
Non-evaluated manipulation of complex CSG solids
Rafael J. Segura, Francisco R. Feito, Juan Ruiz de Miras

Universidad de Jaén
Escuela Politécnica Superior

Avda. Madrid, 35
 Spain (E) 23071, Jaén

rsegura@ujaen.es, ffeito@ujaen.es, demiras@ujaen.es

ABSTRACT
One of the most important problems to solve in Solid Modeling is computing boolean operations for solids
(union, intersection and difference). In this paper we present a method to obtain the boolean operators based on
covering the solids by simplices without evaluating the boundary. The representation of the obtained solid does
not correspond with the minimal boundary of the solid, but using the appropriate algorithms it is possible to
calculate some properties of the final solid, such as point-in-polyhedron test, visualization, volume or octree
generation. The proposed method is also suitable for complex solids bounded by triangular meshes or CSG with
polyhedral primitives.

Keywords
Geometric Modelling, Solid Modelling, boolean operations.

1. INTRODUCTION
Computing boolean operations between solids is

a well known formal problem, specially for solids
represented using a B-rep scheme. For other schemes
of representation, the problem is in practice finally
reduced to the B-rep problem (boundary evaluation).
However, due to the complexity of computing, most
approaches tend to do some simplification; some
solutions are only theoretical, but some authors
consider that the aim of Computational Geometry
must be the finding of useful algorithms that can be
implemented in practice[Chaz,Lee96]; other solutions
reduce the problem to 2D [Gardan96]. Finally, other
authors propose algorithms that work only with
convex faces [Sugi94,Prep88,Chaz92]. But usually
most of the solids used in practice, specially
mechanical pieces, have not simple faces, but
complex ones, with holes or other kind of faces.

An alternative to boundary evaluation is to
compute boolean operations without evaluating the
final solid. This method is very useful in CSG

representation [Bron90], because in this scheme of
representation the evaluation of the solid boundary is
not needed. So, it is specially used to display the
solid obtained by making boolean operations.

Using the initial idea proposed by Torres and
Feito[Tor93,Fei97a], we have developed a system for
Solid Modelling, valid for any type of solid with
planar faces (concave or convex, with or without
holes, manifold or non-manifold). We have
developed in a satisfactory way robust and efficient
algorithms to solve the inclusion of points in a
solid[Fei97b], and to study the intersection of a
segment (or ray) and a polygon[Seg98].

As a result of this research, a method to calculate
boolean operations for Solid Modelling is presented.
The proposed method does not evaluate the boundary
of the solid, and it uses the formal definitions of these
operations to work. The boundary of the obtained
solid is not minimal, i.e., it does not correspond with
the real boundary of the solid. Instead of it, an
intermediate representation is proposed, but the main
advantages of this representation are speed, validity
and robustness of the method.

In the first section the theoretical foundations of
Solid Modelling by Simplicial Coverings is
presented; these definitions allow us to obtain a
theorem to represent solids. Later, we will propose a
data structure to represent solids in 3D. After that,
algorithms to compute boolean operations between
general polyhedra with planar faces will be presented.
Finally, the application of this method to complex
solids bounded by triangular meshes is shown..

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Journal of WSCG, Vol.12, No.1-3, ISSN 1213-6972
WSCG’2004, February 2-6, 2003, Plzen, Czech Republic.
Copyright UNION Agency � Science Press

2. THEORETICAL FOUNDATIONS
Definition 1. Let x∈ℜ . The function sign(x) is

defined as










<−
=
>

=
01
00
01

)(
xif
xif
xif

xsign

Definition 2. Let T=(A,B,C) be a triangle; the
signed area of T (denoted by [T]) is defined as

 []















=

1
1
1

·
2
1

cc

bb

aa

yx
yx
yx

signT

Let four points be A,B,C,D ∈ R³. The signed
volume of the tetrahedron of vertices D, A, B, and C,
denoted by [DABC], is defined as

[]




















=

1
1
1
1

·
6
1

ddd

ccc

bbb

aaa

zyx
zyx
zyx
zyx

signDABC

It is said that a triangle/tetrahedron is a positive
triangle/tetrahedron if its signed area/volume is
positive It can be easily proved that a tetrahedron has
positive orientation (that is, the remaining vertices are
ordered counterclockwise with respect to one vertex)
if the signed volume is positive.

Definition 3. The signed volume of a pyramid P
with vertex V and base F(V1V2…Vn), is denoted by
[P] and is computed as

 [] []∑
=

⊕=
n

i
iiVVQVP

1
1

being Q an arbitrary point laying on plane
defined by F. If the vertex of the pyramid coincides
with the origin of co-ordinates it is said to be an
original pyramid.

Definition 4. The sign of a face F of a general
polyhedra, denoted by [F], is the sign of the pyramid
obtained by joining the face with the origin of co-
ordinates..

Theorem 1.[Fei97a]} Generator System. Let S
be a solid with faces F1F2...Fm, given in consistent
orientation (the normal vector goes outside the solid).
Then

 []∑
=

⋅
m

i
ii PPS

1
=

where Pi represents the original pyramid
obtained by joining the face Fi with the origin of co-
ordinates.

Proof. See [Fei97a]

Instead of using pyramids, we can use tetrahedra;
this will allow us a simplification in the computations
[Fei97a]. As it can be seen, the pyramids do not have
to be disjoint. This will allow us to work with
coverings of the solids, instead of disjoint partitions
of them. The main advantage of this approach is that
the covering can be obtained in a very simple way
with an linear algorithm, keeping the initial
representation of the solid (a vertex-edge-face graph).
Another advantage is that it is not necessary to store
the triangulation of the solid; it is only needed to
know the edges of the solid and an arbitrary point,
and therefore, there is no additional information to
store.

Definition 5. Let P be a polygon, the covering of
the P, denoted as Cp, is the set of triangles obtained
by joining an arbitrary point of the plane of P with
every edge of the polygon.

Analogy, let a solid be S, the covering of S,
denoted as Cs, is the set of tetrahedral obtained by
joining every triangle of the covering of every face of
S with an arbitrary point.

Theorem 2. [Fei97b]. Let Q be a point, and S be
a solid (a polygon in 2D). Then Q is inside S if

[]∑ =
i

ii TTQsign 1)·,(

where Ti∈ Cs, [Ti] is the signed volume (or
signed area in 2D) of the simplex, and the function
sign(Q,Ti)}returns the signed volume (or area in 2D)
of the simplex formed by point Q and simplex Ti (an
edge in 2D or a face in 3D).

Corollary 1. Let Q be a point inside solid S.
Then ∃ Ti∈ Cs, [Ti]>0, with Q included in Ti.

Proof. Trivially, it can be seen that, when the
inclusion of a point in a solid is computed, we only
use algebraic adding operations. So, at any moment it
must be true that the sign of Ti is positive to obtain a
positive result. Also, it is trivial to prove that the
points of the solid included in negative Ti are also
included in, at least, two positive Tj, because the
result must be positive.

Lemma 2. [Seg01] Let T=(ABC) be a triangle,
and S=(QQ�) be a segment, with Q and Q' placed at
opposite sides of plane Π defined by T, and ordered
in such a way that the [QABC]>0. Then segment S
cuts triangle T if

0ACQ)sign(Q'0CBQ)sign(Q'0AQB)sign(Q' ≥∧≥∧≥
Proof. See [Seg01].

Corollary 2. [Seg98]} Let P=P1P2...Pn be a
polygon with covering Cp={T1T2�.Tn}, and
S=(QQ�) be a segment with Q and Q' placed at
opposite sides of plane Π defined by P, in such a way
that P is ordered counterclockwise with regard to Q.
Then S intersects P if

()[] 1·,inter) =∑ i
i

i TTS

()








=

 caseother in 0

T of edgean on cuts S if
2
1

 T inside cuts S if 1
TS,interwith

Proof. Let M be the intersection point between
the ray and the plane Π. Then M∈ P if M belongs to n
positive triangles and n-1 negative ones (see corollary
1). So, () () 0111·1·1 >=+−=−−+ nnnn

In the case of P is ordered clockwise with respect
to Q, then the corollary can be expressed in an
analogous way, but changing the sense of the
comparison. The case of intersections with vertices or
edges of the polygon can be detected by studying the
intersection with the triangles of the covering.

3. REPRESENTING SOLIDS BY SIM-
PLICIAL COVERINGS.

Once we have presented the theoretical basis of
the formal method of simplicial coverings, we are
going to propose a simple data structure to represent
solids in 3D. The data structure is based on another
existing data structure for boundary representation,
but adapting it to represent non-manifold solids. The
idea is to store two arrays: an array of n 3D points
representing the vertex of the solid; and a list of
faces, where each one is represented as an array of
integer values (the position of every vertex of the face
in the list of vertex of the solid), representing the
topology of the faces of the solid.. In the structure of
the face are also stored the normal vector and the sign
of the face (see def. 4).

In order to represent different loops of a face a
false edge is introduced in the list of indices
representing a face. In figure 1 this fact is shown.
Polygon is composed by two loop (the first one
delimited by vertices 0,1,2,3,4,5 and 6, and th second
one delimited by vertices 7,8,9,10,11,12 and 13). The
correct definition of the face will be
0,1,2,3,4,5,6,7,8,9,10,11,12,13,7,6,-1. As it can be
seen, a false edge delimited by vertices 6 and 7 has
been introduced twice, once in each sense. So, when
the covering of the polygon is constructed, two
triangles are obtained, each one with different sign.

Another solution to store different loops is to
consider them as different faces, but orientating their
normal vectors properly, so the external loops will be
oriented in a way that their normal vectors point
outside the solid, and the internal loops will be
oriented so that their normal vectors point inside the
solid (the sign of the internal loop is negative respect
to the external one).

4. BOOLEAN OPERATIONS.
By using the previous data structure, we can use

exactly the definition of the Boolean operations to
implement them as follows:

Complementary.
In order to implement the unary complementary

operation is enough to invert the list of indices of the
solid. So, the normal vector of each face changes its
orientation (but not its direction).

Union.
The union operation can be implemented by

joining the lists of vertices from both solids, and
doing the same with the lists of indices from them.
The resultant list of indices must be arranged in a way
that the indices of the vertices corresponding to the
second solid must be increased in n, being n the
number of vertices of the first solid.

Difference.
The difference operation is defined as the set of

points that belong to A and do not belong to B. So, in
order to implement this operation it is enough to join
the lists of vertices from both solids. The list of
indices of the resultant solids is built by joining the
lists of faces from the solids, but inverting the sign of
the faces of the second solid.

Intersection.
The intersection is defined as the set of points

belonging to A, that also belong to B. So, the
implementation of this operation is similar to the
union operation, but it will be necessary to take into
account the condition ∧ when the inclusion of points

Figure 1. Introducing false edges on the
representation of a face

in A U B is studied. In order to create the data
structure asociated to A I B, we use the De Morgan�s
law, where

()BABA UI =

5. PROPERTIES OF SOLIDS.
Area and Volume.

The volume of the solid obtained by applying
one of the previous operations is computed by adding
the signed volume of all the tetrahedra obtained by
covering the solid. To obtain these tetrahedra, an
arbitrary point is chosen (for example, the origin of
coordinates), and then, for each face of the solid, the
face is covered by triangles. Again, it is necessary to
choose an arbitrary point to make the covering of this
face, but any vertex of it can be chosen.

With this covering, it is easy to compute the area
and the volume of the solid. These properties are
directly derived from the formal specification of
solids. So, the area can be computed as

() ()∑∑
= =

=
n

i

k

j

j
iTAreaSArea

1 1

Likewise, the volume of the solid is computed as

() ()∑∑
= =

=
n

i

k

j

j
iOTVolSVol

1 1

It is important to note that those triangles with
negative sign provide the final result with a negative
area (or volume). So, The final result is valid.
Equally, in the case of false edges, as these edges are
included twice (once in each sense), then their areas
are made void.

Point-in-polyhedron test.
Theorem 2 gives us a method to determine

whether a point is inside a solid (or not). Applying
the algorithm derived from this theorem (see
[Fei97b]) to the representation explained in previous
sections, a method to study the inclusion of points in
solids is obtained. We must remember that the
algorithm returns the position of the point with regard
to the solid (INSIDE, OUTSIDE, FACE, EDGE or
VERTEX).

In figure 3, two examples of boolean operations
are shown. In case a), A U B and A I B results are
shown. In this case, the interior of A U B is defined
by the points which verify that the inclusion test for
them is greater than 0. So, the inclusion test for the
points of the common part of A and B values at 2, and
the remaining ones at 1. In order to study the
intersection A I B the inclusion test must take a value
greater than 1, i.e. it must be valued at 2.

In figure 3.b, A-B case is shown. In this case, the
order of the vertices corresponding to solid B has
been changed, and therefore, the signs from the
triangles of the covering of B have also been
changed. So, the interior of A-B is defined by the
points which verify that the inclusion test values
exactly at 1. It is important to note that the result is
not regularized because of the common boundary of
A and B. This situation can be solved by multiplying
by 2 the result of the inclusion test regarding loop A
when it returns EDGE. In this case, in the common
boundary, the values obtained will be 2 for loop A,
and -1 for loop B, and as a consequence, the final
result will be 1.

In figure 4, a study of point inclusion in solids
obtained by boolean operations is shown. Two
mechanical pieces have been used: in figure 4.a, the
union of both pieces is shown; in figure 4.b, the
difference between both pieces is shown. In figure 4.c
a bombing of the figure obtained by the difference
operation is shown. A collection of 20,000 random
points has been generated in the bounding box of the
resultant solid: points inside the solid appear in green
and points outside the solid in red.

Figure 2. Covering the solid by tetrahedra: the
process with a face

6. VISUALIZATION OF SOLIDS.
In order to obtain a visualization of the solids,

several methods can be chosen, depending on the
quality of the results. Nowadays, the most used
method is using a Z-Buffer to render every polygon
of the final result. Some modifications have been
made to that method to render a CSG tree using a Z-
Buffer, but all of them require that the faces of the
used primitives must be convex [Ste00]. To apply
this method to the data structure proposed in this

paper it is necessary to make some changes to the
basic algorithm. So, the negative polygons are not
rasterized. There is a problem in this basic solution: if
a negative face is overlapped with a positive one,
then exists a hole in the solid, and then, the face
visible through the pixels of the hole is a back face or
the background. To solve this case, the overlapped
faces of the solid must be joined with false edge, as it
is shown in figure 1.

Ray-Casting.
The ray-casting method is based on following the

trajectory of a ray passing through a pixel[Fol94]. For
each pixel of the viewing window, a ray starting on
the Projection Reference Point (PRP) and passing
through the pixel is constructed. Then, for any solid
of the scene, the intersection between the ray and the
solid is computed; the colour of the pixel is the
colour of the solid whose intersection with the ray is
the nearest to the PRP. To test the intersection
between a ray and arbitrary polygons in 3D, the
algorithm proposed in [Seg98] can be used. The main
problem of the adaptation of the basic algorithm to
the scheme of representation proposed previously is
that we can obtain some intersections with the solid
in the same point, and maybe, these intersections are
not valid because some of them are probably outside
the solid. In figure 5 this problem is shown (green
polygons are positive faces, and red polygons are
negative ones). So, it is necessary to store all the
intersections between the ray and the faces of the
solid. For each intersection, the intersection point and
the sign of the face are stored. Then, the colour of the
pixel is the colour of the nearest intersection point
where the addition of the signs from faces sharing this
intersection point is positive. In this way, holes in
faces are solved.

Figure 5. Ray-casting of polygons: sorting the
intersections

Figure 3. Value of inclusion in Boolean
Operations

Figure 4. Inclusion in boolean operations

The additional cost of the proposed
modifications is O(k·log k) being k the maximum
number of intersections found for a concrete ray.

7. CONVERSION TO ENUMERATIVE
SCHEMES OF REPRESENTATION.
Voxelization of solids.

Voxelization of solids is a very useful tool to
represent volumetric information. The problem
consists on dividing the volume into regularly spaced
pixels (in 2D) or voxels (in 3D) implemented
typically as an array in which it is stored information
such as color or opacity of each pixel or voxel
occupied by the solid.

The main problem of the voxelization is to
obtain the points of the space occupied by the solid.
In 2D there are several algorithms to do it, although
the most used is the scan-line algorithm [Fol94]. In
3D, there are also several algorithms, but a very
interesting approach is the one proposed in [Fan00],
which proposes a voxelization algorithm using the 2D
hardware to obtain slices of the solid. However this
algorithm requires computing the intersection
between the solid and each slice, because all the solid
is used as input on the algorithm. Our method uses
only part of the information of the solid, and
therefore, the computation of the intersections is
simpler.

Theorem 2 gives us a simple method to voxelize
solids. The solids are not voxelized directly on the
3D array, but in a special buffer called presence
buffer, PB. This buffer stores one bit per pixel
indicating the presence of the solid in the volume
covered by this voxel. The operation needed for this
buffer is only the negation of the value stored
previously on every voxel.

original

solid

Covering every

face with

triangles and

construction of

original

tetrahedra

0000000000000000000000

0000000000000000000000

0011000000000000000000

0000111111110000000000

0011111111111000000000

0111111111110000000000

1011111111110000000000

1111111100000000000000

1111100000000000000000

1100000000000000000000

1000000000000000000000

0000000000000000000000

0000000000000000000000

0011000000000000000000

0000111111110000000000

0011111111111000000000

0111111111110000000000

1011111111110000000000

1111111100000000000000

1111100000000000000000

1100000000000000000000

1000000000000000000000

0000000000000000000000

0000000000000000000000

0011000000000000000000

0000111111110000000000

0011111111111000000000

0111111111110000000000

1011111111110000000000

1111111100000000000000

1111100000000000000000

1100000000000000000000

1000000000000000000000

0000000000000000000000

0000000000000000000000

0011000000000000000000

0000111111110000000000

0011111111111000000000

0111111111110000000000

1011111111110000000000

1111111100000000000000

1111100000000000000000

1100000000000000000000

1000000000000000000000

Tetrahedron rasterizing

in P-Buffer

() Czyxf =,,

Texture of the solid

Solid on the frame buffer

Once the voxelization of the solid has been
completed, the information stored on the presence
buffer is transferred to the final array, applying its
corresponding volumetric properties. The properties
of every voxel depends on the properties of the solid.
If we consider only homogeneous solids, then we can
consider that the properties of every voxel are the
same. Only two values are possible in the PB: 0 or 1.
Only the voxels with presence value 1 are rendered to
the array using the corresponding properties. The
voxelization process is as follows (see figure 6):

• Rasterize every tetrahedra of the covering of the
solid in the PB, changing the value of the
positions covered by the tetrahedron.

• Transfer all positions with presence value being
equal than 1 to the frame buffer, by applying a
function such as: given a point of the solid, it
returns the corresponding colour of the solid in
that point. The definition of this function
depends on every solid.

A complete description of the algorithm can be
found on [Rue02].

Direct octree generation.
Traditional algorithms to obtain octrees require

computation of plane-plane intersections. However,
our conversion process is based on the point-in-
polyhedron test previously detailed.

Basically, the algorithm consists on classifying each
octant with regard to the solid, beginning at top level
(figure 7.a) and recursively decomposing the universe
cube until a fixed level is reached (figure 7.b). Octant
classification is carried out by testing whether some
points, eight vertices of each octant plus its centroid,
are inside the solid or not.

Two problems must be avoided: mistaken results
due to earlier classification of octants in models with
complex topology, and no necessary subdivision of
octants completely inside or outside the solid. To
achieve this, the conversion algorithm can stop in an
intermediate level if thresholds previously established
for the classification of a octant are reached. This

Figure 6. Rasterization of solids

Figure 7. Octant classification

optimization allows us to obtain an agreement
between an accurate result and the time consumed for
classification of the entire octree. For a detailed
explanation of this conversion algorithm see [Rui02].

Next section shows several octrees obtained
through this method, and the visual interpretation of
thresholds for the octant classification.

8. TRIANGULAR MESHES.
Triangle meshes have become a typical

representation for modeling. But using such a
representation for other purposes than rendering also
requires the implementation of robust and efficient
geometric algorithms.

We can easily apply our methods to triangular
meshes. The fundamental differences with regard to
general polyhedra are: the new algorithms are simpler
and more efficient; the application to meshes implies
a simplification because the used operations are
basic. The methods can be applied to meshes
containing the minimum topological information, that
is, a labelled list of vertices indicating their
coordinates and a list of triangles containing the
references to their vertices. Obviously, when more
information is available, as triangles sharing edges or
vertices, it could be used to accelerate the proposed
algorithms. The algorithms are also valid for non-
manifold models defined by triangle meshes and for
models with holes; moreover, they can be applied to
multi-resolution models.

Figures 7.a and 7.b show two solids bounded by
triangular meshes (Buddha and chess queen). Figure
7.c shows Buddha U queen, and figures 8.a, 8.b and
8.c show Buddha Iqueen, queen - Buddha and
Buddha - queen, respectively. Figures 9.a - 9.d show
the corresponding octrees for solids in figures 8.a -
8.c. These figures have been generated with ESC-
MOD SYSTEM [Rui02], a solid modeling system
that can deal with both free-form solids and solids
bounded by complex planar triangular meshes. Figure
8.c shows the main problem in our approach: very
thin areas of the solid could not be detected due to no
calculation of plane-plane intersections. This problem
is solved by reducing the threshold that classifies an
octant as black, that is, an octant is considered black
if only a few number of test points are inside the
solid. The resulting octree is shown in figure 9.d.

9. CONCLUSIONS.
We have presented a representation scheme for

solids with planar faces (manifold or non-manifold,
with or without holes, convex or concave ones). The

method is based on covering the solid by simplices,
and providing a data structure smaller than other
data-structures valid for non-manifold solids.

With this data structure, a method to compute the
Boolean operations has been presented. The
algorithms are fast and robust, but the solid obtained
is not minimal because there is no evaluation of the
boundary of the solid.

a)

b)

c)

a)

b)

c)

By using the appropriate algorithms, some
typical problems of solid modeling have also been
solved: area, volume, inclusion, visualization or
octree generation of the solid are obtained in an easy
and efficient way.

The proposed model can be useful as an
intermediate representation for solids in applications
in which the main objective is to know the shape of
the solid and not its final boundary. The method
proposed is also valid for studying the classification
of points in solids. Another field of application of the
model could be the conversion of the solids from one
scheme of representation to another one. For
example, we can use it as an intermediate
representation from CSG to B-rep scheme.

Figure 7. Happy Buddha, Chess Queen and
Happy Buddha UUUU Chess Queen.

Figure 8. Happy Buddha IIII Queen, Queen –
Happy Buddha, Happy Buddha - Queen.

10. ACKNOWLEDGEMENTS.
This work has been partially granted by the

Ministry of Science and Technology of Spain and the
European Union by means of the ERDF funds, under
the research project TIC2001-2099-C03-03

a)

b)

c)

d)

11. REFERENCES
[Bron90] Bronsvoort, W. Direct display algorithms

for solid modeling, Delft University Press, 1990.
[Chaz] B. Chazelle e.a., Application Challenges to

Computational Geometry, CG Impact Task Force
Reports, Technical Report TR-521-96, Princeton
University, April 1996.

[Chaz92] Chazelle. B. An Optimal Algorithm for
Intersecting Three-Dimensional Convex
Polyhedra, SIAM Journal on Computing. Vol.
21(4), 671--696,1992.

[Fan00] Fang, S., Chen, H., Hardware Accelerated
voxelization. Computer & Graphics, Vol. 24(3),
433--442, 2000.

[Fei97a] Feito, F., Torres, J.C., Boundary Represen-
tation of Polyhedral Heterogeneous in the context
of a Graphic Object Algebra. The Visual
Computer}, Vol. 13, 64--77, 1997.

[Fei97b] Feito, F., Torres, J.C., Inclusion test in
general polyhedra. Computer & Graphics, Vol.
21(1), 23--30, 1997.

[Fol94] Foley , J. e.a. Introduction to Computer
Graphics, Addison Wesley, 1994.

[Gardan96] Gardan, Y., Perrin, E., An Algorithm
reducing 3D boolean operations to a 2D problem:
concepts and results. Computer-Aided Design,
Vol 28 (4), 277--287, 1996.

[Lee96] Lee, D.T., Computational Geometry, ACM
Computing Surveys}, Vol. 28(1), 27--31, 1996.

[Mant86] Mantyla, M. An Introduction to solid
modeling, Computer Science Press, 1986.

[Prep88] Preparata, F.P., Shamos. M.I., Computa-
tional Geometry: An Introduction, Springer-
Verlag, New York, 1988.

[Rue02] Rueda, A.J., Segura, R.J., Ruiz, J., Feito,
F.R., An Unified Approach for 2D and 3D
Rasterization. Proc. of 1st Ibero-American
Symposium in Computer Graphics, Guimaraes,
(Portugal), 2002.

[Rui02] Ruiz de Miras, J., Feito, F.R. Direct and
Robust Voxelization and Polygonization of Free-
Form CSG Solids". International Symposium on
3D Data Processing, Visualization and
Transmission , Padua (Italy). 2002.

[Seg01] Segura, R.J., Feito, F., Algorithms to test
ray-triangle intersection. Comparative study,
Journal of WSCG, Vol. 9(3), 2001.

[Seg98] Segura, R.J., Feito, F., An Algorithm for
Determining Intersection Segment-Polygon in 3D.
Computer & Graphics, Vol. 22(5), 1998.

[Ste00] Stewart, N., Leach, G. , John, S., A Z-Buffer
CSG rendering algorithm for convex objects,
Journal of the WSCG, Vol.8 (1), 2000.

[Sugi94] Sugihara, K.A., A Robust and Consistent
Algorithm for Intersecting Convex Polyhedra.
Computer Graphics Forum, Vol 13, (3), C.45--
C.54, 1994.

[Tor93] Torres, J.C., Clares. B., Graphics Object: A
Mathematical Abstract Model for Computer
Graphics, Computer Graphics Forum, Vol.
12(5):311-328, 1993.

Figure 9. Octree for fig. 8.a, (b) octree for fig. 8.b,
and (c,d) octrees for fig. 8.c.

