, detection
of correlation or clusters, etc.). Our interest espe-
cially regards comparison tasks. Since comparison is
one of the main tasks in data exploration, we do not

limit our considerations on intercomparison within a
single visual representation but detail also on com-
parison of different representations of varying por-
tions of the data (e.g. different time steps or different
regions).

The third category of influencing factors is related to
general context. Regarding this we identified the
following aspects: perception of color, colorblind-
ness, output device, and user preferences.

Regarding color perception the capabilities of the
human eye can be considered. Though this issue is
hard to grasp due to the complexity of the human
visual system, some perception aspects can yet be
considered for designing color scales. So it is possi-
ble to take visual resolution into account. Visual
resolution regards to what degree small and differ-
ently colored spatial structures can be visually distin-
guished. Furthermore, paying attention to adaptation
mechanisms of the eye (e.g. a negative afterimage of
what has been previously seen shortly remains on the
retina), to the relation of color and size (i.e. differ-
ently sized objects of same color are perceived as
differently colored), as well as to time dependent
color perception (i.e. perception changes over time
and under different environmental lightings) could
enhance color scales; though these aspects are hard
to integrate into a real system. However, colorblind-
ness and the addressed output device can be taken
into account easily by providing parameters users can
adjust. Even if users do not know whether they are
colorblind or not, simple tests could reveal this (cp.
[Mey88]).

Table 1: Factors influencing color scaling.
By considering users preferences (e.g. favorite color)
visual analysis can be enhanced in general. When
visualization is used to communicate facts found in
the data among users of different cultural back-
grounds, the relevance of user preferences is even
increased. To be more concrete, in each culture dif-
ferent colors may be associated to different things.

Mandatory factors Optional factors
Scaling of the value

range Colorblindness

Statistical
characteristics Output device

Visualization goal Cultural environment

Visual resolution Adaptation
mechanisms

 Relation of color and
size

 Time dependent
color perception

 Interaction of
different colors

The color red, for instance, is associated in Germany
with danger, in Egypt with death, in India with life,
and in China with happiness. This example under-
lines the difficulty of solving the general color cod-
ing problem.

In order to assess all the mentioned factors we distin-
guish mandatory and optional factors (cp. Table 1).
This distinction is based on the relation between ef-
fort for integrating a factor into a real system and
resulting benefits for the effectiveness of the color
scales.

3.2. Automatic color coding
We have developed our approach (cp. [Rut03] for
detailed description) based on previous work by
Brewer [Bre94, Bre99] and work by Bergman,
Rogowitz, and Treinish [Ber95, Rog96, Rog98].
Namely, we use a collection of color scales sug-
gested in these publication. It is important to mention
that all of these color scales are perception-based and
are, therefore, potentially effective for visualization
tasks. Furthermore, we follow [Ber95] in using their
rule-based approach. Depending on scaling of the
value range (nominal, ordinal, quantitative, or ratio
data) and the user’s visualization goal (isomorphic,
segmentation, or highlighting) the most suitable color
scale is chosen. We extend the approach of Bergman
et al. [Ber95] by:
• Extracting statistical metadata from the data set,
• Adapting the chosen color scale according to the

metadata, and
• Creating an expressive legend for the chosen

color scale.
Extracting metadata Statistical characteristics can
be easily extracted from a data set. We use average,
median, mode, minimum, maximum, skewness, and
quartiles as metadata for the automatic adaptation of
the mapping function for a chosen color scale. While
all of these statistics can be calculated for quantita-
tive data, for ordinal data media, mode, and quartiles
can be determined only. In case of nominal data
mode is the only characteristic being considered.
Adapting the color scale Based on these metadata
we allow for the following automatic adaptations of a
chosen color scale:
• Expansion of the mapped value range,
• Adjustment of control points, and
• Alteration of the mapping functions.
Value range expansion is used to create an adequate
value range for the color scale mapping. Addition-
ally, the lower and upper bounds of the value range
are intended to be intuitively comprehensible. When
considering dynamic data sets lower and upper

bounds of the same variable might change. Espe-
cially in this context, value range expansion allows
for coherent visualization. For realizing value range
expansion the lower and upper bounds are calculated
according to the minimum and maximum values of a
variable. An example (cp. Figure 3) for this is the
expansion of a variables’ range from 225 to 1778 to a
range of values reaching from 0 to 2000.

Figure 3 Range expansion is used to increase the

comprehensibility of color scales.
The adjustment of control points is mainly used for
improving color scales for ratio data as well as for
segmentation and highlighting scales. Color scales
for highlighting tasks are adjusted by setting a spe-
cial control point (i.e. a control point denoting the
value to highlight) according to average, median, or
mode of a variable. For ratio data it is also possible
to consider a “real” zero for adjustment of control
points. Color scales for segmentation could be ad-
justed based on quartiles. With respect to the number
of segments to be differentiated, quartiles are calcu-
lated, containing the same number of values each.
The control points of the color scale are then posi-
tioned according to these quartiles. This results in a
color scale that supports the user in the detection of
similar regions within the data. Figure 4 depicts how
a standard segmentation color scale (for 4 segments)
can be adapted according to quartiles.
An alteration of the mapping function might become
necessary for data with certain value distributions.
Usually, the mapping function performs a linear in-
terpolation between the colors associated to the con-
trol points. Since these colors are perception-based,
this is effective and the structure of the data is accu-
rately represented. However, linear interpolation
leads to problems if the values of a variable are not
uniformly distributed (e.g. if outliers are present). In
this case a wide range of the color scale represents a
small number of values and the majority of values
has to cope with only a narrow range on the color
scale. Similar problems are known from the field of
computer vision. There histogram equalization is
used to handle unfavorable color distribution in im-
ages. We deal with this problem by means of nonlin-
ear mapping functions. In order to decide how to
adjust the mapping function, we take skewness of the

value distribution into account. Depending on
whether a variable has positive or negative skewness,
we apply an exponential or logarithmic mapping
function. By doing so, we “stretch” the range of col-
ors used for the majority of data values. The visuali-
zation is improved in a way that differences between
values can be more easily detected for values from
the range of high value density (cp. Section 3.3 for
examples). It is very important that the color legend
clearly reveals the color scale as exponential or loga-
rithmic. Otherwise, misinterpretations are inevitable.

Figure 4 Adaptation of a segmentation color scale
according to quartiles. Note that on the adapted
scale (right) the majority of values (50% of the

value range) are exactly encoded by the two green
segments.

Figure 5 A color legend enhanced with a Box-

Whisker plot.
Creating a color legend In order to achieve an easy
comprehensibility of the data and the used color-
coded visualization, a color legend has to be pro-
vided. The color legend should show all used colors
and an additional scale, which allows an association
of characteristic data values to a color. By using the
method of value range expansion, we ensure that the
scales of our color legends represent characteristic
data values. Moreover, we provide a Box-Whisker
plot attached to the color legend (inspired by
[And01]). Such a color legend is presented in Figure
5. By doing so, users get better insight to the distri-
bution of data values.

3.3. Considering comparison tasks
Comparison is an essential task when visualization is
used for data exploration/analysis. In literature, only
few publications explicitly focus on this essential
task. Therefore, we will describe comparison in more
detail.

Comparison is used to assess characteristics of the
data. Before comparing an aspect of the data has to
be chosen regarding which comparison is performed.
A requirement for comparison of objects is the equal-
ity of the objects according to a common basis (e.g.
objects from the same domain). If this requirement is
satisfied objects are comparable. Then an object of
reference has to be chosen. Other objects can then be
compared with respect to the reference object. This
means that the process of comparison consists of four
steps:

1. Choose an aspect for comparison

2. Check for comparability

3. Choose a reference object

4. Check for equality or differences.

Comparison facilitates 3 basic tasks regarding the
assessment of data characteristics. Depending on the
scaling of the value range the following basic tasks
can be performed. For nominal variables only equal-
ity or inequality can be checked (a b= ; a b≠),
regarding ordinal variables the ordering of objects
can be determined (a b< ; a b>), and for quantita-
tive data the detection of an amount of difference is
possible (a b= + ∆).

The duration of comparability is another aspect that
has to be taken into account. Regarding this aspect
we distinguish:

• Intercomparison in one single visualization,

• Comparison in one single visualization session,

• Comparison among multiple visualizations ses-
sions, and

• Long term comparisons.

The difficulty of supporting comparison tasks by
appropriate color coding increases with the duration
of comparability. If the data is represented in only
one view a single effective color scale has to be cre-
ated (cp. Section 3.2). To support comparison in one
visualization session a single color scale should be
used during the whole session. This ensures that vis-
ual representations created later in a session can be
compared to views, which have already been ana-
lyzed. Human color memory is notoriously poor,
which makes comparisons across different visual
representations difficult. To alleviate the problem of

Color scale

Value scale

Mean

Value range

50% of values
in this range

Box-
Whisker plot

comparison among multiple visualization sessions
and long term comparison, it is necessary to save
color scales used in one session and import them into
another session. Moreover, a special “color memory”
could be used. This means that the visualization sys-
tem remembers which color scales have been used to
visualize which variables. This memory can then be
used to ensure that the same variables are encoded
using the same color scales (i.e. ensure visual conti-
nuity) and to avoid using the same color scale for
different variables (i.e. avoid visual misinterpreta-
tions). By doing so, a binding between color scale
and encoded variable is established in the users’
mind. Since this procedure is limited to a rather small
number of variables (6-8), a “color memory” should
be created for each data set. By using the concept of
“color memory” we support comparison tasks among
different visualization sessions and long term visu-
alization tasks are facilitated.
For visualization of spatial-temporal data on maps
the following specific comparison tasks can be re-
fined:

1. Comparison of different regions of a map.

2. Comparison of different time steps of a data set.

3. Comparison of different variables of a data set.

Intercomparison of regions of the map is supported
by adjusting the mapping functions for variables with
positive or negative skewness. This can be seen in
Figure 6. When using a linear mapping, the regions
of the island Rügen seem to have equal values. How-
ever, when using exponential mapping users can
clearly detect that differences exist. Note that the
attached Box-Whisker plots give an idea of the dis-
tribution of the data values.

For comparison of different variables or time steps
multiple view techniques are suitable, where each of
the views shows a map color coding one time step or
one variable. However, if more than one view is
used, the construction of a color scale is more diffi-
cult. This is due to the requirement for effectiveness
of the color scale not only for a single but for all
views.

When comparing different time steps two opposing
goals exists. On the one hand, a global color scale
can ensure comparability among the views, but re-
gions within a single view might become hard to
distinguish. On the other hand, local color scales can
encode each view effectively, but comparison of time
steps is hardly possible. In order to alleviate this
problem, we collect metadata for the entirety of data
represented in the views to be compared and select
the most suitable color scale. Furthermore, value
range expansion is applied to the data range common
to all views. Based on this, we set a global color

scale for all views. Additionally, each view is
equipped with its own local color legend including a
Box-Whisker plot representing the statistical charac-
teristics of the respective view.

In order to support comparison of different variables,
the described “color memory” can be used. More-
over, if the variables to be compared have similar
value ranges it is also possible to generate a global
color scale and to provide local color legends (analo-
gous to time step comparison).

Figure 6 Using an exponential mapping function

supports comparison of different regions.

4. COLOR CODING FOR VISUALIZ-
ING HUMAN HEALTH DATA ON
MAPS

The human health data we consider consists of the
number of cases for a variety of diseases. These data
depend on time (i.e. number of cases per week) and
space (i.e. number of cases in different regions). The
system TeCoMed (Tele Consultation for Medics)
[Sch03] has been developed for visualizing such data
via the Internet. TeCoMed provides a rich function-
ality to select diagnoses, time steps (e.g. day, week,
month, quarter and year) and geographical regions
interactively.

A variety of concepts for visualizing human health
data according to their spatial and temporal depend-
encies within different levels of granularity have
been realized. Among these visualization facilities,
color-coded maps (i.e. choropleth maps) are a key
feature of the system. Our approach of choosing ap-
propriate color scales automatically has been inte-
grated to TeCoMed into order to facilitate the effec-
tiveness of color coding. Figure 7 shows the integra-
tion of the approach into the architecture of the sys-
tem TeCoMed.

The metadata extraction performs a statistical analy-
sis of the data to be visualized. Since our human

Linear
mapping

Exponential
mapping

health data have a quantitative scaling, we consider
minimum, maximum, mean, and quartiles (for Box-
Whisker plots).
The collection of color scales has been built up by
color scales provided by Brewer [Bre94] and Berg-
man [Ber95]. All color scales are evaluated regarding
value range scaling, visualization task, colorblind-
ness, and output device. The use of this collection is
not limited to the visualization of human health data
and could, therefore, be integrated into other systems
as well.

Figure 7 Integration of the approach into Te-

CoMed.
Since TeCoMed targets physicians and apothecaries,
it was our aim not to confuse users with lots of pa-
rameters to set. Therefore, we created predefined
parameterizations and associated them with verbal
questions. During visualization we then provide a
selection of questions users can choose from. Re-
garding to what question was chosen, the associated
parameterization is used to select an appropriate
color scale.
Here, the extracted metadata are used to further ad-
just the chosen color scale. However, not all issues
could have been taken into account for automatic
color scale adjustment. Therefore, color scales can be
adjusted interactively as well. We provide a color
manipulator for altering a variety of parameters (e.g.
value range adaptation; cp. Figure 8).

Figure 8 The color manipulator.

In the following example we demonstrate how ap-
propriate color coding can enhance comparison tasks
for the visual analysis of human health data in the
system TeCoMed. In Figure 9 an isomorphic color
scale for quantitative data was chosen to color code 3
time steps of the same disease. The upper 3 maps of
the figure have been created without considering
comparison. To a user it seems that all time steps
contain similar data values. The 3 maps in the lower
part of the figure have been created according to a
user’s decision to compare the 3 time steps. Value
range expansion has been applied in order to be able
to adjust the color scale to the data range common to
all time steps. It can be seen that by doing so, regions
of one map can be easily evaluated regarding corre-
sponding regions on the other maps and differences
between regions can be quite correctly determined. A
general decrease of data values from time step 1 to
time step 2 and an increase from time step 2 to time
step 3 can be revealed as well. Furthermore, the en-
hanced color legend for each map further supports
the understanding of the data. By utilizing statistical
metadata, Box-Whisker plots can be provided for
each time step. This helps users in comprehending
the distribution of the data values of a certain time
step with respect to the created common data range.

5. CONCLUSION AND FUTURE
WORK

Color coding is an effective means for visual repre-
sentation of (abstract) data. However, color scales
have to be carefully chosen to facilitate this effec-
tiveness. Though previous work addresses this prob-
lem, the proposed approaches are barely used for
today’s visualization techniques.

For our approach, we reviewed factors influencing
the decision what color scale to use. Based on
[Bre94] and [Ber95] we have developed an inte-
grated rule-based approach for choosing appropriate
color scales automatically. Our approach is enhanced
by automatic adjustments of the chosen color scale.
This is realized based on statistical metadata ex-
tracted from the data to be visualized.

One of the main tasks in visualization is comparison.
Therefore, we aimed to support this particular task in
our system. Several concepts have been introduced
addressing this problem.

Our approach has been integrated into a system for
visualizing human health data. Here, comparison
tasks are highly relevant. By using appropriately cho-
sen and adjusted color scales, we have been able to
enhance the visual exploration of such data.

In the future we intend to review the rule-based proc-
ess for color-scale selection. We try to formulate
more questions users might have regarding the analy-

Human
Health
Data

TeCoMed

Collection of
perception-based

color scales
Rule-based color
scale selection

Visual
 representations

Color scale
adaptation

Visualization
techniques

Map

Metadata
extraction

sis of health data (e.g. “Where are extreme values?”).
Moreover, we are going to apply further automatic
adjustments to a chosen color scale. Especially, the
adjustment of highlighting scales may be improved.

Finally, it must be mentioned that user evaluations
are still outstanding. This is a special focus for future
research.

ACKNOWLEDGMENTS
Our thanks go to Thomas Ruth for his valuable work
for this paper; he did most of the implementation
work. Further thanks go to René Rosenbaum and
Georg Fuchs for proof-reading the paper.

REFERENCES
[And01] Andrienko, G. and Andrienko, N.: Interac-

tive Maps for Visual Data. International Journal
of Geographical Information Science, Vol. 13,
No. 4, pp. 355-374, 1999.

[Ber83] Bertin, J.: Semiology of Graphics. The Uni-
versity of Wisconsin Press, 1983.

[Ber95] Bergman, L., Rogowitz, B.E., and Treinish,
L.A.: A Rule-based Tool for Assisting Colormap
Selection. Proceedings of IEEE Visualization ‘95,
pp. 118-125, 1995.

[Bre94] Brewer, C.A.: ColorUse Guidelines for
Mapping and Visualization. In: Visualization in
Modern Cartography. Elseview Science, Tarry-
town, NY, pp. 123-147, 1994.

[Bre99] Brewer, C.A.: Color Use Guidelines for Data
Representation. Proceedings of the Section on
Statistical Graphics, American Statistical Asso-
ciation, Alexandria VA, pp. 55-60, 1999.

[Har03] Harrower, M.A. and Brewer, C.A.: Color-
Brewer.org: An Online Tool for Selecting Color
Schemes for Maps. The Cartographic Journal,
Vol. 40, No. 1, pp. 27-37, 2003.

[Mey88] Meyer, G.W. and Greenberg, D.P.: Color-
Defective Vision and Computer Graphics Dis-
plays. Computer Graphics and Applications, Vol.
8, No. 5, pp. 28-40, 1988.

[Rog96] Rogowitz,B.E. and Treinish, L.A.: How
NOT to Lie with Visualization. Computers in
Physics, Vol. 10, No. 3, pp268-274, 1996.

[Rog98] Rogowitz, B.E. and Treinish, L.A.: Data
Visualization: The End of the Rainbow. IEEE
Spectrum, Vol. 35, No. 12, pp. 52-59, 1998.

[Rut03] Ruth, T.: Möglichkeiten und Grenzen der
automatischen Farbskalierung unter dem Gesi-
chtspunkt der Vergleichbarkeit von Visualis-
ierungen. Diploma thesis, Institute for Computer
Science, University of Rostock, 2003.

[Sch03] Schulze-Wollgast, P., Schumann, H. and
Tominski, C.: Visual Analysis of Human Health
Data. Proceedings of the International Resource
Management Association 14th International Con-
ference, Philadelphia, 2003.

Figure 9 Comparison of time steps. The upper maps show 3 time steps each visualized without taking care
of comparison aspects. The time steps seem to have similar underlying data. The lower maps have been
created based on a user’s decision to compare the 3 time steps. The common color scale allows the
comparison of the maps. Contrary to the upper maps it can be seen, how data changes over time.
Moreover, it can be clearly stated that the data values decrease from the first time step (left) to the second
(middle) and then increases from the second time step to the third (right). The Box-Whisker plots further
ease the understanding of the data for each view.

A Motion Constrained Dynamic Path Planning
Algorithm for Multi-Agent Simulations

T. R. Wan

Department of EIMC,
School of Informatics,
University of Bradford,

Bradford, West Yorkshire, UK,
BD7 1DP

T.Wan@Bradford.ac.uk

H. Chen
Department of EIMC,
School of Informatics,
University of Bradford,

Bradford, West Yorkshire, UK,
BD7 1DP

H.Chen3@Bradford.ac.uk

R.A. Earnshaw
Department of EIMC,
School of Informatics,
University of Bradford,

Bradford, West Yorkshire, UK,
BD7 1DP

R.A.Earnshaw@Bradford.ac.uk

ABSTRACT
In this paper, we present a novel motion-orientated path planning algorithm fo r real-time navigation of mobile
agents. The algorithm works well in dynamical and un-configured environments, and is able to produce a
collision-free, time -optimal motion trajectory in order to find a navigation path. In addition to the motion
constraint path planning, our approach can deal with the unknown obstacle-space terrains to moving agents. It
therefore solves the drawbacks of traditional obstacle-space configuration methods. Multi-agent behaviour has
been explored based on the algorithm. In the simulation a simple physically-based aircraft model has been
developed, which is addressing the manoeuvring capabilities of the moving agents, while the moving agents'
accelerations and velocities are always continuous and bounded. The generated motion path is constituted
smoothly and has continuous curvature on the whole state space of the motion, thus satisfying the major
requirement for the implementation of such strategies in real-time animation or in simulation applications in VR
environments.

Keywords
Motion modelling, Constraint motion, path planning, trajectory generation, multi-agents.

1 INTRODUCTION
Path planning with motion modelling is an important
and challenging task that has many applications in
the fields of AI, virtual reality, autonomous agent
simulation, and robotics. The various approaches
reported have different criteria to be met, which
result in a number of algorithms, and provide
solutions to specific application problems. The basic
task for the motion constraint path planning is to
perform navigations from one place to another by co-
ordination of planning, sensing and controlling whilst
maintaining a smooth motion trajectory. Navigation
may be decomposed into three sub-tasks: mapping
and modelling the environment; path planning and
generation; and path following and collision
avoidance. Path-finding is properly the most popular
and frustrating game AI problem in computer game

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Conference proceedings ISBN 80-903100-7-9
WSCG’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

industries [Ari01, Tat91]. Early work was
concentrated on offline planners. These methods used
the map of the environment to produce a configured
path [Oom87, Lum90]. The common ground for this
type of method is that the planner must have full
information about the environment [Pad00, Lat91].
Most of the current successful approaches lead to
some sort of graph search strategy [Jos97]. An
approach called line intersection was proposed when
the data consisted only of geometrical objects. The
objects here were solid and all the space not occupied
by an object was considered unobstructed. There was
no variation in vehicle speed or other parameters.
The idea was to construct the convex hull of all
objects using vertices and connect all vertices with
edges. These edges are then filtered to find the
shortest valid path between source and destination
along a series of edges using standard graph
algorithms. These methods suffer from the problem
of a rapid increase in computation time and memo ry
for large and complex maps [Mon87, Hol92].
Another popular approach is called weighted graph
[Woo97], which divides the search space into a
number of discrete regions, called cells, and restricts
movement from a particular space cell to its
neighbour. Neighbouring cells are those that can be
directly reached from a particular cell. A weight
function is defined by the cost of the connection

between neighbour cells [Woo97]. A* is the most
popular algorithm of this kind, which uses the
weighted graph idea. Recently an approach called
path planning algorithm D* [Ste95, Yah98] was
reported, which resembled the A* algorithm for
applications in partially known environments, and
only achieved limited success [Yah98].

Given that motion factors must be taken into
consideration, the main problem is to generate a
smooth trajectory curve by joining two distinct
configurations in the space with constraints using
interpolated piecewise polynomials. Curves have
been an object of mathematical study and also a tool
for solving technical problems and applications. The
construction of smooth curves is the trajectory
generation for moving agent path planning and
motion control, for example , the simulation of an
autonomous car or aircraft in a virtual environment,
and the robot motion trajectory control in the real
world. A C2 smooth curve is necessary for the agent
or its control system to track either in a virtual
environment or in the real world. Motion trajectory
was discussed by L.E.Dubins [Dub57], who proposed
the solution using straight segments connected with
tangential circular arcs of minimum radius and
proved that the shortest distance between two
configurations was such a path. However it is
important to note that the curvature along such a
trajectory curve is discontinuous; the discontinuities
occur at the transitions between segments and arcs.
The non-continuous curvatures may result in
difficulties in agent control. Continuous-Curvature
Curve (3C) generation has become a key technique
for on-going research in this area. A few types of
splines have been proposed to solve this problem.
Yamamoto et al [Yam99] studied the B-spline-based
path planning for finding the time optimal trajectory;
Tomas et al [Ber03] used the bezier curve in path
planning, having considered minimizing the square
of the arc-length derivative of curvature along the
curve. Y. Kanayama and N.Miyake [Kan86]
suggested that using clothoid curve would form a
smooth path with continuous curvature, and the
resulted curve curvature varies linearly along the
path. Later, Y.Kanayama and Hartman, B. I [Kan89]
proposed another solution using a cubic curve. A.
Scheuer and Th. Fraichard [Sch96, Fra01] used
clothoid curves in their vehicle control experiment.
Bryan Nagy and Alonzo Kelly [Nag01] adopted
cubic splines in their trajectory generation algorithm.
However, previous work has mainly been focused on
the static trajectory generation problem and on
finding the solutions for 2D applications.

In this paper, we propose a new approach for motion
modelling for autonomo us moving agents in virtual
environments. We improve the conventional A*

method by developing a dynamical visible point
detection system, which allows the system to update
its optimised node system based on the viewed vision
field, rather than the pre-configured environments, to
find a smooth motion path in real-time. Our method
is capable of dealing with dynamic unknown
environments using motion constraints and is very
efficient in terms of computational cost.

2 UNKNOWN ENVIRONMENTS
One of our objectives in the current work is to study
and develop a path planning algorithm for
autonomous agent navigation or exploration in
unknown environments. The task can be divided into
three parts, plan a main path according to the pre-
information, keep tracking the difference between the
map and the real environment, and then locally
amend the pre-designed path. This strategy can
efficiently use the available information and reduce
the re-planning time. Navigation in an unknown
environment is a more challenging topic; at the same
time it is also the most promising technology that
could be used for generic applications. For example,
unmanned robots with navigation ability in unknown
environments could achieve tasks in many dangerous
places that humans would not wish to entry for safety
or health reasons. Navigation is an important part of
AI. Navigation in an unknown environment means
no pre-information is available before the path-
planning algorithm has been executed. The self-
guided agent uses the sensor equipped to detect the
surrounding environment and obtain the local
information. It then uses the local information to
generate the path to the destination. In our current
work, a virtual environment has been built, which
consists of a terrain with unknown configuration and
obstacles. A hierarchical strategy has been developed
in the current work for creating a navigation
environment using raw terrain data.

3 MOTION DYNAMICS
Representing all the motion characteristics by
analytical equations can be unpractical. A simplified
motion model is considered in the current work. The
moving agent model developed has six degrees of
freedom and the dynamics of the model can be
represented as a set of motion parameters in terms of
mass, accelerations and steering angles as well as
external force conditions, such as air resistance or
ground frictions. The dynamics of a moving
autonomous agent must follow the basic law of
motion dynamics, which may be represented as a set
of general ordinary deferential equations in the form:

),,(2

2

δXXf
dt

Xd &= (1)

where, X, X& ∈ ℜ which is the motion state of the
agents and its first derivative, and δ is the motion

control input. We can recast the equation for our
motion optimisation problem in the form:

)(),,(ˆ
2

2

δδ ∆+= XXf
dt

Xd & (2)

))ˆ,(,ˆ,(ˆ),,()(ˆ θδδδ aXXfXXf && −=∆ (3)

where, X̂& , â and θ̂ are approximate values of
motion velocity, acceleration and direction of motion
(i.e. a steering angle) respectively, and the motion
control δ is a function of acceleration a and moving
direction θ. A desired or predicted motion state of the
moving object is pre-estimated by a set of
approximate functions according to the state of
moving object and the environment conditions
related to the surrounding obstacle–space. The actual
motion track is then computed. The difference
between the predicted motion and the actual motion
will be used for estimating the control input to the
motion system above.

4 PERCEPTION AND CONTROL
ARCHITECTURE
In our system the "visual sensor" captures the
information about the environment. It is a simple
method to compute which parts of objects can be
seen from the location of the agent. A virtual camera
performs perspective projection, all points along a
line pointing from the optical centre towards the
location of the agent are projected to a single point.
We assume all the obstacles are opaque. The mutual
occlusion of objects and self-occlusion are analysed.
The maximum detection distance and view angle are
then calculated. All the obstacles out of the
maximum detection distance or view angle are
assumed to be invisible. If in one direction there is no
obstacle within the maximum detection distance, we
can use the point at the end of the detection distance
as the flag in this direction.

The motion control for the agent moves through a
field of obstacles to a goal, which includes finding
and predicting an optimised path and controlling its
motion parameters in order to follow this path. We

use the information from the virtual vision sensor to
identify the key obstacle points and edges, then
create and add the obstacle nodes and path nodes to
the vision system. One of the advantages of our
approach is that the generated desired or predicted
path is dynamic but it is not necessarily the ones the
mobile agent must pass exactly at a given time and
the actual motion track is therefore smoother in terms
of curvature. The position errors between exact
desired path nodes and the actual motion track are
then used to modify the motion parameters. Another
advantage over other methods is that our approach is
quite robust with respect to errors and external
disturbances. If both errors and the disturbances are
within certain bounds, the algorithm can still work
effectively. The architecture of the system is shown
in Figure 1.

5 PATH-PLANNING ALGORITHM
The Path-Planning in our work can be stated as
follows: given an arbitrary rigid polyhedral object, P,
and polyhedral environment, find a continuous
collision-free and smooth motion trajectory path
taking P from some initial configuration to a desired
goal configuration. For a path planning problem, the
A* algorithm appears to be an obvious option, and it
is so far the most widely used searching algorithm
associate with heuristic search. A* explores paths
from an initial state in a systematic manner whilst
paying a little attention to the path finding cost. It is
the optimal solution under certain conditions. The A*
path planning algorithm will execute actions
(sequence of actions from a state to another in the
state space) after the shortest path has been found.
However, it is basically an offline search algorithm
and can not be used for unknown or dynamic
environments. Our method uses dynamically
allocated points through on-line searching, sensing
and reasoning in the environment. At any location of
the environment, we could find the points of
visibility that are concerned with the co-ordination of
the agent. The information perceived is analysed and
the resultant path points are recorded and used to

Figure 1: The architecture of the motion control system

Motion
Planning

Path
Planning

Path/Motion
Implementation

Environment

Virtual sensor Tracking
control

New Agent
State

State
Machine

Reasoning and
decision-making

construct memorised path nodes. The algorithm uses
the angle to partition the obstacle-space, while
keeping a safe margin, which allows the agent to plan
its path and motion trajectory at any location in the
environment. Penalty functions were introduced to
make the state node with no obstacles a higher
priority. It then chooses the lowest cost state as the
local goal and keeps iterating until it reaches the
destination goal.

Figure 2: Creating a smooth motion path trajectory in

a dynamically allocated safe-pass valley.
As noted earlier, in order to deal with unknown or
dynamic environments, a suitable path planning
algorithm must be a real-time one. The agent
executes actions before finding the global solution.
So it is an exploration in an unknown environment or
a dynamic environment. A number of heuristic
functions were defined, which could provide the least
cost path estimated from the current state to a goal
state and the actual cost estimated from the initial
state to the current path state. The actions defined
will return a list of possible solutions in the state
space. Assuming that an action is deterministic, the
agent might have access to an admissible heuristic
function, which estimates the distance from the
current to a goal state. The objective of this
consideration is to reach the goal with shortest
distance with a motion constrained minimum cost.
For example, the agent is required to go through a
complex obstacle block to reach a destination in a
reasonable time whilst maintaining smooth motion
characteristics. Figure 2 shows an example of
generating a smooth path in the range of a safe valley
identified by the agent’s perception and reasoning.

6 BUILDING UP A DYNAMIC TREE
FOR PATH FINDING
A dynamic path tree must be created for the
searching process. The planning algorithm searches
in a state space for the least expensive path from a
start state to a goal state by examining the
neighbouring or adjacent states of particular states
(the states are formed according to the map
representation). By repeatedly examining the
promising unexplored location area, the algorithm
will reach an end if a configuration is the final goal.
Otherwise, it takes notes of all that location’s
neighbours for further exploration.

In order to avoid the agent being halted in a dead-
end, we assume the path or actions executed are
reversible. So if our real-time path planning reaches a
dead-end state, where no goal state is reachable, the
agent could seek to reverse it actions. It should be
noted that no algorithm can avoid dead-ends in all
state spaces . In cases where the agent reaches a dead-
end, it must find a way back by its own reasoning
according to the information available . According to
the requirements of motion dynamics, it can not
simply travel back to the state it previously visited.
Instead a number of extra actions must be executed,
and an extra set of states must be added, in order to
return the motion back to the state. After that it
should follow the path in a reverse direction until it
finds a branch node, which was executed before. The
algorithm does not make the agent follow the action
path tree in a reverse order, because of the motion
constraints. We must guarantee the motion is smooth
or at least C1 continuity. Once the agent reverts to
the nearest branch path node, the sequence of the
path node state will be pruned from the path tree. The
searching algorithm uses two data structures to
record the path information, one is a list called Close
to record the passed states , and the other is called a
tree called PathTree to record the path map. At the
start, Closed is empty, and PathTree has only the
starting state. In each iteration, the algorithm
removes the most promising neighbour

Figure 3: An illustrating example of building up a dynamical tree
b: Branch node; c: Current node; O: Dead-end.

Goal
State

Initial
State Safe Valley

Boundaries

Obstacles

c

c c c

(a) (b) (c) (d)

e

b

state for examination. If the state is not a goal, all the
other neighbouring states are sorted. If they are
already in Closed, they are ignored. Otherwise they
are kept in temporary locations. The algorithm will
then perform a procedure called Merging to reduce
the useless neighbour states. If some states could
survive, then the current state is recorded as a split
node, and the neighbours are recorded as crosses in
PathTree. If no neighbour state is available, the
PathTree will trace back to the nearest split node, and
switch to a new cross. If all the crosses in the
PathTree have been tested before the goal is reached,
it concludes that there is no path to the goal from the
specified start configuration. Figure 3 shows an
illustrating example, in which an agent performed an
on-line path search: It reached a dead-end in (a), and
found a way back, (b), reached a branch node (c), and
pruned the path sequence unsuccessful and planed
the path in another route (d).

7 MOTION TRAJECTORY CURVE
Trajectory generation is important for the motion
constraint path planning, because the moving agent
will have to adjust or control its motion state to
follow the trajectory reasonably closely whilst
maintaining good motion characteristics. The
clothoid curve is very useful because its curvature
varies linearly along the arc. Kanayama [Kan89]
proposed to use this curve for motion trajectory
design. It is now the most commonly used curve type
for highways and railroad design [Esv01]. It is
chosen for generating a smooth path since it satisfies
all the requirements for agent motion control tasks
and modelling. The Clothoid curve is an intrinsic
spline, it can not be expressed in a close form, and
this is the biggest disadvantage and results in
calculation difficulty. However, its curvature varies
linearly along the arc, and the curve can be
constructed from its curvature. On the other hand,
since the parameter t is proportion to the length of the
arc, it can be used directly as a trajectory. The
derivative of the curvature of clothoid curve is a
constant which is identical with the Bang-bang
control theory in aiming at giving solution to the
optimal-control problem. The clothoid curve is
defined as following form:

0)(CvsksCv +∗= … (3)

where s is the arc length,)(sCv is the curvature and k
is a constant. The direction of the tangent vector is
the integration of the curvature and expressed by

∫ ++=+=
s

sCvskdsCvsks
0 00

2
0 ***

2
1

)*()(θθ

 …(4)
In our work, three dynamically allocated points in a
3D space are identified at each state for each basic
curve element configuration. Unlike a conventional

approach, we do not restrict the curve as a symmetric
pair since it may encounter difficulties in a global
configuration. The global trajectory is made up of a
set of local curve pieces and we should not only
guarantee the smooth agent movement along local
curve, but also the smooth transition between these
curve elements. Our approach is to use an un-
symmetric clothoid curve element plus two extra
dynamic control points S2 and S4 to offer the more
flexible and powerful solution to the trajectory
generation problem. In practice, a symmetric pattern
cannot always be guaranteed to be the optimal
trajectory to follow, and the un-symmetric pattern is
the general situation and offers more flexibility for
the control process. In order to achieve a successful
smooth connection at the joints between curve
elements, keeping in mind that each destination state
is also the new initial state for the next move step, the
direction of the motion trajectory at the current
destination location should be the same as at the next
new initial agent location. The curvatures at the both
locations should also be the same for smooth
curvature transition. To meet these requirements, two
transition points are introduced which are determined
by the motion kinematical states of the agent to
produce a smooth transition between curve elements.

As shown in Figure 4, the agent starts at S1. S3 S6 are
the points perceived, and S2 , S4 are the two points
added to control the agent movement to make a
smooth transition between adjacent clothoid curve
elements, which are derived from the agent motion
requirements that satisfy the agent kinematical
conditions and the equations (3) and (4). The first
local curve element ends at the destination point S4,
which is also the new initial position of the next
clothoid curve element. At S4, the curvature is
decreased to zero and the direction is from S3 to S6,
The trajectory generation will keep going as long as
subsequent path points are supplied.

Figure4: An example of the global configuration

x

y

S1

S2

S3

S4

S5

S6

S7
S8

S9
S10

S11

S12
 z

8 GROUP BEHAVIOUR
Our multi-agent path planning algorithm in unknown
environments is developed based on the single agent
path planning environments. In the multi-agent
environments, introducing more than one agent
simply will lead to poor performance if they are just
simply added. Therefore the agent path planning
algorithms must be changed to introduce elements for
joint activities. The observation and prediction about
other agents will be included in order to operate
effectively and in a timely manner. Our method is to
plan actions jointly via coordination and
communication. In a simulation, the agent also acts
as an obstacle or part of the environment, although
they are not static most of the time. The path
planning problem and strategy for joint activities is
best constructed according to the goals specified for
the location and motion states of each agent. The
algorithm is summarised as follows:

Agent A: Init ialise agents A, which including agents’
state location, behaviours etc.
Goals: Assign specific goals to A, including a final
goal and sub-goals
Actions: Move, how to move, perceiving
environment, recognise other agents and the
environment. Predict other’s intention etc.
Approaching other agents
Agent B:
…
Plan and strategy: Coordination, communication,
competition and collaboration etc.

The algorithm has been implemented in our
simulation and a basic exploration test was conducted
at this stage.

9 SIMULATION RESULTS
A number of simulations have been conducted in our
work for evaluating the motion trajectory generation
algorithm. An auto-pilot-aircraft was created as an
intelligent agent and it has the ability to perceive the
visual information about the environment when it is
in a navigation. Sensors have been created and
attached to the aircraft.

Figure 5 show three instances of a path planning
simulation. using the algorithm discussed above.
Figure 5a shows that the moving agent moves to the
entrance of an unknown alley, where there are three
potential paths that have been created and a split
node is created and added to the path tree. Figure 5b
shows the agent moving back to the nearest split
node. Figure 5c shows that the moving agent's
successful navigation through the alley.

a)

b)

c)
Figure 5: A simulation test; a. 1 merge paths and
search optimal path b. exit from blind alley c.

successful navigation through obstacle block

Figures 6 and 7 show two simulation experiments.
The experiments were designed for an autonomous
moving agent to navigate through complex obstacle
environments with different motion characteristics.
The simulations were quite successful and the res ults
are satisfactory. Figure 8 shows a screen capture of
real-time aircraft simulation in a virtual environment,
in which the aircraft acted as an autonomous agent
who used visual information to detect obstacles in
order to find a path to conduct an obstacle-free
navigation.

Figure 6 Navigation Simulation Case 1.

Figure 7 Navigation Simulation Case 2

Figure 9 show two instances of path planning
simulation involving two agents. The final goal for
one agent is market as g and the goal for the other
agent is actually the first agent’s configuration.
Therefore, the two agents perform a chasing
simulation. Each agent is a part of the environment.
Figure 10 shows a 3D path planning simulation
involving two aircrafts in a virtual environment.

Figure.8 A aircraft simulation in a 3D environment

Figure.9 Two agents chasing in a 2D environment

g: final goal

Figure.10 Two aircraft chasing training simulation

The algorithm has been implemented in C++ and
tested on a 1000 MHz Pentium processor PC with
256M memory and Matrox G450 graphics card
(360MHz, 32M memory). The experiments of indoor
scene simulation shown in Figure 7 were using a
500*500 units’ space. The time cost of trajectory
generation, the accurate trajectory length and the
average end position error, using different space
curves, are shown in Tablet 1.

9 CONCLUSIONS
A novel motion constraint path planning approach for
real-time navigation of agents is proposed in this
paper. The algorithm works well in dynamical and
un-configured environments, and is able to produce a
collision-free, time -optimal smooth motion
trajectory. Multi-agents behaviour has been explored
based on the algorithm. A simple physically-based

Tablet.1. Time cost of trajectory generation, trajectory length and average end position error of an indoor scene

 Trajectory Length (unit)
35000 steps

Total Time cost (ms) Average end position error (unit)

Bezier Curve 1131.405 240 0.0
Clothoid curve 1049.296 280 0.0445
Cubic Spline 1033.071 280 0.0768

(b)

g

(a)
g

aircraft model has been developed, which is
addressing the manoeuvring capabilities of the
moving agents, while the moving agents'
accelerations and velocities are always continuous
and bounded. The generated motion path is
constituted smoothly and has continuous curvature in
the whole state space of the motion thus satisfying
the major requirements for the implementation of
such strategies in real-time navigation. The clothoid
curve has been chosen as the basis for the motion
trajectory generation. A 3D aircraft simulation has
been conducted and the result is quite promising. The
simulation result is quite satisfactory. The next step
for our research is to refine the algorithm and look at
path planning with more complex group behaviours
in simulated environments.

11 REFERENCES
[Ari01] Okan Arikan and Stephen Chenney and {D.

A.} Forsyth, "Efficient Multi-Agent Path
Planning", Proceedings of the 2001 Eurographics
Workshop on Animation and Simulation , Sep,
2001

[Bem96] A. Bemporad, A. De Luca, G. Oriolo,
"Local incremental planning for a car-like robot
navigating among obstacles" in Proc. of the 1996
IEEE Int. Conf. on Robotics and Automation,
Minneapolis, USA, 1996

[Ber03] Tomas Berglund, Hakan Jonsson and Inge
Soderkvist, “An Obstacle-Avoiding Minimum
Variation B-Spline Problem,” International
Conference on Geometric Modelling and Graphic
July 16-18, 2003.

[Dub57] L. E. Dubins, “On Curves of Minimal
Length with a Constraint on Average Curvature
and with Prescribed Initial and Terminal Position
and Tangents,” American Journal of mathematics,
vol. 79, pp.497-516, 1957.

[Esv01] C. Esveld, “Modern Railway Track” , Second
Edition, Published by MRT-Productions, a
subsidiary of ECS, ISBN 90-800324-3-3, 2001.

[Fra01] Th. Fraichard and J. M. Ahuactzin, “Smooth
Path Planning for Cars,” IEEE Int. Conf. On
Robotics and Automation May 21-26, 2001.

Hol92] P. D. Holmes and E.R.A. Jungert, “Symbolic
and geometric connectivity graph methods for
route planning in digitized maps”, IEEE
Transactions on Pattern Analysis and Machine
Intelligence, vol, 14, no.5, 1992, pp549-565.

[Jos97] F. M. Josson, “An optimal pathfinder for
vehicles in real-world digital terrain maps”, the
Royal institute of Science, School of Engineering
Physics, Stockholm, Sweden. MSc thesis, 1997.

[Kan86] Y. J. Kanayama and N. Miyake, “Trajectory
Generation for mobile Robots,” Robotic
Research, vol. 3, Cambridge, MA: MIT Press,
1986, pp.333-340.

[Kan89] Kanayama, Y and Hartman, B. I, “Smooth
local path planning for autonomous vehicles,”
Robotics and Automation, 1989, vol. 3, pp. 1265-
1270.

[Lat91] Latombe, J.-C., “Robot Motion Planning”,
Kluwer Academic Publis hers, 1991, ISBN
0792391292.

[Lum90] V. J. Lumelsky, S. Mukhopadhyay, and K.
Sun. Dynamic path planning in sensor-based
terrain acquisition. IEEE Transactions on
Robotics and Automation, Vol 6, No 4, 1990.

 [Mon87] M. Montgomery et al., “Navigation
algorithm for a nested hierarchical system of
robot path planning among polyhedral obstacles”,
Proceedings IEEE International conference on
Robotics and Automation, pp. 1616-1622, 1987.

[Nag01] Bryan Nagy and Alonzo Kelly, “Trajectory
Generation for Car-Like Robots Using Cubic
Curvature Polynomials,” in Field and Service
Robots 2001, Helsinki, Finland June 11, 2001.

[Oom87] B. J. Oommen, S. S. Iyengar, N. S. V. Rao,
and R. L. Kashyap. Robot navigation in unknown
terrain using learned visibility graphs. Part i:The
disjoint convex obstacle case. IEEE Journal of
Robotics and Automation, Vol RA-3 No.6
December, 1987.

[Pad00] D. Padmanabhan, "Optimal 2-D Path
Planning", AME 598C Project Report, Spring
2000.

[Sch96] A. Scheuer and Th. Fraichard, “Planning
Continuous-Curvature Paths for car-Like
Vehicles,” IEEE-RSJ Int. Conf. On Intelligent
Robots and Systems, November 4-8, 1996. vol. 3,
pp. 1304-1311.

[Ste95] Anthony Stentz and martial Hebert, “A
Complete Navigation System for Goal
Acquisition in Unknown Environment”, In
Autonomous Robots, Volume, Number 2, August
1995.

[Tat91] S. R. Tate. ``Arithmetic Circuit Complexity
and Motion Planning'', Ph. D. Dissertation, Duke
University, 1991.

[Woo97] S. M. Woodcock (editor). "Artificial
Intelligence in Games", 1997,

[Yah98] Alex Yahja, Anthony Stentz, Sanjiv Singh,
and Barry L. Brumitt, “Framed-Quadtree Path
Planning for Mobile Robots Operating in Sparse
Environments”, In Proceedings, IEEE Conference
on Robotics and Automation, (ICRA), Leuven,
Belgium, May 1998.

[Yam99] M. Yamamo to, M. Iwamura, and A. Mohri,
“Quasic-Time-Optimal Motion Planning of
Mobile Platforms in the Presence of Obstacles,”
Int. Conf. on Robotics and Automation, pp. 739-
744, 1999.

Construction of Implicit Complexes: A Case Study

E. Kartashevaα, V. Adzhievβ, P. Comninosβ, A. Paskoγ, B. Schmittδ
α Institute for Mathematical Modeling, Russian Academy of Science, Moscow, Russia, ekart@imamod.ru

β The National Centre for Computer Animation, Bournemouth University, Poole, UK,
{vadzhiev&peterc}@bournemouth.ac.uk

γ Faculty of Computer and Information Sciences, Hosei University, Tokyo, Japan, pasko@k.hosei.ac.jp
δ Computer Graphics Research Institute, Hosei University (Digital Media Professionals), Tokyo, Japan,

schmitt_benjamin@yahoo.fr

ABSTRACT
This paper presents a detailed description of a case-study demonstrating a novel method for modelling and
rendering of heterogeneous objects containing entities of various dimensionalities within a cellular-functional
framework based on the implicit complex notion. Implicit complexes make it possible to combine a cellular
representation and a constructive function representation. We briefly describe a formal framework for such a
hybrid representation as well as a general structure for implicit complexes. Then, using a representative example,
we show how an implicit complex can be constructed geometrically and topologically. We also consider the main
rendering issues specific to implicit complexes and describe some implementation problems.

Keywords
Function representation, cellular representation, implicit complex, polygonization, ray-tracing.

1. INTRODUCTION
Heterogeneous object modelling is becoming an
important research topic in different application
areas, such as volume modelling and rendering,
modelling of objects with multiple and varying
materials in CAD and rapid prototyping, representing
results of physical simulations, geological and
medical modelling. Such objects are heterogeneous
from two points of view: their internal structure and
dimensionality. Varying materials and other attributes
of an arbitrary nature constitute a heterogeneous
internal structure. A dimensionally heterogeneous
object in 3D space can include elements of different
dimensions (points, curves, surfaces and solids)
combined into a single entity from the geometric
point of view (i.e., a point set) and the topological
point of view (i.e., a cellular complex).

A model of objects with fixed dimensionality and
heterogeneous internal structure (multidimensional

point sets with multiple attributes or so-called
constructive hypervolumes) was proposed in [Pas01].
This model uses real functions of point coordinates
(scalar fields) to represent both the object geometry
and its attributes. The hybrid cellular-functional
model [Adz02] allows for representing a
heterogeneous object as a cellular complex with both
explicit and implicit cells (cellular domains) of
different dimension. Such an object is called an
implicit complex (IC), which is defined as the union
of properly joined cellular domains. Explicit cells can
be represented as point lists, parametric curves and
surfaces. Implicit cells can be implicit surfaces and
their patches, intersection curves of implicit surfaces,
or functionally represented (FRep) solids [Pas95].

Figure 1. Components of a flower

In this paper, we present a case-study which allows us
to demonstrate a novel technology for modelling and
rendering of heterogeneous objects using implicit

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WSCG 2005 conference proceedings, ISBN 80-903100-7-9
WSCG’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

Filament

Stamen

Petal

Receptacle

Pistil

Sepal

complexes. This case-study inspired by [Kun03] is
based on a model of a flower (Figure 1) which has the
following components of different dimensionalities: a
3D receptacle, 3D stamens, 3D pistil, 2D petals and
sepals, and 1D filaments. All the components have a
colour that can be expressed as an attribute. Of
course, such an object can be modelled and rendered
using more traditional means than those based on the
cellular-functional framework; however we believe
this case-study allows us to show all the conceptual
phases of modelling and rendering within the
cellular-functional framework as well as outline some
implementation issues. We pay particular attention to
the theoretical and practical issues of the implicit
complex construction.

2. RELATED WORKS
Here, we briefly discuss approaches for modelling
dimensionally heterogeneous objects using various
cellular representations and previously published
work on modelling objects with varying distribution
of material and other attributes.

A typical technique for describing heterogeneous
objects is to represent them as collections of
homogeneous components. To describe complex
topology, different spatial subdivisions, topological
stratifications [Mid00], and complexes [Ohm01,
Pao93] are used.

Topological complexes and their construction
methods are discussed in a number of publications on
shape modelling and solid modelling.
Multidimensional simplicial complexes are used in
[Pao93] for dimension-independent geometric
modelling for various applications. A Selective
Geometric Complex (SGC) [Ros90] is a non-
regularised non-homogeneous point set, represented
through enumeration as the union of mutually disjoint
connected open subsets of the real algebraic variety.
A procedure for designing cellular models based on
CW-complexes with the emphasis on the topological
validity of the resulting shapes is considered in
[Kun99, Ohm01].

To specify non-geometric properties of objects,
spatial subdivisions are used in computer graphics
and in finite element analysis (FEA) as the underlying
structures for piecewise analytical descriptions of
attribute functions. Usually a basic topological
subdivision is selected, which can be described by a
topological stratification [Ros90], a cell complex
[Cut02], or a voxel model. Different types of
functions can be used to describe attributes [Jac99,
Par01].

Another approach to modelling heterogeneous
objects is based on using real functions of point

coordinates. For example, the constructive
hypervolume model [Pas01] supports uniform
constructive modelling of point set geometry and
attributes using such functions. Then, a theoretical
framework combining a cellular representation and a
constructive function representation was proposed in
[Adz02]. An independent cellular and functional
representation of the same object is useful, but not
sufficient in certain applications. For example, in the
above mentioned flower model, each dimensionally
homogeneous component (3D receptacle, 2D petals,
1D filaments) can be functionally represented.
However, without additional information one cannot
separate individual functions for the components
from the single function describing the entire object.
This additional information about objects
components, their dimensions, and attachments to
each other are used in applications such as finite
element mesh generation, animation, and rendering.
The above was the motivation for introducing in
[Adz02] a hybrid cellular functional model based on
the notion of an implicit complex, which allows for
the flexible combination of cellular and functional
object geometry models and attribute models. In the
current paper, we examine in more detail the
construction of implicit complexes.

3. THEORETICAL FRAMEWORK
Here we provide a brief description of a theoretical
framework for the representation of implicit
complexes. A more formal and detailed consideration
can be found elsewhere [Adz02]. In this paper we
present novel material concerned with theoretical and
practical matters of the description and construction
of ICs.

A Hybrid Representation of Geometry
The hybrid geometrical model of heterogeneous
objects presented in [Adz02] combines a cellular
representation and a constructive representation using
real-valued functions. Formally, the hybrid
representation for a geometric object Ω⊆D is
defined as follows:

HM : |}|,,|{ pn KXEXXD ∈⊆ΩΩ∈=

where nE⊆Ω is a modelling space and pK is an
implicit p-dimensional complex. The definition of an
implicit complex is based on the concepts of cellular
spaces and CW-complexes [Fom97, Mas67]. A CW-
complex provides a general representation for
different topological complexes including polyhedral
and cellular complexes.

D is defined as a closed cellular space (domain) and
can be represented as a carrier of a CW-complex K,
such that D=|K|. The hybrid representation scheme

can be defined in the form of the pair
>< KD, represented through a union operation as

><>=<
=

i

N

i
i KDKD ,,

1
� . We can use different

representation schemes for various >< ii KD , pairs.
Suppose that for some subdomains we use the cellular
representation. Such subdomains and their
subdivisions are called explicit and are denoted by

iDE and iKE . Then for the other domains, denoted
by jDI , we use an FRep; so their cellular
representation denoted by jKI is not necessarily
known but can, in principle, be built using some
known method. We call such domains as well as their
subcomplexes implicit ones. Then the point set D is

represented as the union)()(
11
�� �
M

j
j

N

i
i DIDED

==
= . The

complex K is also represented as the union of the
corresponding explicit subcomplexes iKE and the
implicit subcomplexes jKI . Thus,

)()(
11
�� �
M

j
j

N

i
i KIKEK

==
= . Note that if the intersection of

two cells of an IC is not empty, then it consists of a
collection of cells of this complex. The same is true
concerning the boundaries of cells. It is necessary to
impose constraints on the domain boundaries similar
to those for subdomains.

Definition of Implicit Complexes
In the general case, a p-dimensional implicit complex

pK is expressed as }}{,}{{ ,...,0
,...,1

,..,0
,...,1

ps
mj

s
j

pq
ni

q
i

p
jq

teK =
=

=
== ,

where q
ie are cells of all the explicit subcomplexes of

pK and s
jt are implicit cells (such that each s

jt is the
point set coinciding with the carrier of an implicit
subcomplex of pK). Thus, for any jDI there exist

ps
j Kt ∈ such that j

s
j DIt = .

Explicit cells q
ie are defined with respect to the

definition of the CW-complex. The shape of each
explicit cell q

ie is defined by a characteristic
mapping, and its boundary is mapped onto a
subcomplex pr KM ⊂ with dimensionality qr < .

Each implicit cell s
jt is a closed point set defined by

an FRep. The boundary of the implicit cell s
jt is not

necessarily mapped onto any subcomplex of pK and
can contain both explicit and implicit cells. Explicit
cells are indivisible elements of a subdomain
subdivision containing no other cells. Some cells of
an implicit complex can lie inside implicit cells of the
complex. Note that an r-dimensional rK implicit

complex can be reduced to a cellular one. We assume
that each implicit cell rs

i Kt ∈ (where rs ≤<0) can
be discretized. The corresponding methods were
described in detail in [Kar03].

Implicit Complex Description
IC topology is described by relations between its
elements. The general structure of a 3D IC is
illustrated by Fig. 2. By definition, a 3D IC consists
of 0D, 1D, 2D and 3D cells. Let pG be a set of p -
dimensional cells p

ig . Such a set contains both
explicit and implicit cells. There are two main types
of relations that establish connections between cells
of different dimensionalities: the boundary relation
and the “to contain” relation.

Figure 2. The general structure of a 3D IC

We denote by psRb the boundary relation between p-
dimensional and s-dimensional cells, spps GGRb ×⊂ ,

ps < . The pair (s
j

p
i gg ,) belongs to psRb if s

jg

belongs to the boundary of p
ig . The relation “to

contain” is denoted by psRc , spps GGRc ×⊂ , ps ≤ .
The pair),(s

j
p
i gg belongs to psRc if p

i
s
j gg ∈ and

s
j

p
i

s
j ggg ≠∂∩ . The entire structure of 3D IC is

defined by six different boundary relations and nine
different “to contain” relations. Other relations are
the co-boundary, the “to be contained”, the incidence
and the adjacency relations. These can be derived
from the boundary and the "to contain" ones using
various operations on relations.

The geometry of ICs is described as follows. An
explicit cell 0

ie is described by its coordinates. An
implicit cell o

jt is defined in FRep with an inequality

of the form 0)(≥XF . In 3E space, the function
)(XF for 0D cells (points) can be described using

G3

G2

G1

G0

33
cR

32
cR 32

BR

20
cR20

BR 10
cR 10

BR

22
cR

11
cR

31
cR31

BR

30
cR30

BR

21
cR

functions representing the intersection of three
surfaces, the intersection of a curve and a surface, or
directly as the formulation)()(0XXdXF −−= , where
d is the distance from the given point X0. An implicit
cell o

jt can also be described as an image of a point
functionally defined in 2D space.

An explicit 1D cell 1
je is defined by a characteristic

mapping)(: 11 uX jj ϕχ = , which maps the segment
],[10 uu in the space of the real parameter into a

curvilinear and perhaps a closed segment in the 3E
space. An implicit cell 1

jt can be described in two

ways. It can be defined as an FRep object in 3E by
an inequality of the form 0)(≥XF . In such a case,
the 1D cell takes the form of an arbitrary curve
defined as the intersection of two surfaces in 3E .
Alternatively, the cell 1

jt can be represented as an
image of an FRep curve described in 2D space by an
inequality of the form 0)(1 ≥xf j , where 2Ex ∈ . This
mapping is given by a function of the form

321 : EEhj >− .

Explicit 2D cells are represented as images of
triangles and quadrilaterals resulting from
characteristic mapping. For each cell 2

ie , we define
the characteristic mapping),(: 22 vuX ii ϕχ = , which
takes the rectangle 1010 , vvvuuu ≤≤≤≤ in the
parameter space and maps it onto a surface patch in

3E . An implicit 2D cell 2
jt can also be described in

two ways. It can be defined with FRep in 3E by an
inequality of the form 0)(≥XF . Alternatively, one
can use a functional description of the form 0)(2 ≥xf j

in 2E with the subsequent mapping of the form
322 : EEhj >− .

To represent an explicit 3D cell, a variety of maps of
the form),,(: 33 wvuX ii ϕχ = can be used to describe
the shape of curvilinear polyhedrons. Maps of this
kind have been extensively used in describing finite
element sets. Such maps can be used to describe the
cells and attach them to the boundary cells of the
complex by obeying certain boundary conditions.
Once again, an FRep of the form 0)(≥XF is used to
describe the implicit cell 3

jt .

And finally, to describe the non-geometric properties
of a heterogeneous object, represented by an IC, we
use the cellular-function model of the attributes
introduced in [Adz02]. Each attribute iA is defined

by a function of the form mi
ii NES →3: , where mi

iN

is a set of attribute values (which can be a vector or
tensor space). mi

iN is embedded into a real-valued
space of a proper dimension mi. Thus, mimi

iN ℜ⊆ .
Attributes assigned to an implicit complex K are
described by functions iS in a piece-wise manner, i.e.

},:)(|){(KgNgSSS s
j

mi
i

s
j

s
ji

s
jii ∈→= .

Implicit Complex Construction
To create an IC, it is necessary to describe the shapes
of all its elements and, to specify the entire boundary
and the “to contain” relations between its elements.
The attachment operation is introduced allowing the
creation of the IC in a component-wise manner, in
order of increasing dimensionality of its components.
This process is constructive and iterative.

We start with an empty complex ∅=oK , and then at
each construction step i we attach a new component

iL to the already formed subcomplex 1−iK , thus
creating a new complex iii LKK ∪= −1 which is a
subcomplex of the target complex K . We introduce
two types of the attachment operation based on the
one defined for CW complexes [Kun99, Ohm01].

The cell attachment operation assumes that at each
step i of the process another cell r

ig is attached to the
complex 1−iK . First we define the shape of this cell
using one of the methods described above. Then, we
have to modify the relations. So for all implicit and
explicit cells 1−∈ i

s
j Kg lying on the boundary of

r
ig we add the pairs),(s

j
r
i gg to the boundary

relations rsRb (where rs <). Then, for each implicit
cell 1−∈ i

p
l Kg (where rp ≥) that contains r

ig , we
have to add the pair),(r

i
p
l gg to the “to contain”

relation prRc (where rp ≥). Finally, and only if r
ig is

an implicit cell, for all implicit and explicit cells

1−∈ i
q
m Kg (where rq ≤≤0) lying inside r

ig we add

the pairs),(q
m

r
i gg to the “to contain” relation rqRc

(where rq ≤).

The complex attachment operation deals with the
procedure of attaching the complex L to the
complex 1−iK . Assume that L is properly joined to
the complex 1−iK that is CKL i =∩ −1 (where C is a
subcomplex of both L and 1−iK). Thus we have to

create a complex LKK ii ∪= −1 , �
rp

p

p
ii GK

≤

=

=
0

. First, we

define an attachment map ψ that relates the
equivalent cells of the initial complexes. Then, we
obtain the sets p

iG of the complex iK as quotient sets

of the union of the corresponding sets of the initial
complexes by the quotient map ψ as
follows: ψ~/)()()(1 LGKGKG p

i
p

i
p ∪= − , (rp ≤≤0).

Finally, we define the boundary and the “to contain”
relations of the complex iK .

4. THE FLOWER CASE STUDY
Here we present a systematic description of how the
cellular-functional model of a flower that is
considered as an example of an heterogeneous object
can be constructed based on the theory presented
above.

The Components
To create a model of such a composite object as a
flower, we start from modelling its separate
components (see Fig. 1).

• The 3D receptacle is modelled using an FRep,
and is defined as a half-ellipsoid combined with a
solid noise function (algebraic sum with Gardner’s
noise function). The corresponding FRep function is
denoted by Fr.

• The 3D pistil is also defined by an FRep, and the
corresponding constructive tree is composed of
ellipsoids in the leaves and blending union in the
nodes. The corresponding function is Fp .

• The 3D stamens are defined as an algebraic sum
of an ellipsoid and Gardner’s solid noise function,
corresponding to the function Fs .

• The 2D petals and sepals are specified in two
steps. First, an object is described by an FRep in 2D
space (Fig. 4a). The function Fpt describing this
object on the VU × plane is defined as the difference
between a large 2D solid ellipse and two smaller ones
(representing the holes). Then, tapering and general
space mapping deformations are applied to the
object. The corresponding mapping function hpt is
defined using a technique similar to FFDs and the
resulting object is a surface patch in 3D space (Figure
4b).

• The 1D filaments are explicitly defined by spline
curve segments defined in 3D space. These curve
segments are defined as],[),()(10 uuuuur f ∈= ϕ .

We consider the flower as an heterogeneous object
which has a colour property. This is represented by
an RGB colour attribute which is described by the
function 33 ℜ→= ES in a piece-wise manner, so that

}{ iSS = , where each Si maps the corresponding
subset of E3 into the RGB space.

The listed components differ in dimensionality and
representation. Let us show how an accurate
definition of a composite object can be made.

The Implicit Complex Structure
Altogether, the complex K describing the entire
heterogeneous model of the flower fragment
consisting of the receptacle, the pistil, a petal and a
stamen, and contains cells corresponding to different
flower components (Fig. 3). The receptacle is
described by the 3D cell 3

1t , the pistil by the 3D cell
3
2t , the stamen by the 3D cell 3

0t , the filament by the
1D cell 1

0e , and the petal by the 2D cell 2
0t . To

assemble the listed components together we have to
add auxiliary cells describing their interconnections.

Figure 3. IC structure for ‘Flower’ model.

Let Gi be a set of cells of dimension i. As each cell is
associated with the assigned attribute functions being
specified in brackets, we have:

)}(),(),(),({ 3
0
13

0
01

0
12

0
0

0 StStSeSeG =

)}(),(),({ 2
1
13

1
01

1
0

1 StStSeG =

)}(),({ 2
2
13

2
0

2 StStG =

)}(),(),({ 1
3
22

3
11

3
0

3 StStStG =

The boundary relations Rb establishing connections
between cells include the following pairs:

)},(),,)(,(),,{(0
1

1
0

0
0

1
0

0
1

1
0

0
0

1
0

10 tttteeeeRb =

)},(),,{(1
1

2
1

1
0

2
0

21 ttttRb = ;)},(),,{(0
1

2
1

0
0

2
0

20 ttttRb =

)},(),,{(2
1

3
1

2
1

3
2

32 ttttRb = ;)},(),,(),,{(1
1

3
2

1
1

3
1

1
0

3
1

31 ttttttRb = ;

)},(),,(),,(),,{(0
0

3
2

0
1

3
1

0
0

3
1

0
1

3
0

30 etttttetRb = .
All the "to contain" relations are empty for this
complex.

A Detailed Mathematical Description
Let us introduce the following mathematical entities:

t3
0

t2
0

t3
1

t0
1

t0
0

e0
1

e0
0

e1
0

t1
1

0D cell

3D cell

2D cell

t1
0

1D cell

t2
1

t3
2

• FrepCell(xdim,F) represents an implicit cell
defined by a real-valued function F(x) and depends
on the space dimension xdim.

• MappedFCell(xdim,F,h) represents a mapped
implicit cell defined by a real value function F(x) and
a mapping h:E2->E3 .

• ExplicitCell(bnd,χ) represents explicit cells
defined by their boundaries bnd and characteristic
mapping χ,. Note that explicit 0D cells are described
by just their coordinates.

Now, we can define all the cells in step-by-step
manner.

1. The stamen is described by the 3D implicit cell
3
0t = FrepCell(xdim=3,F=Fs).

2. The receptacle is described by the 3D implicit
cell 3

1t =FrepCell(xdim=3,F=Fr) and the pistil – by
the 3D implicit cell 3

2t = FrepCell(xdim=3,F
= rp FF 0\) where 0\ denotes an R-function defining
set-theoretic subtraction. Note that such a definition
insures that the cells 3

1t , 3
2t have no common internal

points. Initially the pistil and the receptacle were
described independently so they may overlap in 3D
space. To specify the intersection of the cells 3

1t , 3
2t

we introduce a 2D implicit cell 2
1t =

FrepCell(xdim=3,F = pr FF 0
2)(Λ−) which represents

a surface segment, here 0Λ denotes an R-function
defining a set-theoretic intersection. The boundary of
the cell 2

1t intersects the boundaries of the cells 3
1t ,

3
2t , so we have to add a 1D cell 1

1t =
FrepCell(xdim=3,F = 2

0
2))((pr FF Λ−−) describing

this intersection.

3. The stamen and the pistil are connected to each
other by the filament described by the 1D explicit cell

1
0e . We set 1

0e = ExplicitCell(bnd={)(),(10 uu ff ϕϕ },
],[),(10 uuuuf ∈= ϕχ }. We assume that the end

points of the curve segment lie exactly on the
boundaries of the cells 3

2t and 3
0t , and the segment

has no other common points with 3
2t and 3

0t . So we
can define the intersection of the filament 1

0e with the
pistil 3

2t and the stamen 3
0t explicitly by 0D cells 0

0e
and 0

1e . These cells are specified by their Cartesian
coordinates:)(0

0
0 ue fϕ= ,)(1

0
1 ue fϕ= .

4. The petal is described by the mapped implicit
cell 2

0t . Initially the petal was defined in the same
manner by the pair),(ptpt hF . But this definition

does not take into account the adjacent component,
namely the receptacle. Then, one can formulate the
following constraints for the trimmed petal which
intersects the receptacle only along the boundary:

≥
≤

0),(
0)),(),,(),,((

vuF
vuhvuhvuhF

pt

ptzptyptxr

Here we assume that the mapping function
32: EEhpt → is defined as

)),(),,(),,((),(vuhvuhvuhvuh ptzptyptxpt = , where (u,v) is
a point in E2. Thi is equivalent to the description of
the cell 2

0t = MappedFCell(xdim=2,
),()),((0 vuFvuhFF ptptr Λ−= ,),(vuhh pt=).

5. The petal 2
0t is a 2D cell in 3D space, and the

receptacle 3
1t is a 3D cell. Their intersection is

defined by a curve segment represented by the
implicit cell 1

0t . The constraints for this cell (which
has to belong to both the surface of the receptacle and
the boundary of the petal) can be expressed as the
following system:

≥
=

0),(
0)),(),,(),,((

vuF
vuhvuhvuhF

pt

ptzptyptxr

Therefore, 1
0t =MappedFCell(xdim=2,

),())),(((0
2 vuFvuhFF ptptr Λ−= ,),(1

0 vuhh pt=).

Finally, the start and end points 0
0t and 0

1t of the 1D
cell 2

0t are defined in a similar manner taking into
account some relevant constraints (omitted here
because of shortage of space).

The Implementation Model
We have implemented cellular-functional modelling
of heterogeneous objects within an object-orientated
framework. Let us outline the principal classes which
are directly derived from the presented theoretical
description. The basic IComplex class represents an
implicit complex data structure (Fig.2 is an
illustration). Its attributes represent six boundary
relations and nine “to contain” relations as well as
cells of various dimensionalities. It is assumed that all
the cells are enumerated. Each relation is described
by the object of the Relation class which contains all
the pairs of numbers of related cells. The operations
of the Relation class allow us to get the indices of all
the related cells as well as to add and delete pairs of
cells. Accordingly, the IComplex class includes
operations for adding, deleting and modifying
relations, as well as inquiry operations on relations.
The implicit complex geometry within the IComplex
class is specified using objects of classes inherited
from the abstract G<dim> class parameterized by the

cell dimensionality dim. Objects of the ExplicitCell
classes represent explicitly specified parametric
curves, surfaces and solid objects. As to implicit
cells, they are represented by objects of either
FRepCell or MappedFCell classes. They are all built
on the basis of an abstract FRep class that is also
parameterized by the dimensionality of the coordinate
space xdim. This basic class contains virtual
operations for defining the point membership with
respect to some FRep object as well for rendering and
discretization. All the classes describing FRep
primitives and operations are inherited from the basic
abstract FRep< xdim> class. ParamCurve,
ParamSurf and ParamSolid classes allow the
definition of corresponding parametric entities. They
also contain virtual operations for rendering and
discretization. Our software tools used for
implementation of the flower case-study are built
using this object-oriented model.

5. RENDERING
In this section we describe how an implicit complex
can be rendered.

(a) (b) (c)

Figure 4. (a) planar 2D surface; (b) polygonized
2D petal in 3D space; (c) textured sepal

An implicit complex includes implicit and explicit
cells of different dimensions. Let us first consider the
application of existing rendering techniques. Explicit
cells, such as points, lines and triangles, can be
rendered using traditional techniques such as a
standard library (OpenGL or DirectX) and graphics
hardware. Implicit cells require more advanced
techniques, such as raytracing [Blo97] or
polygonization algorithms for 3D implicit cells
[Pas88]. These techniques have been extended in
[Sch04] by rendering implicit cells of lower
dimensions, defined as trimmed implicit surfaces and
curves. Here, we assume that each cell of the implicit
complex can be rendered individually using one of
the above-mentioned techniques.

To render the flower model, one can choose different
polygonal based and ray-trace based rendering
techniques. If one wishes to visualize the implicit
complex using a polygonal representation, one can
easily convert each implicit cell to an explicit
representation using an ad-hoc polygonization

algorithm ([Pas88, Sch04]), and then render the
implicit complex with traditional graphics hardware.
Figure 4 shows the polygonized sepal of a flower. To
generate Fig. 4c a colour attribute implemented
through procedural texturing was used.

To directly ray-trace an implicit complex, one needs
to combine the existing ray-tracing techniques for
explicit and implicit cells using a common Z-buffer.

Figure 5. Rendering a flower modelled as an IC.
The filaments are defined as 1D explicit cells, the

petals (yellow and magenta) and sepals (green) are
defined as 2D implicit cells, and the remaining
components (stamens, receptacle and pistil) are

defined as implicit 3D cells.
The main problem is to render 1D cells as they can
not be ray-traced directly since they are defined as
curves and line segments. Therefore, 1D explicit and
implicit cells have to be first rendered by techniques
other than ray-tracing. For instance, one can retrieve
the data stored in a frame buffer and a Z-buffer after
using a polygonization routine and graphics hardware
for rendering, or directly use an existing line drawing

algorithm. Then, the remaining cells of higher
dimensions can be ray-traced all together. For each
ray, the intersection points with the explicit cells are
directly computed, and the intersection points for the
implicit cells are procedurally evaluated.

Fig. 5 shows rendered images of the modelled flower.
The 2D and 3D cells have attributes representing the
colour based on the constructive hypervolume model
[Pas01]. Note that for visualization purposes, we
replace 1D cells with thin cylinders to be able to
shade them. The petals and sepals have first been
polygonized, as they are defined as 2D shapes, and
then deformed by a forward mapping. First, 1D and
2D cells were rendered by ray-tracing resulting in a
frame buffer and a z-buffer. Next, 3D implicit cells
were ray traced and combined with the image already
stored in the frame buffer, depending on the
comparison of the depth of the current ray
intersection with the implicit cell and the depth stored
in the z-buffer.

6. CONCLUSION
Implicit complexes make it possible to combine a
cellular representation and a constructive function
representation into a uniform model. In this paper, we
have described the theoretical framework and the
implementation techniques for the construction and
rendering of such models using a simple but
representative case-study. We have paid particular
attention to the practical problems of construction of
a cellular-function model.

This relatively simple case-study has allowed us to
show the benefits of the approach which are
invaluable for complex real assemblies. Such benefits
include: preserving the initial representation of all the
components (however different they may be) and
guaranteeing topologically correct definitions for all
parts and relationships (in particular for boundaries).
This approach also allows us to handle conformity
between the object’s geometry and its attributes
which represent its non-geometric properties.

Future work directions include the development of
specific operations applicable to entire implicit
complexes, an extension of the model to time-
dependent implicit complexes; further development
of the multidimensional version of the model and its
applications, and the implementation of a specialized
modelling and animation language which uses this
novel modelling technique.

7. REFERENCES
[Adz02] Adzhiev V., Kartasheva E., Kunii T., Pasko A.,

Schmitt B.: Hybrid cellular-functional modelling of
heterogeneous objects, Journal of Computing and
Information Science in Engineering, Transactions of
the ASME 2, 4 (2002), 312-322.

[Blo97] Bloomenthal J. et al.: Introduction to Implicit
Surfaces. Morgan Kaufmann, 1997.

[Cut02] Cutler B., Dorsey J., McMillan L., Mueller M.,
Jagnow R.: A procedural approach to authoring solid
models. In Proc. SIGGRAPH’02, ACM TOG 21, 3
(2002), 302-311.

[Fom97] Fomenko A.T., Kunii T.L.: Topological modeling
for visualization, Springer-Verlag, Tokyo, 1997.

[Jac99] Jackson T., Liu H., Patrikalakis N., Sachs E., Cima,
M.: Modeling and designing functionally graded
material components for fabrication with local
composition. Control, Materials and Design 20, 2/3
(1999), 63-75.

[Kar03] Kartasheva E., Adzhiev V., Pasko, A., Fryazinov
O., Gasilov V.: Surface and volume discretization of
functionally-based heterogeneous objects. Journal of
Computing and Information Science in Engineering,
Transactions of the ASME 3, 4 (2003), 285-294.

[Kun99] Kunii T.: Valid computational shape modeling:
design and implementation. International Journal of
Shape Modeling 5, 2, (1999), 123-133.

[Kun03] Kunii T.L., Ibusuki M., Pasko G., Pasko A.,
Terasaki D., Hanaizumi H.: Modeling of conceptual
multiresolution analysis by an incrementally modular
abstraction hierarchy. IEICE Transactions on
Information and Systems, vol. E86-D, No. 7, 2003, pp.
1181-1190.

[Mas67] Massey W.S.: Algebraic topology: An
introduction. Harcourt, Brace&World, Inc, 1967.

[Mid00] Middleditch A., Reade C., Gomes A.: Point-sets
and cell structures relevant to computer aided design.
Int. Journal of Shape Modeling 6, 2, (2000), 175-205.

[Ohm01] Ohmori K., Kunii T.: Shape modeling using
homotopy. In Proc. Int. Conf. on Shape Modeling and
Applications, IEEE Computer Society, 2001, 126-133.

[Par01] Park S. M., Crawford R., Beaman J.: Volumetric
multi-texturing for functionally gradient material
representation. In Proc. Sixth ACM Symposium on
Solid Modeling and Applications, ACM Press, 2001,
216-224.

[Pas88] Pasko A., Pilyugin V., Pokrovskiy V.: Geometric
modelling in the analysis of trivariate functions.
Computers and Graphics 12, 3/4 (1988), 457-465.

[Pas95] Pasko A., Adzhiev V., Sourin A., Savchenko V.:
Function representation in geometric modeling:
concepts, implementation and applications. The Visual
Computer 11, 8 (1995), 429-446.

 [Pas01] Pasko A., Adzhiev V., Schmitt B., Schlick C.:
Constructive hypervolume modeling. Graphical
Models 63, 6 (2001), 413-442.

[Pao93] Paoluzzi A., Bernardini F., Cattani C., Ferrucci
V.: Dimension-independent modeling with simplicial
complexes. ACM TOG 12, 1 (1993), 56-102.

[Ros90] Rossignac J., O’Connor M. SGC: A dimension
independent model for pointsets with internal
structures and incomplete boundaries. In Geometric
modeling for product engineering, ed. by M. Wozny, J.
Turner, K. Preiss, 1990.

[Sch04] B. Schmitt, A. Pasko, G. Pasko, T. Kunii:
Rendering trimmed implicit surfaces and curves. In
Proc. Afrigraph 2004, South Africa, ACM SIGGRAPH
publication, 2004, pp. 7-13.

Constructing Smooth Non-Manifold Meshes
of Multi-Labeled Volumetric Datasets

Bernhard Reitinger, Alexander Bornik, Reinhard Beichel

Institute for Computer Graphics and Vision
Graz University of Technology

Inffeldgasse 16/II
A–8010 Graz, Austria

contact: breiting@icg.tu-graz.ac.at

ABSTRACT
This paper presents a method for constructing consistent non-manifold meshes of multi-labeled volu-
metric datasets. This approach is different to traditional surface reconstruction algorithms which often
only support extracting 2-manifold surfaces based on a binary voxel classification. However, in some –
especially medical – applications, multi-labeled datasets, where up to eight differently labeled voxels can
be adjacent, are subject to visualization resulting in non-manifold meshes. In addition to an efficient
surface reconstruction method, a constrained geometric filter is developed which can be applied to these
non-manifold meshes without producing ridges at mesh junctions.

Keywords
surface reconstruction, mesh generation, multi-labeled volume, constrained smoothing

1 INTRODUCTION

Surface reconstruction for volumetric datasets is
an important method for exploring important fea-
tures especially in the medical field. By segment-
ing stacks of 2D gray-valued images (e.g. CT, MR
images), 2-manifold meshes in form of iso-surfaces
can be extracted and visualized. The traditional
method is the Marching Cubes (MC) algorithm
proposed by Lorensen and Cline in [Loren87]
or some of its variations like [Lewin03, Labsi02,
Lopes03] generating triangular models. All of
these methods are concerned about 2-manifold
meshes (homeomorphic to a sphere) which only
allow mesh interfaces between two different mate-
rials (one below and one above a certain thresh-
old).

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy oth-

erwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

Conference proceedings ISBN 80-903100-7-9

WSCG’2005, January 31–February 4, 2005

Plzen, Czech Republic.

Copyright UNION Agency Science Press

However, in some applications multiple coher-
ent surfaces should be reconstructed consistently
based on a non-binary classification resulted from
a previous image segmentation or labeling like
– for example – a full segmentation of the Visi-
ble Human Project [Acker98] where each organ is
tagged with a certain label and connected to other
organs. All interfaces between adjacent organs
must be extracted consistently. A naive solution
for this problem would be to apply the MC itera-
tively on each labeled region while masking out all
other regions. Although all interfaces would be ex-
tracted, a lot of inconsistencies are expected even
between two adjacent regions because two surfaces
of one interface will be generated which might not
fit together. This gets even worse if more than
two materials are meeting at one cell (a cell is
defined by its eight adjacent voxels). Different to
the traditional MC which generates a 2-manifold,
our algorithm inevitably produces non-manifolds
if more than two materials meet at one cell.

This paper proposes an efficient method for ex-
tracting such non-manifold surfaces based on la-
beled volumetric datasets in a consistent way. The
resulting mesh can either be used for visualization
or as input for a volumetric mesh generator. Our
algorithm neither generates holes nor cracks. De-
pending on the resolution of the input dataset,
staircase artifacts can occur which are smoothed

by applying customized topology-invariant filters
enhancing the overall mesh quality. For this rea-
son, we extended two existing filters. After surface
relaxation, triangle simplification may be applied
using the quadric error metric [Garla97].

This work was motivated by a medical project
which is concerned about virtual liver surgery
planning [Borni03]. The presented algorithm can
be used for two different tasks within this project.
At first, a visualization of liver segments by their
interface boundaries is provided which allows sur-
geons to examine the location and size of each sin-
gle liver segment (see Figure 10). Secondly, the
output mesh can be used as input for a conse-
quent volumetric mesh generator by applying the
algorithm proposed in [Si02]. An example for one
liver dataset is shown in Figure 1. For both cases,
the liver is labeled a priori using the segment clas-
sification algorithm proposed in [Beich04] where
each liver voxel is tagged with a certain mate-
rial value indicating one of eight different liver
segments (see Figure 1(a)). Due to the liver’s
anatomy, more than two different segments can be
adjacent. Therefore, the presented reconstruction
method is necessary in order to handle multiple
labels within one cell. The generated mesh can be
classified in two different kinds of surfaces; one do-
main boundary surface covering the object itself
and multiple interfaces which build the interior
structure (surfaces) of the object.

(a) (b) (c)

Figure 1: Visualization of a liver dataset contain-
ing different liver segments. (a) A slice of the la-
beled input volume, (b) non-manifold extracted
using the proposed algorithm, (c) a volumetric
mesh based on the mesh in (b) using the TetGen
library [Si02].

The rest of this paper is organized as follows: Sec-
tion 2 discusses related work for existing surface
reconstruction methods. Section 3 presents our
method for multi-labeled surface generation. Sec-
tion 4 outlines an extension to existing geometric
filters which are applied on the generated surface.
Section 5 presents a simplification method for de-
creasing the number of generated triangles. Re-
sults and screenshots are shown in Section 6 and
a conclusion closes this report.

2 RELATED WORK

The traditional method for extracting iso-surfaces
based on a certain threshold is the Marching Cubes
algorithm [Loren87] which distinguishes between
two different domains (above and below a certain
iso-value). Given a binary classification only 28

(256) different configurations can occur in a cell
which can be implemented using look-up tables.
Recently, Lewiner et al. presented an extension
avoiding topological errors which can occur due
to uncertainties [Lewin03].

Bloomenthal and Ferguson described in [Bloom95]
one of the first approaches for generating surfaces
from non-binary classifications which rely on im-
plicit surface modelling and computational solid
geometry. By subdividing cubic cells into tetra-
hedra, a triangulation is constructed algorithmi-
cally. This approach generates a large amount of
triangles which can also be degenerate and not
well-shaped.

Hege et al. presented a different approach for
extracting non-manifold surfaces based on a non-
binary classification [Hege97]. By using probabil-
ities assigned to each voxel, cells are subdivided
producing a lot of intermediate triangles. There-
fore, a post-processing patch generation must be
initiated in order to reduce the large number of
faces. In their approach, a look-up table was im-
plemented supporting up to three different mate-
rials meeting at one cell.

Another algorithm for generating surfaces based
on a non-binary classification was presented by
Wu and Sullivan [Wu03]. In their work, an ex-
tension for the traditional Marching Cubes was
developed supporting 2D and 3D datasets.

Different to these related algorithms, we present
an efficient yet simple approach which supports
up to eight different materials meeting at one cell.
In the following we will describe our method in
detail.

3 MESH GENERATION

The input for our algorithm is a rectilinear la-
beled volumetric dataset where a distinct label
(material) is assigned to each voxel V at position
(x, y, z). A zero label indicates background (out-
side of the domain) and all other labels unequal to
zero assign material. For a binary classification, 28

(256) different cases can occur at one cell. There-
fore, look-up tables exist for the Marching Cubes
algorithm to gain performance. If the dataset con-

sists of multiple different labels (non-binary), 88

(16777216) cases are possible within one cell and
a look-up table to cover all these configurations is
not feasible.

3.1 The Idea in 2D

The main idea of our algorithm is based on a cell
subdivision strategy and will first be explained for
the 2D case. Each non-homogeneous cell having
two or more different materials is subdivided by
inserting a cell mid-point. Additionally, segment
mid-points are generated if the labels of two ad-
jacent voxels (nodes) are different. For each gen-
erated segment mid-point a new segment (line) to
the cell mid-point is generated. Figure 2 shows the
four possible configurations for the 2D case. By
permutating these cases, all 44 can be captured. If
using the traditional Marching Cubes scheme for
a cell with three different labels, a triangular void
would be generated (see Figure 3). This gener-
ated void is invalid and cannot be assigned to a
material.

���������������
���������������
���������������
���������������
���������������

�������������
�������������
�������������
�������������
�������������

���

���

���

���

�������
�������
�������
�������

�������
�������
�������
�������

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

���������
���������
���������
���������

�������
�������
�������
�������

0 0

00

1 1

2 2

2121

3 3 3 4

1 label 2 labels

4 labels3 labels

Figure 2: Four possible configurations in 2D.

HOLE

1 1

32

(a)

1 1

32

(b)

Figure 3: Three different materials meeting at one
cell (quad). (a) Traditional Marching Cubes gen-
erates a “hole”, (b) correct partitioning with three
different materials.

As we can observe in Figure 2, our algorithm does
produce valid T-junctions at cell mid-points and
is therefore a conforming triangulation.

Considering a 2D cell with two different materi-
als where two equal materials are opposite, the
topology is preserved due to the insertion of a cell
mid-point. However, this configuration produces
singularities which must be considered for filtering
in order to prevent spikes (see later).

3.2 3D Algorithm

As shown in the previous section, the 2D algo-
rithm inserts additional cell mid-points in order to
reconstruct interfaces correctly. The same strat-
egy is used for the 3D case. Before going into
more details of the algorithm we need to define
some constraints. At first, our generated mesh is
a non-manifold represented by a simplicial com-
plex of 2-simplices. By considering this constraint,
we guarantee a conforming mesh without invalid
triangle intersections.

Having a rectilinear volumetric grid, a cell C at
location (x, y, z) is defined by
Cx,y,z = [Vx,y,z;Vx+1,y,z;Vx+1,y+1,z;Vx,y+1,z;
Vx,y,z+1;Vx+1,y,z+1;Vx+1,y+1,z+1;Vx,y+1,z+1].

The generation algorithm is initiated by process-
ing each single cell Cx,y,z of the rectilinear volume
(see Algorithm 1). If a cell in not homogeneous
(having more than one material), it is enqueued
in a list Q.

Algorithm 1 Pre-processing

Input: rectilinear labeled 3D volume V

Ensure: Vx,y,z = {l : l ∈ N}

for all Cx,y,z do

if Cx,y,z is !homogeneous then

Q.add(Cx,y,z)
end if

end for

Output: Q

In the second step, only enqueued cells are pro-
cessed. Depending on the homogeneity of the in-
put, the processing list can be very small. The
second sweep is also called simplex generation be-
cause for a given node configuration, faces (tri-
angles) are generated using a small look-up ta-
ble. All generated faces and vertices are stored
in a compact data structure where each vertex
is unique and duplicates are avoided. This is
necessary to guarantee a correct post-processing
(i.e. smoothing or simplification). Algorithm 2
describes the complete second sweep and its de-
tails are explained in the following sections. The
output of the simplex generation algorithm is an
indexed face set I storing the triangulation of the
whole domain and its according vertex list V L.

3.2.1 Face Generation

Our face generation strategy is very efficient. In
any case of a non-homogeneous cell, a cell mid-
point is generated which subdivides this cell into
8 sub-cells. Additionally, face mid-points are gen-

Algorithm 2 Simplex generation

Input: Q

for all Cx,y,z in Q do

subdivide Cx,y,z by creating a cell mid-point
if Cx,y,z has one zero label then

Cx,y,z=EXTERNAL NODE

else
Cx,y,z=INTERNAL NODE

end if

generate vertices and faces using a LUT
classify cell nodes of Cx,y,z

for all generated faces fi do

I .add(fi)
V L.add(vertices of fi)

end for

end for

Output: I , V L

erated if a face of Cx,y,z has non-homogeneous
nodes. All interfaces between two sub-cells are
investigated if two adjacent sub-cells have differ-
ent materials. If a difference is found, two trian-
gles are spanned between these two sub-cells cov-
ering the interface. For efficiency, we use a look-up
(LUT) table to get the adjacencies between sub-
cells. For each cell we need 12 look-ups to gener-
ate adjacent faces within one cell. Figure 4 shows
some face generation examples for two, three or
more materials meeting at one cell.

1

1

1

2

2

2

1

1

1

2

2

2

2

1

2 materials

1

2

3
3

3

3

3

1
3

5

2

6

8

7

3 or more materials

Figure 4: Examples of face generations for the 3D
case

By using this generation method, adjacent cells
are connected correctly. As the input has no quan-
tity information but only labels, we cannot apply
any interpolation scheme ad hoc. However, as the

resulting mesh should be visual appealing, we need
to apply a filter for smoothing the surface to re-
duce the staircase characteristics produced by our
algorithm. However, in order to guarantee a cor-
rect smoothing of these non-manifold meshes, we
have to classify the nodes in a cell due to a certain
configuration.

3.2.2 Node Classification

Each node (or vertex in the manner of surfaces)
must be classified according to its location. This
guarantees a correct smoothing of non-manifold
meshes and avoids ridges between the domain
boundary and interface boundaries. Figure 5
shows a cell with its possible vertex locations. At
first, the possible 27 vertices are named by their lo-
cations in the cell. Corner-points are the original
voxels of the dataset each of them storing a certain
label. Face mid-points are called 2D center-points
and are generated if a cell’s face in not homoge-
neous. Border-points divide a segment between
two adjacent corner-points. And finally, the cell
mid-point is classified as 3D center-point. Addi-
tionally, we define certain types of nodes as the
following:

Definition 1: Domain Node (D)

A node (vertex) is classified as domain node,
if the node is part of the enclosing domain
surface if one exists.

Definition 2: Interface Node (I)

A node (vertex) is classified as interface node,
if the node is part of an interior surface which
separates two different interior materials.

Definition 3: Junction Node (J)

A node (vertex) is classified as junction node,
if the node is part of an interior surface and
separates more than two different interior
materials.

Definition 4: Domain Junction Node (DJ)

A node (vertex) is classified as domain junc-
tion node, if the node is part of an exterior
surface and separates at least two interior
materials but also one exterior material.

Table 1 shows the mapping between nodes and
possible types. A corner-point will not be clas-
sified at all because the surface will never pass

3D center−point
2D center−point
border−point
corner−point

Figure 5: Classification of nodes in a cell.

D I J DJ

3D center-point x x x x
2D center-point x x x x
border-point x x
corner-point

Table 1: Mapping of nodes to node types.

through it. A border-point is a domain node if
one of its adjacent corner-points has a zero mate-
rial, else it will be assigned as interface node. A
2D center-point is assigned as junction node if its
corresponding face has no zero material and mate-
rial count (number of different materials per face)
>= 3. If a face has at least one zero material, it
is assigned as domain junction node. If the ma-
terial count for one face is < 3 and the face has
no zero material it is assigned as interface node,
else domain node. 3D center-points are classified
according to a cell’s classification. If Cx,y,z is as-
signed EXTERNAL NODE and material count is 2,
then we classify it as domain node, else domain
junction node. If Cx,y,z is an INTERNAL NODE and
material count is 2, the 3D center-point is assigned
as interface node, else, junction node.

If this type mapping is applied, ridges are avoided
and self-intersections are prevented if smoothing
the surface. Figure 6 shows a comparison of two
examples one without applying this classification
scheme and one with these considerations.

4 SURFACE FILTERING

Surface filtering is necessary to reduce the stair-
case artifacts generated by our face generation
method. We use surface filters which only af-
fect geometry and do not alter topology. Be-
side smoothing, geometric filters are also used for
improving the overall quality of the mesh. Dif-
ferent geometric filters exist in literature which
can be applied for smoothing. The most sim-

Figure 6: If node classification is not assigned,
ridges occur (see left image). If the classification
is applied, no ridges are generated.

ple but effective smoothing filter is the Lapla-
cian filter [Field88]. Each vertex at position xi

is smoothed iteratively by using the following for-
mula:

xi+1 = xi + λ∆i (1)

where ∆i is defined as:

∆i =
N∑

j=1

wij(xj − xi) (2)

where wij specifies the weight between xi and its
neighboring xj and

∑
wij = 1. A good choice

for wij is 1

N , where N is the number of adjacent
vertices. The scale factor λ (0 < λ < 1) influences
the degree of smoothness and is defined equally for
all vertices. Intrinsically, this filter also improves
the overall mesh quality. The big advantage of
this filter is its simplicity, however, it produces
shrinkage if applied many times.

Therefore, an extension to the Laplacian filter
was presented by Taubin [Taubi95] which avoids
shrinkage. The main idea is to apply two consecu-
tive Laplacian steps: at first, using a positive scale
factor λ and then using a negative scale factor µ,
greater in magnitude than λ (0 < λ < −µ).

Applying the standard filter for our produced
mesh, ridges on the domain boundary can occur
as shown in Figure 7(a). This is because vertices
on the domain boundary which are adjacent to
interface nodes are attracted by these nodes and
produce valleys. Therefore, we have performed
the node classification which will be considered
now for the filter. The (xj − xi) expression in
Equation 2 will only be calculated under certain
constraints. If the vertex at location xi is assigned
as domain node or interface node, all adjacent ver-
tices at xj are used for calculating ∆i. However, if
a vertex at location xi is a domain junction node,

only vertices at xj with classification domain junc-
tion node and domain node are considered. Sim-
ilarly, if vertices at xi is a junction node, only
vertices at xj of type junction node or domain
junction node are used. The result can be seen in
Figure 7(b).

(a) (b)

Figure 7: By applying the constrained Laplacian
(Taubin) filter, ridges are avoided successfully as
shown in this figure.

We observed that singularities can occur if voxels
are only 26-connected for 3D datasets. This gets
a problem if the surface is filtered. Two differ-
ent material regions are only connected through
one vertex and filtering would generate unwanted
spikes. In the current implementation we assign
a freeze label to these vertices which means that
they are not moved during smoothing and avoids
therefore these spikes.

5 MESH SIMPLIFICATION

In order to reduce the triangle count a simplifica-
tion algorithm is applied which is invariant to the
surface’s topology. We are using the quadric er-
ror metric which was introduced by Garland and
Heckbert [Garla97]. The algorithm works with
an iterative contraction of vertex pairs to sim-
plify models and maintains surface error approx-
imations using quadric matrices. The advantage
of this algorithm is that it supports non-manifold
meshes. Therefore, it can be applied to our data
structure without any modifications.

6 RESULTS

After explaining all different components of our
mesh generation method, some results are pre-
sented. The test input datasets are either gen-

Figure 8: Example of the dragon model which was
generated using our method using the Laplaican
filter with λ = 0.8 and 30 iterations. The right
image shows a zoom-in where the boundary inter-
face can be seen clearly.

erated by a prior segmentation and labeling of
a CT scan, or artificially generated by using
the hardware-accelerated voxelization presented
in [Reiti03]. Table 2 shows a summary of the in-
put datasets with different resolution (size). The
#vtx and #f indicate the generated vertices and
triangles after the simplex generation. If the in-
put resolution is high, Algorithm 1 is the domi-
nant factor in the measured time. If a lot of non-
homogeneous cells are found, Algorithm 2 takes
more time. We have measured, that – on average
– Algorithm 1 takes 83% and Algorithm 2 17% of
time for the tested datasets.

size #vtx #f time

Dragon 256
3

453921 910400 25.7

Horse 128
3

63147 127960 2.6

Liver 256 × 256 × 174 632272 1272088 18.5

Lung 128 × 128 × 148 331934 668624 6.1

Table 2: Table showing results of different
datasets. The time is measured in seconds.

Figure 8 shows the dragon model where the
dataset is divided into multiple layers simulating
interface boundaries. The right image shows a
zoom-in showing three bounded materials (yellow,
blue, red). Similarly, we also sub-divided the horse
dataset into different labels. Figure 9(a) shows
the raw output before smoothing, and Figure 9(b)
displays the smoothed result using the constrained
Laplacian filter.

We have also applied our algorithm on medical
datasets which are generated using a segmenta-
tion and classification as described in [Beich04].
Figure 10 shows a trajectory of different smooth-
ing levels performed on the liver dataset, starting
from no smoothing up to 30 iterations. Similar to

(a) raw (b) raw

(c) 30 iterations (d) 30 iterations

Figure 10: Construction of liver segment bound-
aries. Left image visualizes the liver with domain
boundaries without smoothing. Image (b) shows
the interior structure. Images (c) and (d) display a
smoothed liver with λ = 0.88 and 30 iterations. In
(c) the ridge-free interface between multi-material
regions can be seen.

(a) raw (b) 10 iterations

(c) 30 iterations (d) 50 iterations

Figure 11: The sheep dataset with different levels
of filtering. Left image is the raw output of the
simplex generation. The consecutive images show
the result of smoothing with the Taubin filter us-
ing λ = 0.88 and µ = −0.9.

(a) (b)

Figure 9: Example of the horse model. Left im-
age shows the raw output of the surface genera-
tion. The right image is the result of a Laplacian
smoothing using λ = 0.7 and 20 iterations.

the human liver, we also applied our algorithm on
a sheep lung which is shown in Figure 11. For this
dataset we used the Taubin filter with different
levels of smoothness.

As the resulting triangle counts are quite large for
interactive usage, we applied a the simplification
algorithm as explained in Section 5. Figure 12
shows two different datasets where the left model
was simplified using the quadric error metric to a
target face count of 70000 faces which decreases
the number of triangles to about 10% of the orig-
inal surface.

7 CONCLUSION

This paper presented an algorithm for generating
non-manifold meshes based on a non-binary clas-
sification of volumetric datasets. The generation
method consists of two main components, one pre-
processing step and a consecutive simplex gener-
ation. As the raw output produces staircase arti-
facts constrained surface filters based on a vertex
labeling scheme are applied. This prevents from
generating ridges at interface boundaries and pro-
vides a high-quality mesh.

As the output surface is a conforming mesh, and
therefore guarantees consistency, it can be used for
a further volumetric mesh generation as presented
in [Si02].

ACKNOWLEDGMENTS

This work was supported by the Austrian Science
Foundation (FWF) under grant P17066-N04.

(a) (b)

Figure 12: The sheep lung before and after sim-
plification using the quadric error metric. Target
face size is 70000.

References

[Acker98] M.J. Ackerman. The visible human project.
Proc. of the IEEE, 86(3):504–511, 1998.

[Beich04] R. Beichel, T. Pock, Ch. Janko, R. Zot-
ter, B. Reitinger, A. Bornik, K. Palagyi,
E. Sorantin, G. Werkgartner, H. Bischof, and
M. Sonka. Liver segment approximation in CT
data for surgical resection planning. In In SPIE

Medical Imaging ’04, San Diego, 2004. in print.

[Bloom95] J. Bloomenthal and K. Ferguson. Polygo-
nization of non-manifold implicit surfaces. In
Proc. of SIGGRAPH ’95, pages 309–316, 1995.

[Borni03] A. Bornik, R. Beichel, B. Reitinger,
G. Gotschuli, E. Sorantin, F. Leberl, and
M. Sonka. Computer aided liver surgery plan-
ning: An augmented reality approach. In R.L.
Galloway, editor, Medical Imaging 2003, Pro-

ceedings of SPIE, volume 5029. SPIE Press,
May 2003.

[Field88] D.A. Field. Laplacian smoothing and delau-
nay triangulations. Communications in Applied

Numerical Methods, 4:709–712, 1988.

[Garla97] M. Garland and P.S. Heckbert. Surface
simplification using quadric error metrics. In

Proc. of the 24th annual conference on Com-

puter graphics and interactive techniques, pages
209–216, 1997.

[Hege97] H.-C. Hege, M. Seebaß, D. Stalling, and
M. Zöckler. A generalized marching cubes
algorithm based on non-binary classifications.
Technical report, Konrad-Zuse-Zentrum (ZIB),
1997. SC 97-05.

[Labsi02] U. Labsik, K. Hormann, M. Meister, and
G. Greiner. Hierarchical iso-surface extraction.
Journal of Computing and Information Science

in Engineering, 2(4):323–329, December 2002.

[Lewin03] T. Lewiner, H. Lopes, A. Wilson Vieira,
and G. Tavares. Efficient implementation of
marching cubes: Cases with topological guar-
antees. Journal of Graphics Tools, 8(2):1–15,
2003.

[Lopes03] A. Lopes and K. Brodlie. Improving the ro-
bustness and accuracy of the marching cubes al-
gorithm for isosurfacing. IEEE Transactions on

Visualization and Computer Graphics, 9(1):16–
29, 2003.

[Loren87] W.E. Lorensen and H.E. Cline. Marching
cubes: A high resolution 3d surface construc-
tion algorithm. Computer Graphics, 21(4):163–
169, 1987.

[Reiti03] B. Reitinger, A. Bornik, and R. Beichel. Ef-
ficient volume measurement using voxelization.
In Proc. of the Spring Conference on Computer

Graphics 2003, pages 57–64, Budmerice, April
2003. Comenius University, Bratislava.

[Si02] H. Si. TetGen: A 3D Delaunay Tetrahedral

Mesh Generator, Version 1.2 User Manual.
Weierstrass Institute for Apply Analysis and
Stochastics, 2002. No. 4.

[Taubi95] G. Taubin. Curve and surface smooth-
ing without shrinkage. In Proc. of the Fifth

International Conference on Computer Vision,
pages 852–857. IEEE Computer Society, 1995.

[Wu03] J. Wu and J.M. Sullivan. Multiple material
marching cubes algorithm. Journal for Numer-

ical Methods in Engineering, 2003.

Feature Preserving Volumetric Data Simplification
for Application in Medical Imaging

C. Jin T. Fevens S. Li S. P. Mudur

Computer Science and Software Engineering Department
Concordia University

1455 de Maisonneuve Blvd. W.
Canada, H3G 1M8, Montreal, QC

{chao_jin, fevens, shuo_li, mudur}@cs.concordia.ca

ABSTRACT

In this paper, we propose a new simplification algorithm to reduce the large amount of redundancy in 3D
medical image datasets and generate a new representation in tetrahedral meshes with considerably lower storage
requirements. In the proposed algorithm, we first apply level set segmentation to partition the volume data into
several homogenous sub-regions. We consider the interior boundaries between sub-regions as contributing more
to the significant visible features. Next we convert the regular grid data into a tetrahedral representation and
simplify the irregular volume representation by iteratively removing tetrahedra without significantly altering the
exterior boundary or interior field distribution features. Within each sub-region, field gradients, tetrahedral
aspect ratio changes and variances of interior region values are further used so as to maintain features of the
original dataset in regional interiors. We tested our algorithm on several 3D medical datasets. The promising
results show that we reduce redundancy and yet preserve important features and structures present in the original
data set for decimation rates up to 50%.

Keywords
Medical Imagery, Mesh Simplification, Irregular Tetrahedral Meshes, Level of Detail

1. INTRODUCTION
In the past few decades, 3D medical image analysis
has become one of the most active research areas
supporting computer aided diagnosis. Medical
scanning devices, such as those generating Computed
Tomograph (CT) or Magnetic Resonance Imaging
(MRI) scans, are continuously increasing in their
resolution capabilities. The resulting volumetric data
sets are thus getting larger with increasing demands
on time and storage resources for tasks such as
archiving, loading, rendering, transmission, etc.

A more efficient volumetric representation, which

maintains the same features but uses less physical
storage space, is necessary for further visualization or
analysis [Kau91a, Kau93a, Nie00a]. However, due to
the specific characteristics of regular grids, it is very
hard to achieve accurate simplification. For example,
to simply replace clusters of voxels (a volume
element in a 3D regular grid) with ‘supervoxels’
would introduce too much noise and blur significant
features. Therefore, we use another representation of
volume data, a tetrahedral mesh, to perform the
simplification. The tetrahedral mesh has attracted
much attention over the last decade or so since it
provides greater flexibility and other representations
can be converted into tetrahedral meshes relatively
easily. The basic representational primitives,
tetrahedra, are easy to deform and to merge or
subdivide. It is convenient to assign properties and
functions to the vertices and to tetrahedral cells.
Computational steps such as interpolation,
integration, and differentiation are fast and often can
be done in similar forms. For example, finite element
analysis is conveniently performed on tetrahedral
meshes. Also, the triangles that are generated by the
faces of tetrahedra may be rendered using hardware
acceleration [Yao00a].

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Conference proceedings ISBN 80-903100-7-9
WSCG’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

Simplification of tetrahedral meshes has been studied
in the past decade [Chi03a, Cho02a, Cig00a, Gel99a,
Hong03a, Sta98a, Tro98a, Tro99a]. In 1998 and
1999, Trotts et al. [Tro98a, Tro99a] presented a
method for simplification by extending a polygonal
geometry deduction technique with a trivariate spline
function associated with each tetrahedron to detect
the features. In 1998, Staadt and Gross [Sta98a]
extended the work of Hoppe [Hop96a] on
progressive triangular meshes to tetrahedral meshes
to generate an incrementally refined progressive
tetrahedralization based on edge collapse. In 2000,
Cignoni et al. [Cig00a] gave a framework for
incremental 3D mesh simplification also based on
edge collapse. In 2002, Chopra and Meyer [Cho02a]
introduced a fast tetrahedral decimation algorithm
called TetFusion. It preserves all cells, with large
gradients. Recently, two groups of researchers, Hong
and Kaufman [Hong03a], and Chiang and Lu
[Chi03a] used Morse theory to detect topological
critical points of original data, with the aim to
preserve the topological structure of isosurfaces
during simplification.

However, existing algorithms are not well suited for
3D medical data sets because the data are naturally
divided into different regions, which need to be
treated individually, and the data obtained from
scanning devices are usually noisy. Traditional
volumetric simplification algorithms deal with
features based on local measurement, such as
gradient or aspect ratio [Cho02a, Cig00a, Sta98a,
Tro98a, Tro99a]. But local measurements sometimes
lead to the misidentification of features. For example,
in Fig. 1, we can see that the data is composed of two
regions. However, by the local feature measurement
method, based on the gradients, it cannot partition the
two regions. Instead these methods misidentify the
boundary feature as a set of horizontal lines.

Figure 1: a) a 2D dataset which includes the two
Gaussian distributions shown in f). b) the incorrect
features detected by gradient method. c) and d) two

intermediate stages in level set segmentation process.
e) feature detection result by using level set method.

The drawback in the method of maintaining the
topological structure of isosurfaces [Chi03a,
Hong03a], is that it is too sensitive to noise, which is
very likely to be present in 3D medical data
[Web03a]. Thus, they cannot achieve high
decimation rates.

To meet the requirement of simplifying tetrahedral
medical images while preserving visible features, our
new method first applies level set segmentation,
which is robust to noise, to partition the volumetric
medical data into several homogenous regions. Then,
it simplifies each region individually. The final result
of our method is a tetrahedral mesh, which maintains
the fidelity of features as present in the original data
while using much less physical storage space.

This paper is organized as follows. In section 2, we
introduce our methodology. Section 3 shows our
experimental results, and the final section 4 contains
our conclusions.

2. METHODOLOGY
The first step of our algorithm is to apply level set
segmentation in a preprocessing phase to partition
the data into several homogenous regions. Then, the
regular grid data is converted into an irregular mesh
by simple tetrahedralization. The boundaries between
sub-regions represent different features and should
be preserved during the simplification phase. Finally,
the tetrahedral cell decimation is applied to each sub-
region individually. Within each sub-region, the
algorithm will always preserve features detected by
local feature measurement. Thus, by this approach,
we preserve more of the significant features than
other existing algorithms. Also by simplifying within
regions without worrying about topology, we have
greater flexibility during the simplification phase
while at the same time not losing out on any visible
features.

Level set segmentation
2.1.1 Level Set Function
In 1988, Osher and Sethian [Osh88a] proposed a new
segmentation approach based on the class of
deformable models, referred as “level set” or
“geodesic active contours or surfaces”. The
approach, based on an evolving curve naturally
dividing the image, represented as the domain
Ω∈r2, into two parts. The method has become
popular because of its ability to capture the topology
of shapes in 3D datasets. The curve C is represented
implicitly via a Lipschitz Function, which is also
referred to as the level set function φ, where
C={(x,y) |φ(x, y) = 0}. The curve divides the image
into a region where φ(x, y) is positive valued and a
complementary region where φ(x, y) is negative

(a) (b) (c)

(d) (e) (f)

(a) (b) (c)

(d) (e) (f)

valued. The evolution of the curve is given by the
zero-level curve at time t, and the curve C evolves
according to direction and speed of dictated by force
F, as described in Equation (1).

),(),,0(

,||

0 yxyx

F
t

φφ

φφ

=

∇=
∂
∂

 (1)

Equation (1) is level set function, where the set
C = {(x, y)| φ 0(x, y) = 0} defines the initial contour.
A particular case is the motion by mean curvature.
This is given by

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

=
|| φ

φdivF

as the curvature of φ passing through (x, y), which
when substituted into Equation (1) gives us:

⎪
⎩

⎪
⎨

⎧

∈=

∈∞∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

∇=
∂
∂

2
0

2

),,(),,0(

),,0(,
||

||

R

R

xyxyx

xtdiv
t

φφ
φ
φφφ

 (2)

where φ 0 is initial level set function.

2.1.2 Level Set Segmentation
In 2000, Samson et al. [Sam00a] proposed a
supervised classification model to find a partition
composed of homogeneous regions, assuming that
the number of classes and their attribute value
properties are known. Therefore, for segmentation
into K regions, the proposed method uses K level set
functions φi : (i ∈[1, K]) to represent each of region
as shown in Equation (3), which demonstrates the
energy function. It consists of three terms: minimal
variance energy Eminv, minimal length energy Eminl,
and non-overlap energy Enonover.

() () ()
()kinonover

kiminlkiminvki

E
EEE
φφ

φφφφφφ
L

LLL

,
,,,

+
+=

 (3)

where

()

()

()

 R,∈∀

∫ ∑ −=

∑ ∫ ∆=

∑ ∫ −=

Ω =

= Ω

= Ω

λγ

φλφφ

φφδγφφ

φφφ

α

α

α

,,,

)1)((
2

,

||)(,

)1)((,

2

1

1

1

2

ii

k

i
ikinonover

k

i
iiikiminl

k

i
iiikiminv

ei

dxdyHE

dxdyE

dxdycHeE

L

L

L

The evolution of the level function φi is shown in
Equation (4).

⎥
⎥
⎦

⎤
−

⎢
⎣

⎡
−−−

∆
∆

⋅⋅∆=−

∑
=

+

2

1

2

1

)1)((

)()
||

(

)(

i
i

ii
i

i
i

t
i

t
i

t
i

kH

cIedivv

t

φβ

φ
φ

φδφφ

α

α

 (4)

In Equation (4), the Hα(·) is the Heaviside Function,
ci are the means of positive areas in level set function
φk, and α(·) is the Dirac delta function and vi and β
are constants.

Figure 2: Region partition results. The

segmentation phase divides the data into three
homogenous regions, which are shown in white,
gray and black. a) to d) are segmentation result

for the CT-neck data; and e) to h) are for the CT-
head data, shown in slices for easier identification.

a) b)

c) d)

e) f)

g) h)

After performing the level set segmentation, we
divide the data into different homogeneous regions
(see Fig. 2), and label all vertices located on the
interior boundaries of homogeneous regions as
feature vertices; and all vertices located inside
homogeneous regions as normal vertices (see Fig. 3).

Region Based Feature Preserving
Simplification Algorithms
2.2.1 Definitions
Before we begin the discussion of the feature
preserving simplification algorithm, we introduce
some definitions which we will need later.
• Neighbor Sets

For a tetrahedral cell , A() defines a set of cells
which share one and only one vertex with ;
D() defines a set of cells which share at least
two vertices with . We denote the union of A()
and D() as Neighbor(), the neighbor set of cell
.

• Normal Cell
If all vertices of a cell are normal vertices and
they are all located in same sub-region, we
denote the cell as a normal cell.

• Feature Cell
If a cell contains one or more feature vertex, we
label it as a feature cell.

• Cross-Region Cell
If a cell has vertices in more than one sub-
region, but it is not a feature cell, we label it as a
cross region cell.

• Cross-Region Neighbor Cell
If a cell is a normal cell, and it has a neighbor
cell which is a cross region cell, we label it as a
cross region neighbor cell.

• Boundary Cell
If a cell contains at least one vertex on the
external boundary, we label it as a boundary cell.

2.2.2 Feature Preserving Rules
After feature detection, a number of rules are defined
to preserve both interior and exterior features.
1. Normal Cell: The normal cells may be collapsed

freely. Here we define the collapse operation for
normal cells as to υc, where υc is the centroid
of the cell. By choosing the centroid, the volume
of the deleted cell is distributed evenly amongst
the remaining local neighboring cells.

2. Feature Cells: If any feature cell has more than
one feature vertex, we do not perform the

collapse operation on it. If it has exactly one
feature vertex υf, we define the collapse
operation as collapsing to υf.

3. Cross-region Cell: For any cross-region cell , to
achieve the decimation of different sub-regions
individually, we do not perform the collapse
operation on it.

4. Cross-region Neighbor Cells: For any cell , if
its A() or D() contains only one cross-region
cell, doing a collapse operation to the centroid
will cause the change of the structure of the sub-
region. To avoid this problem, we define the
collapse operation for such a cell as the collapse
of to the vertex υn which is the common vertex
with the cross-region cell. If its A() or D()
contains more than one feature cell and more
than one feature vertex, we do not collapse the
cell. Cells in D() may contain any number of
feature points.

Sub-region 1

Sub-region 2

Sub-region 1

Sub-region 2

Interior
Boundary

Interior
Boundary

Candidate
cell for collapse

Feature
vertex

Figure 3: The operation to υf. The candidate

cell, which is in center, is a feature cell. Its feature
vertex is labeled by υf. As rule 1 describes, we

collapse the cell into its feature vertex υf.

The above tests are defined so as to ensure that there
is no large change in interior boundaries of sub-
regions. In some cases, the geometry of the exterior
boundary should also be preserved. Therefore, we
define a boundary cell check as follows:

5. Boundary Cells: If the boundary cell has
exactly one vertex on the boundary, we define
the decimation operation as a collapse of to υb
(the vertex on the exterior boundary). We denote
the operation as to υb. If it has more than one
vertex on the boundary, we do not perform the
collapse operation on it.

We also define a flipping check to ensure no flipping
occurs during the simplification process.
6. Flipping Check: For any cell inside the A(),

where υo moves to υ’o , υ’o should stay on the
same side of its facing triangle, see Fig. 4. We
test all the cells in A() and check whether its
signed volume has the same sign (positive or
negative) before and after the collapse operation.
If any cell changes the sign of its volume, we do
not allow the collapse operation and return the
dataset to the previous state before the collapse.

Figure 4: The flipping problem. After the collapse

operation, it is possible for some cell that the
moving vertex υo goes to the other side of the

unchanged triangle face υ1υ2υ3.

2.2.3 Error Prediction
We use a combination of regional and local error
prediction functions to choose the cell to be collapsed
next.

2.2.3.1 Regional Error Prediction Function
Because each sub-region has homogenous field value
distribution within it, we expect our error prediction
function to reflect the modification of distribution
affected by decimation operation. Therefore, we
forbid any large change of the homogenous
distribution. We suppose the mean value of the
attributes in each homogenous sub-region will not
change. The cell, whose distribution is close to the
mean of the region, has more priority to be chosen as
the collapse candidate.

We define the regional error prediction function as
shown in Equation (5):

∑ −=∑ −=

=

==

3

0

2

0

2)(
4
1,)(1

,

i
ic

N

i
iN

N

c
r

ssss
N

δδ

δ
δε

 (5)

Where si is the attributes value of original vertices of
collapse cell, s is the mean of distribution of region
N, δN is the variance of distribution of region N, and
δc is the variance of cell .

2.2.3.2 Local Error Prediction Function
A large gradient change means there is a possible
feature [Cho02a, Chi03a, Kin98a, Kau93a, Sta98a].
We define the gradient error prediction function as in
Equation (6):

∑ −=
=

3

0

' ||
4
1

i
nig ssε (6)

Here si is the attribute values of the original vertices
of the collapse cell, and s’

n is the attribute value of
new vertex which is created after the collapse
operation.

Also, we do not want the decimation operation to
change the attributes distribution of candidate’s
neighbor sets very much. Therefore, we define three
measurements for the aspect ratio of cell as the form
in Equation (7), where υi is the original vertex of cell
; υn is the new vertex generated after collapse
operation; a, b and c represent the three edges of cell
 which share one common vertex:

∑
∪∈

=

)()(
)(

)(

τττ
τ

τε

DA
i

n

i

volume
volume (7)

∑
=

−=
3

0
||

4
1

i
nis υυε

 |)(|
!3

1 cbav ×⋅=ε

The final error prediction function is the combination
of regional and local functions, shown in Equation
(8):

nnvvssggrr εωεωεωεωεωε ++++=∆ (8)

2.2.4 Greedy Decimation Based Simplification
To achieve fast processing speed, we choose the
greedy method to implement our algorithm.
1. Compute the predicted error based on the error

prediction function shown in Equation (8) for all
tetrahedral cells, and arrange them into a priority
queue, ordered by predicted error.

2. While there is still at least one cell remaining in
the priority queue, with the predicted error less

than the user specified tolerance, pick the first
cell , and do following:
a. Delete from the priority queue.
b. Determine A() and D() of the cell τ.
c. Check the type of the current cell : feature

cell, cross-region cell, cross-region neighbor
cell, boundary cell or normal cell, as
described in Section (2.1.2).

d. If the cell is a cross-region cell, or has two
or more feature vertices, skip step 2e, 2f and
2g. Otherwise, perform the collapse
operation based on feature preservation
rules 1, 2, 3 described in Section (2.1.2).

e. Carry out the flipping check (feature
preservation rule 6) among the cells in A().
If the collapse operation causes any flipping
problem, then recover the original vertices
of and skip steps 2f and 2g.

f. Delete all cells in D() from the priority
queue, and update cell-vertex index.

g. Remove all cells in A() from the priority
queue, and label it to forbid any further
selection of collapse candidates.

3. Save the result.

3. EXPERIMENTAL RESULTS
We have implemented our algorithm on a Windows
Platform with a 2.39GHz Intel Pentium 4 CPU and
NVIDIA Quadro4900 XGL adapter with 128 Meg
RAM. We use ZSweep [Far00a] as our irregular
mesh rendering technique to obtain the final images.
We have tested our algorithm on several medical
datasets. Below we provide the results for dataset
CT-head with the resolution 128x128x53, and CT-
neck with the resolution 128x128x13. Results for
other datasets show similar performance statistics.

Data Number
of cells

Number of
vertices

Number
of feature
vertices

CT-head 4,193,540 868,352 140,233
CT-neck 967,740 212,992 27,528

Table 1 Detailed information of data sets

Data ωr ωg ωs ωv ωn
CT-head 10 2 1 1 0.5
CT-neck 10 2 1 1 0.8

Table 2 Parameters used in simplification
algorithm.

Table (1) shows the detailed information of our
testing data. Table (2) shows the parameters we have
used in error prediction function to perform our
simplification algorithm.

Fig 5 is the comparison of our method with the
simplification algorithm, TetFusion [Cho02a]. It
clearly shows that for the same decimation rate, our
method is better than the algorithm that uses only
local error measurement. The horizontal line shows
the number of cells that has been decimated. The
vertical line shows the average difference of color
defined, in form of Equation (9) defined on average
of difference in image color per pixel, of the
rendering result with the original one, where n is the
number of pixel.

n

bbggrr
diff

n

i
iiiiii∑ −+−+−

= =0

2
10

2
10

2
10

1

)()()(
 (9)

With increasing decimation numbers, we draw two
plots. The upper one is obtained by TetFusion
method, which is based on local measurement, and
the lower one is obtained by our method, which has a
regional based measurement. As it is shown clearly,
for the same number of decimation cells, the color
difference of our method is less than the one of
TetFusion. That shows our method maintains more
volume interior information than TetFusion does.

Figure 5: Demonstration that our feature
preserving simplification algorithm is an

improvement of previous approaches. a) is
generated by our method, and b) is generated by
TetFusion [Cho02a]. c) demonstrates the average
color comparison as the form in Equation (9). The

upper plot shows the diff1 of TetFusion, and the
lower one shows our method.

a)

c)

b)

diff1

Decimation numbers

Figure 6: The rendering result of CT head data.
a) The original image; b) The 50% simplified
result.

Fig. 6 shows that after applying our simplification
algorithm, the resultant dataset contains half size of
original one. However, the direct rendering result is
very promising. The half size dataset maintains
nearly the same information of the original one. We
can clearly identify the structure of original data.
Fig. 7 shows another experimental result with a
numerical comparison between the original image
with simplified one. The value, shown in Fig. 7-(c),
demonstrates the total error (diff2) per pixel between
Fig. 7-(a) and (b) as defined by Equation (10), which
is defined on difference in image color per pixel. The
color bar shows the range of the difference.

2
10

2
10

2
102)()()(iiiiii bbggrrdiff −+−+−= (10)

Figure 7: Demonstration of the simplification
results on CT-Head data. a) is the image rendered
by original data. b) is the image rendered by 48%

simplified data. c) is a comparison image by
analyzing the color difference between a) and b)
pixelwise. The value, shown in c), is obtained by

the Equation 9. The color bar represents the
range of the difference.

c)

 b)

 b)

a) a)

4. CONCLUSION
In this paper, we have proposed a new simplification
algorithm to reduce the large amount of redundancy
of 3D medical datasets. A cutting edge technique of
image processing, namely level set segmentation, is
applied in a preprocess phase to simplify the data to
achieve a noise robust region partition of volume
data. We convert the regular grid data into a
tetrahedral representation and then simplify the data
while preserving both regional and local features.
Our final result is a simplified tetrahedral mesh,
which can be further analyzed, visualized, and
animated. The experimental results amply show the
advantages of this approach.

5. ACKNOWLEDGMENTS
We thank Dr. R. Farias, Computer Science Dept.,
Mississippi State University, Dr. Joseph S.B.
Mitchell, Department of Applied Mathematics &
Statistics, and Dr. C. T. Silva, School of Computing,
University of Utah, for providing us the ZSweep
code [Far00a]. We thank the maintainers of the web
page www.volvis.org for the CT head, CT-neck, and
other medical datasets used in our testing of the
algorithm.

6. REFERENCES
 [Chi03a] Chiang, Y. J. and Lu, X., “Progressive

Simplification of Tetrahedral Meshes Preserving
all Isosurface Topologies”, EG’03, conf. proc.
Granada, Spain, Spring Press, pp.493-504, 2003

[Cho02a] Chopra, P. and Meyer, J., “Tetfusion: An
Algorithm for Rapid Tetrahedral Mesh
Simplification”, IEEE VIS’02, conf. proc.
Boston, MA, USA, IEEE Computer Society,
pp.133-140, 2002

[Cig00a] Cignoni, P., Costanza, C., Montani, C.,
Rocchin, C. and Scopigno, R. “Simplification of
Tetrahedral Meshes with Accurate Error
Evaluation”, in IEEE VIS’00 conf. proc. Salt
Lake City, UT, USA, IEEE Computer Society,
pp. 85-92, 2000

[Far00a] Farias, R., Mitchell, J. S.B., and Silva, C.
T., “Zsweep: An Efficient and Exact Projection
Algorithm for Unstructured Volume Rendering”,
IEEE VolVis’00, symposium, Salt Lake City, UT,
USA, IEEE Computer Society, pp. 91-99, 2000.

[Gel99a] Gelder, A. V., Verma, V. and Wilhelms, J.,
“Volume Decimation of Irregular Tetrahedral
Grids”, Journal of Computer Graphics
International, pp 222-230, 1999.

[Ger00a] Gerstner, T., and Pajarola, R., “Topology
Preserving and Controlled Topology Simplifying
Multiresolution Isosurface Extraction”, IEEE

VIS’00, conf. proc. Salt Lake City, UT, USA,
pp.259-266. IEEE Computer Society Press, 2000.

[Hong03a] Hong, W. and Kaufman, A. E., “Feature
Preserved Volume Simplification”. ACM
SMA’03, sym. proc. Karlsruhe, Germany, ACM
Press, pp. 334-339. 2003.

[Hop96a] Hoppe, H., “Progressive Meshes”. ACM
SIGGRAPH’96, conf. proc. New Orleans, LO,
USA, pp 99-108. ACM Press, 1996.

[Kau91a] Kaufman, A. E., “3D Volume
Visualization”, EG’00, conf. tutorial, Interlaken,
Switzerland, Springer Press, pp175-203, 1991.

 [Kau93a] Kaufman, A. E., Cohen, D. and Yagel, R.,
“Volume Graphics”. Journal Computer, 26(7):51-
64, 1993.

 [Nie00a] Nielson, G. M., “Volume Modeling”,
Volume Modeling. In: M. Chen et al. (eds.),
Volume Graphics, Springer Press, pp. 29-48,
2000.

[Osh88a] Osher, S. and Sethian, J. A., “Fronts
Propagating with Curvature-dependent Speed:
Algorithms Based on Hamilton-Jacobi
Formulations”, Journal Comput. Phys. 79(1):12-
49, 1988.

[Sam00a] Samson, C., Feraud, L. B., Aubert, G. and
Zerubia, J., “A Level Set Model for Image
Classification”, Journal Computer Vision,
Volume 40, Issue 3, pp 187-197, 2000.

[Sta98a] Staadt, O. G. and Gross, M. H.,
“Progressive Tetrahedralizations”, IEEE VIS’98,
conf. proc., Research Triangle Park, NC, USA,
IEEE Computer Society Press, pp 397-402, 1998.

[Tro98a] Trotts, I. J., Hamann, B., Joy, K. I. and
Wiley, D. F., “Simplification of Tetrahedral
Meshes”, IEEE VIS’98, conf. proc., Research
Triangle Park, NC, USA, IEEE Computer Society
Press, pp. 287-295, 1998.

[Tro99a] Trotts, I. J., Hamann, B., Joy, K. I. and
Wiley, D. F., “Simplification of Tetrahedral
Meshes with Error Bounds”, Journal IEEE
TVCG, vol 5(3):224-237, 1999.

[Web03a] Weber, G. H., Scheuermann, G. and
Hamann, B., “Detecting Critical Regions in Scalar
Fields”, VisSym’03, Sym. Proc., Grenoble,
France, Eurographics Association, pp. 85-94,
2003.

[Yao00a] Yao, J. H., and Taylor, R. H., “Tetrahedral
Mesh Modeling of Density Data for Anatomical
Altases and Intensity-Based Registration”,
MICCAI’00, conf. proc. Pittsburgh, PA, USA,
Springer Press, pp. 531-540, 2000

	IPC_2005.pdf
	IPC_2005.pdf
	WSCG 2005
	International Programme Committee

	!WSCG_2005_FULL_stamped.pdf
	Local Disk
	StampIt - A Stamping Utility for PDF Documents

	!WSCG_2005_FULL.pdf
	E53-full.pdf
	E53-full.pdf
	INTRODUCTION
	APPROACH
	INITIALIZATION
	Initial Feature Matching
	Initial Pose Estimation
	Results

	TRACKING
	The Tracking Region
	Feature Matching
	Pose Estimation

	EVALUTATION
	Synthetic Images
	Off-line Video Sequences
	Live Video

	CONCLUSION
	REFERENCES

	J83-full.pdf
	INTRODUCTION
	EMAIL DATA
	RELATED WORK
	DESIGN & IMPLEMENTATION
	SUMMARY & FUTURE WORK

	P4:
	stampTemplate:
	pg: 1

	P5:
	stampTemplate:
	pg: 2

	P6:
	stampTemplate:
	pg: 3

	P7:
	stampTemplate:
	pg: 4

	P8:
	stampTemplate:
	pg: 5

	P9:
	stampTemplate:
	pg: 6

	P10:
	stampTemplate:
	pg: 7

	P11:
	stampTemplate:
	pg: 8

	P12:
	stampTemplate:
	pg: 9

	P13:
	stampTemplate:
	pg: 10

	P14:
	stampTemplate:
	pg: 11

	P15:
	stampTemplate:
	pg: 12

	P16:
	stampTemplate:
	pg: 13

	P17:
	stampTemplate:
	pg: 14

	P18:
	stampTemplate:
	pg: 15

	P19:
	stampTemplate:
	pg: 16

	P20:
	stampTemplate:
	pg: 17

	P21:
	stampTemplate:
	pg: 18

	P22:
	stampTemplate:
	pg: 19

	P23:
	stampTemplate:
	pg: 20

	P24:
	stampTemplate:
	pg: 21

	P25:
	stampTemplate:
	pg: 22

	P26:
	stampTemplate:
	pg: 23

	P27:
	stampTemplate:
	pg: 24

	P28:
	stampTemplate:
	pg: 25

	P29:
	stampTemplate:
	pg: 26

	P30:
	stampTemplate:
	pg: 27

	P31:
	stampTemplate:
	pg: 28

	P32:
	stampTemplate:
	pg: 29

	P33:
	stampTemplate:
	pg: 30

	P34:
	stampTemplate:
	pg: 31

	P35:
	stampTemplate:
	pg: 32

	P36:
	stampTemplate:
	pg: 33

	P37:
	stampTemplate:
	pg: 34

	P38:
	stampTemplate:
	pg: 35

	P39:
	stampTemplate:
	pg: 36

	P40:
	stampTemplate:
	pg: 37

	P41:
	stampTemplate:
	pg: 38

	P42:
	stampTemplate:
	pg: 39

	P43:
	stampTemplate:
	pg: 40

	P44:
	stampTemplate:
	pg: 41

	P45:
	stampTemplate:
	pg: 42

	P46:
	stampTemplate:
	pg: 43

	P47:
	stampTemplate:
	pg: 44

	P48:
	stampTemplate:
	pg: 45

	P49:
	stampTemplate:
	pg: 46

	P50:
	stampTemplate:
	pg: 47

	P51:
	stampTemplate:
	pg: 48

	P52:
	stampTemplate:
	pg: 49

	P53:
	stampTemplate:
	pg: 50

	P54:
	stampTemplate:
	pg: 51

	P55:
	stampTemplate:
	pg: 52

	P56:
	stampTemplate:
	pg: 53

	P57:
	stampTemplate:
	pg: 54

	P58:
	stampTemplate:
	pg: 55

	P59:
	stampTemplate:
	pg: 56

	P60:
	stampTemplate:
	pg: 57

	P61:
	stampTemplate:
	pg: 58

	P62:
	stampTemplate:
	pg: 59

	P63:
	stampTemplate:
	pg: 60

	P64:
	stampTemplate:
	pg: 61

	P65:
	stampTemplate:
	pg: 62

	P66:
	stampTemplate:
	pg: 63

	P67:
	stampTemplate:
	pg: 64

	P68:
	stampTemplate:
	pg: 65

	P69:
	stampTemplate:
	pg: 66

	P70:
	stampTemplate:
	pg: 67

	P71:
	stampTemplate:
	pg: 68

	P72:
	stampTemplate:
	pg: 69

	P73:
	stampTemplate:
	pg: 70

	P74:
	stampTemplate:
	pg: 71

	P75:
	stampTemplate:
	pg: 72

	P76:
	stampTemplate:
	pg: 73

	P77:
	stampTemplate:
	pg: 74

	P78:
	stampTemplate:
	pg: 75

	P79:
	stampTemplate:
	pg: 76

	P80:
	stampTemplate:
	pg: 77

	P81:
	stampTemplate:
	pg: 78

	P82:
	stampTemplate:
	pg: 79

	P83:
	stampTemplate:
	pg: 80

	P84:
	stampTemplate:
	pg: 81

	P85:
	stampTemplate:
	pg: 82

	P86:
	stampTemplate:
	pg: 83

	P87:
	stampTemplate:
	pg: 84

	P88:
	stampTemplate:
	pg: 85

	P89:
	stampTemplate:
	pg: 86

	P90:
	stampTemplate:
	pg: 87

	P91:
	stampTemplate:
	pg: 88

	P92:
	stampTemplate:
	pg: 89

	P93:
	stampTemplate:
	pg: 90

	P94:
	stampTemplate:
	pg: 91

	P95:
	stampTemplate:
	pg: 92

	P96:
	stampTemplate:
	pg: 93

	P97:
	stampTemplate:
	pg: 94

	P98:
	stampTemplate:
	pg: 95

	P99:
	stampTemplate:
	pg: 96

	P100:
	stampTemplate:
	pg: 97

	P101:
	stampTemplate:
	pg: 98

	P102:
	stampTemplate:
	pg: 99

	P103:
	stampTemplate:
	pg: 100

	P104:
	stampTemplate:
	pg: 101

	P105:
	stampTemplate:
	pg: 102

	P106:
	stampTemplate:
	pg: 103

	P107:
	stampTemplate:
	pg: 104

	P108:
	stampTemplate:
	pg: 105

	P109:
	stampTemplate:
	pg: 106

	P110:
	stampTemplate:
	pg: 107

	P111:
	stampTemplate:
	pg: 108

	P112:
	stampTemplate:
	pg: 109

	P113:
	stampTemplate:
	pg: 110

	P114:
	stampTemplate:
	pg: 111

	P115:
	stampTemplate:
	pg: 112

	P116:
	stampTemplate:
	pg: 113

	P117:
	stampTemplate:
	pg: 114

	P118:
	stampTemplate:
	pg: 115

	P119:
	stampTemplate:
	pg: 116

	P120:
	stampTemplate:
	pg: 117

	P121:
	stampTemplate:
	pg: 118

	P122:
	stampTemplate:
	pg: 119

	P123:
	stampTemplate:
	pg: 120

	P124:
	stampTemplate:
	pg: 121

	P125:
	stampTemplate:
	pg: 122

	P126:
	stampTemplate:
	pg: 123

	P127:
	stampTemplate:
	pg: 124

	P128:
	stampTemplate:
	pg: 125

	P129:
	stampTemplate:
	pg: 126

	P130:
	stampTemplate:
	pg: 127

	P131:
	stampTemplate:
	pg: 128

	P132:
	stampTemplate:
	pg: 129

	P133:
	stampTemplate:
	pg: 130

	P134:
	stampTemplate:
	pg: 131

	P135:
	stampTemplate:
	pg: 132

	P136:
	stampTemplate:
	pg: 133

	P137:
	stampTemplate:
	pg: 134

	P138:
	stampTemplate:
	pg: 135

	P139:
	stampTemplate:
	pg: 136

	P140:
	stampTemplate:
	pg: 137

	P141:
	stampTemplate:
	pg: 138

	P142:
	stampTemplate:
	pg: 139

	P143:
	stampTemplate:
	pg: 140

	P144:
	stampTemplate:
	pg: 141

	P145:
	stampTemplate:
	pg: 142

	P146:
	stampTemplate:
	pg: 143

	P147:
	stampTemplate:
	pg: 144

	P148:
	stampTemplate:
	pg: 145

	P149:
	stampTemplate:
	pg: 146

	P150:
	stampTemplate:
	pg: 147

	P151:
	stampTemplate:
	pg: 148

	P152:
	stampTemplate:
	pg: 149

	P153:
	stampTemplate:
	pg: 150

	P154:
	stampTemplate:
	pg: 151

	P155:
	stampTemplate:
	pg: 152

	P156:
	stampTemplate:
	pg: 153

	P157:
	stampTemplate:
	pg: 154

	P158:
	stampTemplate:
	pg: 155

	P159:
	stampTemplate:
	pg: 156

	P160:
	stampTemplate:
	pg: 157

	P161:
	stampTemplate:
	pg: 158

	P162:
	stampTemplate:
	pg: 159

	P163:
	stampTemplate:
	pg: 160

	P164:
	stampTemplate:
	pg: 161

	P165:
	stampTemplate:
	pg: 162

	P166:
	stampTemplate:
	pg: 163

	P167:
	stampTemplate:
	pg: 164

	P168:
	stampTemplate:
	pg: 165

	P169:
	stampTemplate:
	pg: 166

	P170:
	stampTemplate:
	pg: 167

	P171:
	stampTemplate:
	pg: 168

	P172:
	stampTemplate:
	pg: 169

	P173:
	stampTemplate:
	pg: 170

	P174:
	stampTemplate:
	pg: 171

	P175:
	stampTemplate:
	pg: 172

	P176:
	stampTemplate:
	pg: 173

	P177:
	stampTemplate:
	pg: 174

	P178:
	stampTemplate:
	pg: 175

	P179:
	stampTemplate:
	pg: 176

	P180:
	stampTemplate:
	pg: 177

	P181:
	stampTemplate:
	pg: 178

	P182:
	stampTemplate:
	pg: 179

	P183:
	stampTemplate:
	pg: 180

	P184:
	stampTemplate:
	pg: 181

	P185:
	stampTemplate:
	pg: 182

	P186:
	stampTemplate:
	pg: 183

	P187:
	stampTemplate:
	pg: 184

	P188:
	stampTemplate:
	pg: 185

	P189:
	stampTemplate:
	pg: 186

	P190:
	stampTemplate:
	pg: 187

	P191:
	stampTemplate:
	pg: 188

	P192:
	stampTemplate:
	pg: 189

	P193:
	stampTemplate:
	pg: 190

	P194:
	stampTemplate:
	pg: 191

	P195:
	stampTemplate:
	pg: 192

	P196:
	stampTemplate:
	pg: 193

	P197:
	stampTemplate:
	pg: 194

	P198:
	stampTemplate:
	pg: 195

	P199:
	stampTemplate:
	pg: 196

	P200:
	stampTemplate:
	pg: 197

	P201:
	stampTemplate:
	pg: 198

	P202:
	stampTemplate:
	pg: 199

	P203:
	stampTemplate:
	pg: 200

	P204:
	stampTemplate:
	pg: 201

	P205:
	stampTemplate:
	pg: 202

	P206:
	stampTemplate:
	pg: 203

	P207:
	stampTemplate:
	pg: 204

	P208:
	stampTemplate:
	pg: 205

	P209:
	stampTemplate:
	pg: 206

	P210:
	stampTemplate:
	pg: 207

	P211:
	stampTemplate:
	pg: 208

	P212:
	stampTemplate:
	pg: 209

	P213:
	stampTemplate:
	pg: 210

	P214:
	stampTemplate:
	pg: 211

	P215:
	stampTemplate:
	pg: 212

	P216:
	stampTemplate:
	pg: 213

	P217:
	stampTemplate:
	pg: 214

	P218:
	stampTemplate:
	pg: 215

	P219:
	stampTemplate:
	pg: 216

	P220:
	stampTemplate:
	pg: 217

	P221:
	stampTemplate:
	pg: 218

	P222:
	stampTemplate:
	pg: 219

	P223:
	stampTemplate:
	pg: 220

	P224:
	stampTemplate:
	pg: 221

	P225:
	stampTemplate:
	pg: 222

	P226:
	stampTemplate:
	pg: 223

	P227:
	stampTemplate:
	pg: 224

	P228:
	stampTemplate:
	pg: 225

	P229:
	stampTemplate:
	pg: 226

	P230:
	stampTemplate:
	pg: 227

	P231:
	stampTemplate:
	pg: 228

	P232:
	stampTemplate:
	pg: 229

	P233:
	stampTemplate:
	pg: 230

	P234:
	stampTemplate:
	pg: 231

	P235:
	stampTemplate:
	pg: 232

	P236:
	stampTemplate:
	pg: 233

	P237:
	stampTemplate:
	pg: 234

	P238:
	stampTemplate:
	pg: 235

	P239:
	stampTemplate:
	pg: 236

	P240:
	stampTemplate:
	pg: 237

	P241:
	stampTemplate:
	pg: 238

	P242:
	stampTemplate:
	pg: 239

	P243:
	stampTemplate:
	pg: 240

	P244:
	stampTemplate:
	pg: 241

	P245:
	stampTemplate:
	pg: 242

