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ABSTRACT 

 

Motor imagery electroencephalography (EEG), which embodies cortical potentials during mental simulation of 
left or right finger lifting tasks, can be used as neural input signals to activate brain computer interface (BCI). 
The effectiveness of such an EEG-based BCI system relies on two indispensable features: distinguishable 
patterns of brain signals and accurate classifiers. This work aims to extract a reliable neural feature, termed as 
beta rebound map, out of motor imagery EEG by means of independent component analysis, and employ four 
classifiers to investigate the efficacy of beta rebound map. Results demonstrated that, with the use of ICA, the 
recognition rates of four classifiers, linear discriminant analysis (LDA), back-propagation neural network (BP-
NN), radial-basis function neural network (RBF-NN), and support vector machine (SVM) improved 
significantly from 54%, 54%, 57.3% and 55% to 69.8%, 75.5%, 76.5% and 77.3%, respectively.  In addition, 
the areas under the ROC curve, which assess the quality of classification over a wide range of misclassification 
costs, also improved greatly from .65, .60, .62, and .64 to .78, .73, .77 and .75, respectively. 
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1. INTRODUCTION 
In recent years, great progress in neuroscience has 
inspired studies in developing brain computer 
interface (BCI) [Mul99a] [Pfu98a] [Pfu00a] [Pol98a], 
a novel technique in assisting people to communicate 
with external environments or trigger surrounding 
devices by means of their brain signals. These 

systems are particularly useful for ones who suffer 
from amyotrophic lateral sclerosis or locked-in 
syndrome and are unable to produce any motor 
activity. Their cognition or sensor functions, 
however, may be intact so that they can be trained to 
perform mental tasks, for example, in simulating 
right or left hand or foot movements without any 
overt motor output. The success of BCI systems 
relies on two integral parts: distinguishable neural 
patterns and effective classifiers. This work aims to 
extract a reliably distinguishable feature from the 
motor imagery EEG recording by means of 
independent component analysis and employ 
machine classifiers to investigate the efficacy of 
extracted pattern.  
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It has been pointed out that imagination of hand 
movement elicits rhythmic EEG patterns in the 
primary sensorimotor areas similar to that from a real 
hand movement [Pfu96a]. When a specific 
movement or imagined movement is performed, it 
composes of three phases: planning, execution and 
recovery. The planning and execution results in 
localized alpha and lower beta bands amplitude 
attenuation or event-related desynchronization (ERD) 
which can be viewed as an EEG correlate of an 
activated cortical motor network, while the recovery 
phase produces focal mu and beta amplitude 
enhancement or event-related synchronization (ERS) 
which may reflect deactivation/inhibition in the 
underlying cortical network.  

Several BCI systems have been proposed based on 
the induced ERD when subjects performed imagery 
hand or foot movements [Pfu98a] [Pfu00a]. 
Pfurtscheller et al. used a learning vector 
quantization to classified ERD signals on-line in a 
subject specific band which was determined by 
distinctive sensitive learning vector quantization. 
They also adopted adaptive autoregressive model to 
analyzed ERD signal off-line and applied linear 
discrimination analysis to improve the detection of 
imagined left and right hand movements. The 
reported error rates varied 5.8 and 32.8%. Muller-
Gerking et al. applied common spatial filter to detect 
real (not imagined) left, right hand or right foot 
movements in single trial and reported 84%, 90% 
and 94% accuracies for three subjects, respectively 
[Mul99a].  

Although the ERD elicited by imagined movement 
has been extensively used as a feature pattern in BCI 
systems, we have observed that not every subject can 
produce discernible ERD during the imagery 
movement, whereas the beta ERS was persistently 
appeared for each subject. This motivated us to adopt 
ERS, rather than the ERD, as the feature pattern.  
The peaked ERS of imaged left or right hand 
movement, referred to as beta rebound, exhibits on 
bilateral sensorimotor areas but with distinct patterns. 
When the imagination of right hand movement is 
executed, the beta rebound over left hemisphere 
produces stronger amplitude than that on the right 
hemisphere, and the vice versa.   

The recorded EEG signals were inevitably 
contaminated by system noise, artifacts, spontaneous 
EEG, etc. Following our previous works for 
MEG/EEG de-noise [Lee03a], we employed the 
Independent Component Analysis (ICA) technique to 
decompose each pre-processed epoch into a set of 
temporally independent components along with 
corresponding spatial maps, and selected the task-
related components by matching designed spatial 

templates with the decomposed spatial maps. As a 
result, the signal-to-noise ratio of each EEG single-
trial was improved, which lead to the promotion of 
classifiers’ performance.  

This paper is organized as follows. Section 2 reports 
our experimental paradigm for motor imagery task 
and EEG recording configuration. Section 3 presents 
the extracted features, with and without applying 
ICA, based on peaked beat ERS and termed as beta 
rebound maps. Section 4 reviews four classifiers in 
this study. Section 5 summarizes the classification 
results and Section 6 concludes this study. 

 

2. EXPERIMENTAL PARADIGM FOR 
MOTOR IMAGERY  
Four right-handed healthy subjects (two males and 
two females), aged between 20 and 28, participated 
in this study. Each subject was naive to the 
experiment and trained only twenty minutes prior to 
the first session. During each session, the subject was 
asked to perform 100 trials of imagery right index 
finger lifting, followed by another 100 trials of 
imagery left index finger lifting. The length of each 
trial was ten seconds. Each trial began with one-
second presentation of random noise during which 
subjects were allowed to blink his/her eyes (A in Fig. 
1). The subject was then instructed to stare at the 
fixation cross in the center of the monitor from 2s 
and started to image right or left index finger lifting 
right after he/she heard an acoustic cue “beep” (with 
frequency 1k Hz and 10ms duration) at 5s (B in Fig. 
1.).   The inter-stimulus interval was 10 second.  

 

 
Figure 1. Timing of two consecutive trials of the 
motor imagery task.   

 

A 64-channels electroencephalography (EEG) 10-20 
system (with an electro-cap) was used to record the 
cortical potentials. The configuration of standard 1-
20 system is shown in Fig. 2. The vertical and 
horizontal electro-oculograms (VEOG and HEOG) 
were applied to reject bad epochs induced by eye 
blinking during the recording. The data were 
digitized at 250 Hz.  Since we focused on beta-
activities, the signals were further bandpass-filtered 
with 6-50 Hz to remove the dc drifts and 60 Hz noise. 
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Throughout the recordings, the surface 
electromyogram (EMG) was monitored from the m. 
extensor digitorum communis (digitized at 2 KHz) 
for the detection of motion status. Data of four 
sessions were collected for each subject. Signals 
from 3s to 10s (C in Fig. 1.) in each trial (excluding 
bad epochs) were extracted for further classifiers 
training and testing. Figure 3 exhibits such a pre-
processed epoch from sensorimotor area (channel C3 
in 10-20 system). 

 

 
Figure 2. The configure of standard 10-20 system 
with 64 channels. 

 

 
Figure 3. A pre-processed epoch recorded at C3. 

 

3. FEATURE EXTRACTION WITH 
AND WITHOUT ICA 
Extraction of reliable feature from measured data is 
vital in facilitating the subsequent classification 
procedure. Since the measured signals were 
inevitably contaminated by system noise, artifacts, 
spontaneous EEG, etc., we employed the ICA 

technique to decompose each pre-processed epoch 
into a set of temporally independent components 
along with corresponding spatial maps, and selected 
the task-related components by matching designed 
spatial templates with the decomposed spatial maps. 
Two types of feature, one using ICA to extract task-
related components and the other without using ICA, 
were created from pre-processed data for the purpose 
of comparison with their efficacies. The detailed 
steps for feature extraction with ICA were described 
in the following: 

 

Step 1: Signal decomposition by using ICA.  We 
first arranged each pre-processed epoch across m 
channels (m=62) and n sampled points (n=1750) into 
an nm×  matrix X.  The ith row contains the 
observed signal from ith EEG channel, and the jth 
column vector contains the observed samples at the 
jth time point across all channels.  In the present study, 
all calculations were performed using the FastICA 
algorithm [Cov65a] [Cov98a]. The FastICA 
technique first removed means of the row vectors in 
the X matrix followed by a whitening procedure to 
transform the covariance matrix of the zero-mean 
data into an identity matrix.  The whitening process 
was implemented using the Principal Component 
Analysis.  Only the first N most significant 
eigenvectors (N=15 in our analysis) were preserved 
in the subsequent ICA calculation. In the next step, 
FastICA searched a matrix to further separate the 
whitened data into a set of components which were 
as mutually independent as possible. Combining with 
previous whitening process, the matrix X can be 
transformed into a matrix S via an un-mixing matrix 
W, i.e., 

WXS =                              (1) 

in which the rows of S were mutually independent.  
Each column of 1−W , i.e. mixing matrix, represents a 
spatial map describing the relative projection weights 
of the corresponding temporal components at each of 
the EEG channels. They will be referred to as IC 
spatial maps henceforth. Figure 4 shows 12 IC spatial 
maps of 12 independent components (not shown) 
decomposed from a single-trial imagery right hand 
movement. The maps IC3, IC5, IC7 and IC9 were 
highly related to motor imagery task and categorized 
as task-related components, while the IC4 and IC6 
maps were associated with the occipital alpha rhythm, 
and IC1 map was the noise emanated from a bad 
channel.  
 
Step 2: Correlating the IC spatial maps with pre-
defined spatial templates to select task-related 
components. Since the motor imagery task elicits 
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bilateral activation in the vicinity of sensorimotor 
areas, four spatial patterns encompassing C3, C4, Cz 
and both C3 and C4 areas, respectively, were 
considered as spatial templates (see Fig. 5) in 
selecting the task-related spatial maps. Please note 
that four spatial templates rather than single template 
covering C3 and C4 were taken into account because 
the task-related activities can be separated by ICA 
and exhibited in multiple IC spatial maps. Each 
template was correlated with 12 IC spatial maps of 
single trial and the bets two matches were selected.  
For example, the spatial maps IC3, IC5, IC7 and IC9 
in Figure 4 were selected automatically due to their 
high similarity. The task-related IC spatial maps as 
well as the corresponding temporal components were 
used to reconstruct the signal X by means of equation 
(1).   

 
Figure 4. The normalized IC spatial maps of a 
single-trial imagery right hand movement.  
 

 
Figure 5. Spatial templates used to select task-related 
IC spatial maps. 
 
Step 3: Computing the envelopes of beta 
reactivity from reconstructed signals using the 
Amplitude Modulation method. The optimal beta 
frequency band encompassing the prominent and 
relevant brain activities may vary across subjects and 
subjects. To tackle this problem, we divided the beta 
band, into five sub-frequency bands, 8~12, 12~16, 
16~20, 20~24, and 24~ 28 Hz, and used them with 
additional beta band 8~30 Hz to band-pass filter the 
reconstructed signals. The Amplitude Modulation 
(AM) method based on the Hilbert transform was 
applied to detect the envelope  of the filtered EEG 
signals and quantify the event-related oscillatory 

activities [Clo96a]. Each envelope, referred to as AM 
waveform, was computed by (see Figure 6 (a)) 

22 ))(()()( tMHtMtm BPBP +=              (2) 
where )(tM BP  is the single-trial band-passed EEG 
signal, and ))(( tMH BP  is its Hilbert transform. 
Contrary to the classical measurement of ERS 
reactivity and the original AM approach in which a 
relative percentage as indexed to the initial baseline 
was used [Clo96a], we computed the beta ERS 
reactivity (termed as beta rebound) using the 
amplitude difference between the maximum values 
of beta ERD  and beta ERS of the AM envelope. 

 

Step 4: Extracting the beta rebound maps. The 
imagery finger lifting task, similar to real finger 
movement, induced larger beta rebound in the 
contralateral sensorimotor area than that in the 
ipsilateral one. In addition, the contralateral beta 
rebound appeared earlier than the ipsilateral one. The 
co-existence of prominent beta rebounds at C3 and 
C4 and the constrained time lag between them 
suggested that the topographical maps with 
maximum rebounds at C3 and C4 were reliable 
features. Specifically, we looked for two time points 
at which both the AM waveforms of C3 and C4 have 
maximum peaks but with time lag ( T∆  in Figure 
6(a)) less than 0.5 second. The topographical maps at 
these two time points, referred to as beta rebound 
maps (Figure 6. (c)), were concatenated into a 

1124×  column vector and used as a feature vector.  

Using the same time points of the peaked beta 
rebound resulted from steps1 ~ 4, we processed the 
data using step 3 only, i.e. without using ICA. Figure 
7 depicts the extracted beta rebound maps and 
appears to be contaminated due to noise compared 
with those in Fig. 6.  

 

4. TWO-CLASS SUPERVISED 
CLASIFICATION 
In this section, four two-category classifiers used in 
our study are briefly reviewed. They were linear 
discriminant analysis (LDA), back-propagation 
neural network (BP-NN), radial basis function 
network (RBF-NN) and support vector machine 
(SVM). The beta rebound maps, denoted by ixv , of 
imagery right and left hand movement, each of them 
is a 1124× column vector and, were divided into two 
data sets, one for training and the other for testing the 
classifiers. The numbers of beta rebound maps used 
in the training and testing phases for each subject at 
each session were 60 and 30. These beta rebound 
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maps were randomized before being used. For the 
sake of simplicity, we use the notation R and L to 
denote the category of imagery right and left hand 
movement, respectively, in the following discussion.  

 
Figure 6. Computation of the beta rebound maps. (a) 
The AM waveform of C3 and C4. T∆ was the time 
lag between prominent beta rebounds at C3 and C4. 
(b) Reconstructed signals of 62 channels (excluded 
HEOG and VEOG) which were used to calculate the 
AM waveforms in (a). (c) The beta rebound maps 
created from reconstructed signals on 62 channels 
indexed to the time points of peaked beta rebounds at 
C3 and C4. 

 

 
Figure 7. The computed beta rebound maps only 
using steps 3 without applying ICA.  

Classifiers 
4.1.1 LDA 
The idea of LDA is to seek a vector wr  so that two 
projected clusters of R and L feature vectors ixv ’s 

on wr can be well separated from each other while 
keeping small variance of each cluster. This can be 
done by maximizing the so-called Fisher’s criterion  
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scatter matrix: 
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in which two summations run over all the training 
samples of classes R  and L , respectively, and Rm  
and Lm represent the group mean of classes R and L, 

respectively. The optimal wr is the eigenverctor 
corresponding to the largest eigenvalue of Bw SS 1− . 

After wr is obtained by means of the training data, we 
projected the test samples on it, and then classified 
the projected points by the k-nearest-neighbor 
decision rule. 

4.1.2 BP-NN 
The BP-NN was trained in a supervised manner 
based on the error-correction learning rule. The 
hierarchy of a BPNN in our implementation is 
depicted in Figure 8, which consists of one input 
layer, one hidden layer, and one output layer. The 
training phase was accomplished by iterating two 
passes: the forward and backward passes. In the 
forward pass of the back-propagation learning, as 
show in the Figure 8, the output of the BP-NN at 
iteration n was computed by 

))(()( nvny ϕ=  

where )(⋅ϕ was the activation function and )(nv  was 
the induced local field of output neuron  

∑
=

=
m

i
ii nonwnv

1
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in which m  was the total number of the inputs 
applied to output neuron, iw was the weight 
connecting neuron i to the output neuron, and 

)(noi was the output signal of neuron i . The error 
signal, )(ne , between )(ny and the desired 
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output, )(nd , was computed at each iteration. If the 
error met the stopping criterion, the training 
procedure was terminated. Otherwise, it was 
minimized in the subsequent backward pass to 
update the synaptic weighting )(nwi   

)()()]1([)()1( nonnwnwnw iiii ηδα +−+=+  

where α was the momentum constant, and )(nδ  is 
the local gradients of the output layer in the network, 
given by ))((')()( nvnen ϕδ = . In the testing phase, 
input feature vectors, xv ’s, can be linearly classified 
according to the value of )(ny  in the output layer. 

 

 
Figure 8. The hierarchy of BP neural network. 

 

4.1.3 RBF-NN 
The RBF neural network [Hay94a] uses a nonlinear 
function to map the input data into high-dimension 
space so that they are more likely to be linearly 
separable than in the low-dimension space [Cov65a] 
[Cov91a] [Cov88a]. The hierarchy of (regularization) 
RBF neural network is depicted in Figure9, which 
consists of one input layer, one hidden layer, and one 
output layer. 

Each RBF network is designed to have a nonlinear 
trans- formation from the input layer to the hidden 
layer, followed by a linear mapping from the hidden 
layer to the output layer. The mapping between the 
input and output space is expressed by:  
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where
2

)( ixx
i exx

vvvv −−=−ϕ and iw represents the 
weighting from the ith hidden neuron to output 
neuron, and ixv  represents the ith known feature 
vector with dimension m, i =1, 2, …N.  The distance 
between input vector, xv , and center, ixv , is mapped 
into high-dimension space by means of a Gaussian 

function ( ixx vv
−(ϕ ) in this study.  In the phase of 

supervised learning, training feature vectors ixv , i =1, 
2, …N, and output desired output ii dxF =)(

r
 which 

is either 1 or -1 in our design, are given.  For the sake 
of simplicity, the training feature vectors are used as 
centers. With the known N input feature vectors and 
the corresponding designed outputs, the weighting 

iw  can be computed from the input-output 
relationship in equation (4.1): 
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By solving the linear system (4.2), the resultant 
weighting w vector is  

dGw +=                                                        (4.3) 
where TT GGGG 1)( −+ =  is the pseudoinverse matrix 
of G. Compared with other neural network which 
uses gradient-based optimization process to estimate 
the weightings, for example, the back-propagation 
recurrent neural network, the RBF neural network 
solve for a set of linear equations to avoid trapping in 
a local minimum and greatly reduce the training time.  
In the testing phase, input feature vectors, xv ’s, can 
be linearly classified based on the values of )(xF

r
’s. 

 
Figure 9. The hierarchy of RBF neural network. 

 

4.1.4 SVM 
The basic idea of support vector machine hinges 

on two mathematical operations: (1) With an 
appropriate nonlinear mapping (.)ϕ of an input 
vector into a high-dimensional feature space, data 
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from two categories can be linearly separated by a 
hyperplane [Cov65a], (2) Construction of an optimal 
hyperplane for separating the features in (1).  Let xv  
denote a vector drawn from the input space, assumed 
to be of dimension m0 and let  1

1)}({ m
jj x =

vϕ  denote a 

set of nonlinear transformations from the input space 
to the feature space: m1 is the dimension of the 
feature space.  Given such a set of nonlinear 
transformations, we may define a hyperplane acting 
as the decision surface as follows: 

∑
=

=
1

0

0)(
m

j
jj xw
r

ϕ                                             (4.4) 

where },...,,{
110 mwwww = denotes a set of linear 

weights connecting the feature space to the output 
space. And it is assumed that 1)(0 =x

r
ϕ  for all x

r
, so 

that 0w  denotes the bias.  Equation (4.4) defines the 
decision surface computed in the feature space in 
terms of the linear weights of the machine. Define 
the vector T

m xxxx )](),...,(),([)(
110
rrrr

ϕϕϕϕ = , and 
T

mwwww ],...,,[
110=  we rewrite the decision 

surface in the compact form: 

0)( =xwT r
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Given the training feature samples )( ixvϕ corresponds 
to the input pattern ix

r
, and the corresponding desired 

response ,...,Nidi 1 , =  , which is either 1 or -1 in our 
design, it has been shown that [Hay94a] the optimal 
weight vector w can be expressed as  
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where N
ii 1}{ =α  is the optimal Lagrange multipliers 

resulted from maximizing the subject function 
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subject to the constraints (1) 0
1
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=

N

i
iidα , and (2) 

Ci ≤≤α0 , where C is a user-specified constant. 

Substituting equation (4.6) into (4.5), we obtain the 
optimal hyperplane  

0)()(
1

=∑
=

xxd
N

i
i

T
ii

rr
ϕϕα                         (4.8) 

which will be used for linearly separating the testing 
data, i.e. for any testing sample x, if 
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then x is classified into the subset having the training 
response 1=id , otherwise it is classified into the 
other subset with 1=id .  In our implementation, we 
chose the radial basis function in defining the inner-
product kernel )()( xxi

T rr
ϕϕ  as follows: 
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According to equation (4.8), once the number of 
nonzero Lagrange multipliers, iα , is determined, the 
number of radial-basis functions and their centers are 
determined automatically. This differs from the 
design of the conventional neural network, for 
example, the back-propagation neural network or 
radial-basis function network [Hay94a], where the 
numbers of hidden layers or of hidden neuron are 
usually determined heuristically. 

 

5. RESULTS 
Table 1 summarizes the averaged recognition results 
for detecting the right and left imagined finger lifting 
in four subjects (denoted by s1 ~ s4). With the use of 
ICA in the extraction of the beta rebound maps, each 
classifier has superior performance regardless of 
subjects and the overall averaged recognition score 
improved significantly from 55.0% to 74.8%. In 
addition, the   SVM outperformed other classifiers.  

Classifier ICA s1 s2 s3 s4 mean

LDA without 58 55 57 51 54 

  with 63 79 74 63 69.8 

BP-NN without 63 52 50 51 54 

  with 72 84 79 67 75.5 

RBF-NN without 66 59 54 50 57.3 

  with 75 86 79 66 76.5 

SVM without 66 53 50 51 55 

  with 72 87 77 73 77.3 

Table 1. Averaged recognition rates (in percentages) 
over four sessions resulted from different classifiers 
with and without using ICA for feature extraction. 
 
The receiver operating characteristics (ROC) curve, a 
plot of true-positive rate versus false-positive rate, 
provides another way to evaluate the performance of 
binary detection classifiers. The area under the ROC 



curve, which can be interpreted as the probability of 
a random sample being assigned to positive class 
than that to negative class, assesses the quality of 
classification over a range of misclassification costs.  
Table 2 reports that the use of ICA improved the 
performance of each classifier and the overall 
averaged ROC area increased from 0.63 to 0.75. 

Classifier ICA s1 s2 s3 s4 mean

LDA without .71 .64 .58 .67 .65 

 with .75 .86 .74 .68 .78 

BP without .65 .56 .61 .58 .60 

 with .68 .78 .74 .71 .73 

RBF without .73 .60 .54 .62 .62 

 with .65 .91 .77 .74 .77 

SVM without .64 .61 .66 .63 .64 

 with .69 .87 .77 .65 .75 

Table 2. Averaged ROC areas over four sessions 
resulted from different classifiers with and without 
using ICA for feature extraction. The numbers of 
beta rebound maps used for training and testing for 
each subject at each session were 60 and 30. 

 

6. CONCLUSIONS 
We have presented a novel method using ICA in 
extracting a reliable feature, the beta rebound map, 
from the peaked ERS of motor imagery EEG. With a 
minimum training for each subject (20 minutes only), 
satisfactory classification rates from four classifiers 
have been achieved. This demonstrated the suitability 
of beta rebound map as neural input signals in the 
application of BCI systems. 
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