
GPU-Based 3D Texture Advection for the
Visualization of Unsteady Flow Fields

Daniel Weiskopf and Thomas Ertl

Institute of Visualization and Interactive Systems, University of Stuttgart
Universitätsstr. 38, 70569 Stuttgart, Germany

{weiskopf,ertl}@informatik.uni-stuttgart.de

ABSTRACT
We present an interactive visualization approach for the dense representation of unsteady 3D flow fields. The
first part of this approach is a GPU-based 3D texture advection scheme that allows a slice of the 3D visual rep-
resentation to be updated in a single rendering pass. In the second step, the result of the advection process is
displayed by texture-based volume rendering. Since both parts are completely supported by the GPU, interactive
frame rates are achieved for the visualization of time-dependent flow fields. Moreover, the noise and dye injec-
tion scheme of Image Based Flow Visualization (IBFV) is adopted and generalized to take into account a flexi-
ble combination of advected and newly injected values. In addition, the advection and rendering methods are
extended to transport and display different materials instead of the aggregated colors and opacities. This ap-
proach leads to a unified description of noise and dye advection and allows the user to specifically emphasize or
blend out regions of the flow.

Keywords
Flow visualization, unsteady flow, texture advection, volume rendering, GPU programming.

1. INTRODUCTION
The visualization of 3D vector fields has been inves-
tigated and used in various scientific and engineering
disciplines for many years. Typical applications stem
from simulations in computational fluid dynamics,
calculation of physical vector fields, such as electro-
magnetic fields or heat flow, or from measurements
of actual wind or fluid flows. As flow visualization
has a long tradition, various techniques exist to visu-
ally represent steady and unsteady vector fields.
Among the standard techniques for flow visualiza-
tion is the class of methods based on particle tracing.
A fundamental problem is to choose appropriate seed
points for particle tracing in order to visualize all
important features of a flow. One solution to this
issue is to employ a dense representation in the form
of a texture-based, LIC-like visualization. This ap-
proach is popular and well investigated for 2D planar
and curved surfaces (cf. the articles [Hau02, San00]).
Dense representations of a 3D flow, however, are

more challenging because of two fundamental prob-
lems. First, the computational complexity increases
significantly since computations have to be per-
formed for all cells of a 3D grid. Second, it is diffi-
cult to find a good visual representation of a dense
collection of particle traces because most particle
traces will be occluded by others and the display be-
comes cluttered. In addition, on the 2D image plane
an accurate spatial perception of such a 3D scene is
difficult. All these aspects are especially challenging
for unsteady flow fields.

We think that interactivity plays a crucial role in im-
proving the visual representation. In an interactive
application, motion parallax is a good means to im-
prove depth perception; and the problem of occlusion
can be eased by exploring the scene from different
viewpoints. Moreover, animated flows give a good
impression of the direction and magnitude of the
velocity field. Interesting regions of a flow can be
investigated in detail by locally increasing the den-
sity of the visualization or injecting virtual dye at
user-specified locations. Similarly, interactive vol-
ume clipping helps to examine interior regions.

Because of the high computational costs, however,
there is only little previous work that deals with
completely interactive techniques for a dense repre-
sentation of unsteady flow. Most previous systems
with interactive rendering rely on some non-
interactive preprocessing step and therefore cannot

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

WSCG SHORT Communication papers proceedings
WSCG’2004, February 2-6, 2003, Plzen, Czech Republic.
Copyright UNION Agency – Science Press

handle time-dependent data on-the-fly. Recently, the
increasing power and functionality of GPUs (graph-
ics processing units) has been exploited to solve a
large number of problems in computer graphics,
visualization, and even simulation. So far, however,
3D Image-Based Flow Visualization (IBVF) [Tel03]
is the only approach (known to the authors) which
utilizes the power of GPUs to achieve the complete
3D flow visualization process to be running at inter-
active frame rates.

In this paper, we build upon the basic ideas of 3D
IBVF, and improve and extend this approach. The
main contributions of this paper are the following.
First, a fully three-dimensional advection mechanism
that deals with any input vector field is presented.
Unlike 3D IBVF, the flow is not restricted to veloci-
ties with very small z component. Moreover, a slice
of the 3D representation is updated in a single ren-
dering pass, which is the basis for interactive frame
rates. Second, the blending mechanism is enhanced
to allow for more flexible noise and dye injection.
Third, the advection and 3D texture-based volume
rendering schemes are extended to transport and dis-
play different materials instead of combined colors
and opacities. In this way, parts of the visualization
can be specifically faded out or emphasized.

2. PREVIOUS WORK
Noise-based and dense texture representations are an
important part of the research in flow visualization.
A comprehensive overview on the field is given in
[Hau02, San00]. An early texture-synthesis tech-
nique for vector field visualization is spot noise
[Wij91]. LIC [Cab93] is another technique for the
dense representation of streamlines in steady vector
fields. Original LIC has been extended in various
respects: animated LIC [For95], visualization of the
orientation of flow [Weg97], the combination of
animation and dye advection [She96], LIC for un-
steady flow [She98], Fast LIC [Sta95], or Pseudo
LIC [Ver99].
The basic idea of texture advection is to represent a
dense collection of particles in a texture and to trans-
port this texture according to the motion of the parti-
cles [Max95]. Lagrangian-Eulerian Advection (LEA)
[Job02] visualizes 2D unsteady flows by integrating
particle positions (i.e., the Lagrangian part) and ad-
vecting the color of particles based on a texture rep-
resentation (i.e., the Eulerian aspect). Image-Based
Flow Visualization (IBFV) [Wij02] is a variant of 2D
texture advection that additionally blends a second
texture into the advected texture at each time step.
IBFV can be extended to flow on 2D curved hyper-
surfaces [Wij03] and to 3D flow [Tel03]. Laramee et
al. [Lar03] propose an advection scheme for un-
steady flow visualization on curved hypersurfaces

that, like [Wij03], works in image space. Implemen-
tations on GPUs are possible for many of the above
techniques to increase visualization performance. For
example, GPU-based implementations are known for
LIC [Hei99], Eulerian texture advection [Wei01],
LEA [Job00, Wei02], and IBFV [Wij02, Wij03,
Tel03].
Dense 3D flow visualization is subject to percep-
tional and computational issues. Techniques to im-
prove depth perception and reduce the problems of
occlusion in 3D LIC are presented in [Int97]. An-
other approach is the interactive exploration of 3D
LIC, making use of volume clipping [Rez99]. Re-
cently, a texture-based framework for interactive
rendering of 3D flow fields has been proposed
[Li03]. All these systems for 3D flow visualization
are either not interactive at all or require some time-
consuming pre-processing for particle tracing. In
contrast, 3D IBFV [Tel03] utilizes graphics hardware
to achieve the complete visualization process at in-
teractive frame rates.

3. BASIC TEXTURE ADVECTION
The standard approach to particle tracing adopts a
Lagrangian point of view. Here, each single particle
can be identified individually and the properties of
each particle depend on time t. The path of a single
massless particle is determined by the ordinary dif-
ferential equation

)),(()(tt
dt

td rur = , (1)

where r(t) describes the position of the particle at
time t, and u(r,t) represents the vector field to be
visualized. All vector quantities (marked as boldface
letters) are either 2D or 3D, depending on the dimen-
sionality of the computational domain. For the actual
flow visualization, the path could be directly ren-
dered as a line-like graphical object.
For texture advection, however, an Eulerian ap-
proach is used. Particles lose their individuality and
are rather represented by their property values (such
as color or gray-scale values), which are stored in a
property field. Typically, this property field is given
on a uniform grid, i.e., on a texture. We denote the
texture as T(c), where c describes the texture coordi-
nates. Once again, the dimensionality of the texture
depends on the dimensionality of the computational
domain. Positions of particles are only given implic-
itly in the form of the texture coordinates of the re-
spective texels. Using a first-order explicit Euler
scheme for Eq. (1), we obtain
)),(()()(tttttt rurr ∆−=∆− , (2)

for an integration backward in time with a step size
of ∆t. Applying this numerical solution to the prop-
erty field yields

))(()(cvcc tttt sTT ∆−= ∆− . (3)

The physical positions r and the corresponding tex-
ture coordinates c are related by an affine transfor-
mation that takes into account that the physical space
and computational space may have different units
and origins. Accordingly, the step size ∆s in compu-
tational space corresponds to the physical time step
∆t, and vt corresponds to the vector field u in physi-
cal space. The subscripts in Tt and vt denote the times
associated with the property field and the vector
field, respectively.

In Eq. (3), the texture Tt is updated only at grid
points c. However, the lookup in the property field at
the previous time step is performed at position c – ∆s
vt, which may differ from exact grid positions.
Therefore, either a bilinear (in 2D) or trilinear (in
3D) interpolation is employed to determine the value
of the property field at this position.

4. 3D TEXTURE ADVECTION
The previous discussion of texture advection leads to
an efficient implementation of 3D texture advection
on current GPUs, such as nVidia’s GeForce FX or
ATI’s Radeon 9700/9800. Both the property field
and the vector field are represented by 3D textures.
The transport of the property field along one time
step according to Eq. (3) can be realized by a de-
pendent-texture lookup: First, modified texture coor-
dinates c’ = c – ∆s vt are computed; second, these
texture coordinates c’ serve as the basis for the de-
pendent lookup in the property field of the previous
time step.

The property field for a subsequent time step is built
in a slice-by-slice manner. Figure 1 shows the pseudo
code for a single time step of the advection process.
Each slice of the property field is updated by render-
ing a quadrilateral that represents this 2D subset of
the full 3D domain. The quadrilateral is rasterized by
the GPU, which leads to a filling with fragments. The
dependent-texture lookup can be realized by a frag-
ment program that computes the modified texture
coordinates according to the Euler integration of the
flow field. Figure 2 shows the corresponding
OpenGL ARB fragment program. Note that the com-
ponents of the vector field texture are stored as un-
signed fixed-point numbers here and thus a
bias/extend transformation is applied to achieve posi-
tive and negative values. The instructions have the
following meaning: TXP and TEX stand for texture
fetch opertions, MAD for a multiplication and a sub-
sequent adding operation.

An animated visualization is built from iterative exe-
cutions of the advection steps. In all computations,
the property field is accessed for only two time steps:
the current and the previous time step. Therefore, it is
sufficient to provide two 3D textures to hold these
two time steps. After each single advection computa-
tion, the roles of the two textures are exchanged,
according to a so-called ping-pong scheme.

Our advection method is completely formulated in
3D and therefore takes into account any flow field. In
contrast, 3D IBFV [Tel03] uses stacks of 2D textures
with gathering along the z axis, and thus is restricted
to a limited class of flows: The z component of the
vector field has to be very small so that the absolute
value of ∆s vz is not larger than the slice distance
along the z axis. Moreover, our approach makes use
of built-in trilinear interpolation on 3D textures and
thus allows for different resolutions of the particle
and vector fields, whereas 3D IBFV supports only a
bilinear resampling on 2D slices. Finally, 3D IBFV
requires multiple render passes to update a single
slice of the property field. The only advantage of 3D
IBFV is that it does not require 3D textures and
fragment programs. We think that the availability of

load flow field into GPU memory
for i = 1 to max_slice
 render quad for slice i, with dependent
 texture lookup
 update slice i in new property field
end for

Figure 1: Pseudo code for 3D advection.

!!ARBfp1.0

Parameters
PARAM stepSize = program.local[0];
PARAM biasExtend = {2.0, -1.0, 0.0, 0.0};
ATTRIB iTexCoord = fragment.texcoord[0];
OUTPUT oColor = result.color;

Temporary variables (registers)
TEMP velocity;
TEMP oldPos;

Fetch flow field
TXP velocity, iTexCoord, texture[0], 3D;
Mapping to positive and negative values
MAD velocity, velocity, biasExtend.x, biasExtend.y;
Compute previous position (Euler integration)
MAD oldPos, velocity, stepSize, iTexCoord;
Dependent texture lookup:
Advected property value from previous time step
TEX oColor, oldPos, texture[1], 3D;

END

Figure 2: ARB fragment program for
3D texture advection.

this hardware features is no major issue today and
will be none at all in a few years from now because
GPUs with 3D texture and fragment program (or
pixel shader 2) support are already in the low-cost
market and thus will be ubiquitous in the near future.

5. NOISE AND DYE INJECTION
So far, only the basic advection mechanism has been
discussed. However, a useful visualization needs—
besides the computation of particle traces—a map-
ping of the particle traces to a graphical representa-
tion. In our case, this mapping is essentially re-
stricted to an appropriate injection of property val-
ues. We adopt the IBFV approach, which introduces
new property values at each time step, described by
an injection texture. The injection mechanism of 2D
IBFV [Wij02] is illustrated in Figure 3. The injection
texture typically contains filtered noise to avoid
aliasing artifacts. Moreover, the injection may be
time-variant to introduce time-dependent visualiza-
tions even for steady flows. 2D IBFV is restricted to
an affine combination of values from the previously
advected texture Tt-∆t and the injection texture It to
yield the new property texture Tt:

 tttt ITT αα +−= ∆−)1(. (4)

Here, α is a scalar blending parameter that is con-
stant for the complete visualization domain. A re-
peated application of this α blending results in an
exponential decay of the injected noise over time.
The details of 2D IBFV are discussed in [Wij02].

3D IBFV [Tel03] introduces a slightly extended in-
jection scheme that allows for space-variant scalar
injection weights Ht:

 tttttt IHTHT +−= ∆−)1(. (5)

We think that the combination of a dense representa-
tion by noise injection and a user-guided exploration
by injecting dye at isolated locations is very powerful
because it combines both an overall view and a de-
tailed visualization of specific features. Therefore,
we further generalize the aforementioned injection
schemes to allow for a unified description of both
noise and dye advection. The extensions are: First,
the restriction to an affine combination of the ad-
vected value and of the newly injected value is sus-
pended and replaced by a generic combination of
both; second, several materials can be advected and

blended independently. The extended blending equa-
tion is given by

 tttttt IVTWT oo += ∆− , (6)

where the two, possibly space-variant, multi-
component weights Wt and Vt need not add up to one.
The symbol “°” denotes a component-wise multipli-
cation of two vector quantities, i.e., Wt, Vt, Tt, and It
must have the same number of components. In this
approach, the different components of each texel in
the property field describe the density of different
materials that are transported along the flow (rather
than color or gray-scale values). The advantages of
this extended blending scheme are: First, different
materials are blended independently from each other
and may therefore have different lengths for expo-
nential decay; second, material can be added on top
of existing material (e.g., additional dye), which is
impossible with an affine combination as in Eqs. (4)
and (5).

A unified description of both dye and noise advec-
tion is supported by the extended blending. Typi-
cally, dye is faded out only very slowly or not at all.
Since new dye has to be injected at seed points, both
Wt and Vt need to be one or close to one, and there-
fore the sum is larger than one. A possible saturation
of material can be controlled by clamping. Con-
versely to dye visualization, the streaklines generated
by noise advection tend to be much shorter. Further-
more, the overall brightness of noise-based represen-
tations should be independent of the blending
weights. Therefore, noise advection typically makes
use of an affine combination of advected and newly
injected material.

A time-varying noise injection texture allows the
user to produce animated visualization even for
steady flow. As in previous work [Wij02, Lar03,
Tel03], we use a—possibly filtered—noise that is
periodically switched on and off with slow-in and
slow-out behavior. As long as the periodicity of this
time dependency is the same for the complete do-
main, a single, time-independent texture that holds
both the noise values and the random phases is suffi-
cient. For a specific time step, the actual noise injec-
tion value is obtained from a lookup table that de-
scribes the temporal behavior of the slow-in and
slow-out. The relative phase from the noise injection
texture is added to the current global time to yield the
local time of that noise. This time—modulo the tem-
poral periodicity—serves as the basis for the afore-
mentioned table lookup. The advantage of this ap-
proach is that a single noise-injection texture is suffi-
cient to represent a time-dependent noise injection,
following [Tel03]. The approach of [Wij02] is
adopted to handle noise-based visualization in the
vicinity of boundaries.

advected
texture

injection
texture

blending

Figure 3: Basic visualization process.

Dye injection is represented by a injection texture as
well. The shape of the dye emitter is stored in a vox-
elized form; a random phase is not needed. Unlike
[Tel03], we do not use stacks of 2D textures but 3D
textures to represent the noise and dye injection, and
the property fields. Moreover, two different 3D tex-
tures are used to represent dye and noise injection,
respectively. In this way, different sampling rates,
positions, and orientations with respect to the under-
lying property field can be used for both textures.
Typically, only very small 3D textures are needed to
specify dye injection. For example, a 43 texture with
clamping at texture edges is sufficient for a cube-
shaped dye emitter; the size, position, and orientation
of the emitter is controlled by choosing an appropri-
ate affine transformation of its 3D texture coordi-
nates. Therefore, changes in size, position, and orien-
tation do not need a re-voxelization with a subse-
quent update of the texture, and thus can be handled
without any performance penalty.

The noise injection texture usually covers the same
domain as the property field. However, the resolution
of the noise injection may differ from that of the
property field. For example, a smaller resolution for
noise injection—in combination with the GPU-based
trilinear interpolation—leads to an efficient reduction
of the maximum spatial frequency in the noise,
which is often needed to avoid aliasing artifacts in
the final visualization. Since 3D IBFV [Tel03] builds
the complete advection process based on 2D textures,
it is restricted to bilinear interpolation in each slice
and does not support the third linear interpolation
along the principal axis of the slices. Therefore,
GPU-based noise interpolation is restricted to, and
only possible along, two axes.

6. RENDERING
Direct volume rendering allows the user to view a
volume data set at different depth positions simulta-
neously by using semi-transparency. Therefore, di-
rect volume rendering is appropriate to display the
property fields that result from a 3D advection proc-
ess. We adopt a rendering approach with viewport-
aligned slices that directly works on 3D textures
[Cab94].

Unlike previous work on texture advection, the prop-
erty fields in this paper do not directly contain color
values, but densities of different materials, which are
coded into the RGBA channels of the property tex-
tures (i.e., a maximum number of four materials is
possible with a single texture). A separate transfer
function is applied to each material during the slice-
based rendering in order to obtain color values for
each material. Similarly to [Had03], the different
transfer functions are evaluated on a per-fragment
level. Since we have a restricted scenario with a

fixed assignment of materials, a collection of differ-
ent 1D textures is used.

From a visualization point of view, it is very effec-
tive to interactively choose whether and how the dif-
ferent materials are displayed. For example, the noise
part could be rendered very faintly to give an overall
context and, at the same time, the dye part could be
emphasized by bright colors to focus on this detail.
In another scenario, dye could be completely re-
moved and noise could be rendered more promi-
nently. It is extremely important that these different
visualization approaches can be interactively
changed in order to address the fundamental prob-
lems of occlusion and clutter. In our approach, this is
easily achieved by modifying the respective transfer
functions.

To further reduce the visual complexity in dense 3D
flow representations, additional scalar quantities can
be mapped to the color and opacity values in the final
rendering. Scalar quantities can either be derived
from the vector field itself (e.g., velocity magnitude)
or from other parameters of the data set (e.g., pres-
sure or temperature in a fluid flow). For example, the
velocity magnitude can be used to emphasize inter-
esting regions of high flow magnitude and fade out
parts with low speed.

7. IMPLEMENTATION
Our 3D texture advection application is implemented
in C++; the GPU-based advection and rendering are
based on OpenGL. Except for the ARB_frag-
ment_program extension, we just use standard
OpenGL 1.2. Our implementation runs and was
tested on both nVidia´s GeForce FX and ATI´s
Radeon 9700/9800 GPUs.

All the visualization techniques described in Sections
4-6 are directly mapped to GPU fragment programs.
The fragment program source code for the pure ad-
vection is shown in Figure 2, the pseudo code for a
complete advection step in Figure 1. Except for the
color tables (explained in the following paragraphs),
all textures in our implementation are three-
dimensional: the two property textures (for ping-
pong rendering), the noise and dye injection textures,
and the texture that holds the vector field. 3D tex-
tures are always created with power-of-two extents
that contain the advection domain, i.e., there might
be empty, unused texture regions, which are not up-
dated during the advection process. For an unsteady
flow, the vector field texture is transferred from main
memory to the GPU for each time step; for a steady
flow, only once. For all other textures, no transfer
between main memory and GPU is required during
runtime because all texture updates are done com-
pletely on the GPU. Currently, all textures have color

Table 1: Performance measurements in frames per second.

 advection only complete visualization
size steady unsteady steady unsteady rendering only # slices
643 106.3 50.3 25.6 20.8 31.7 130

1283 40.9 9.8 9.3 5.4 11.9 260
2563 10.2 1.7 2.9 1.0 3.7 540

channels with fixed-point numbers with 8 bit resolu-
tion. Higher resolution can be easily achieved by just
changing the texture format to 16 bit fixed-point or
32 bit floating-point numbers.

The core fragment program (Figure 2) is extended by
the following steps to incorporate the noise/dye in-
jection and blending schemes. First, an additional
texture lookup provides the noise amplitude and
phase for the different noise materials to be injected
at the current voxel. The phase is added to the cur-
rent global time to obtain a local time. This local
time, modulo the temporal periodicity of noise injec-
tion, serves as the texture coordinate for a dependent
lookup in a 1D texture that describes the slow-in and
slow-out of noise. After multiplication with the
above noise amplitude, the actual noise injection
value is obtained. Dye injection is determined by a
lookup in the respective injection texture.

To implement several different noise and dye materi-
als, the above processes are computed for each noise
and dye material independently. Each material is
associated with a distinct color channel. Thus, a
maximum number of four materials is supported in
the current implementation (if required, more materi-
als could be realized by using several property tex-
tures). The blending mechanism (Eq. (6)) is mapped
one-to-one to numerical fragment program instruc-
tions (i.e., multiplication and summation).

The volume visualization part adopts standard 3D
texture-based volume rendering with viewport-
aligned slices [Cab94]. For each material, post-
classification is implemented by a dependent-texture
lookup in the respective transfer function table. The
resulting intermediate colors are added to obtain the
final color.

8. RESULTS
Figure 4 shows results produced by our visualization
system. The underlying data set represents the behav-
ior of a tornado (the data set is courtesy of Roger
Crawfis). The size of the flow field is 1283, the parti-
cle textures are 2563, and the noise injection texture
is 1283. Figures 4 (a)-(f) compare different visualiza-
tion styles for the same viewpoint. Images (a)-(d) are
rendered with velocity masking, i.e., only regions of
high velocity magnitude are displayed. Image (a)
employs a dense noise injection of two materials

(bluish and green) and (b) a sparse noise injection. In
(c), additional red dye is injected at a user-specified
position. The seed point is visualized by the intersec-
tion of three orange, axis-oriented, thin tubes. In this
way, the user can easily identify the spatial position
of dye injection. In (d), different lengths for blue and
green noise material demonstrate that different blend-
ing weights can be used for each material. Image (e)
shows a dense visualization without masking. Here,
the velocity field is normalized to unit magnitude to
achieve a visualization that is comparable to LIC.
Due to the asymmetric, exponential filter kernel
(based on iterative α blending), this image resembles
oriented LIC [Weg97]. In this dense representation,
interior parts of the flow are completely occluded by
advected material in the front. Therefore, clipping
approaches are required to view these inner regions,
e.g., with a slanted clipping plane as in (f).

Table 1 shows performance measurements for a
Windows XP machine with an ATI Radeon 9800 Pro
GPU (256 MB). The sizes of the vector and property
fields are stated in the first column. Two noise mate-
rials and one dye material are advected. The per-
formance numbers show a strong dependency on the
number of grid cells; the behavior could be very
roughly considered linear. The viewport of size 6002
was almost filled by the volume rendering; the num-
ber of slices is shown in Table 1. Comparing steady
and unsteady visualization, it becomes clear that the
download of 3D textures to the GPU is a bottleneck.
Interestingly, the volume rendering part often is more
time-consuming than even unsteady advection. Since
the measurements for 3D IBFV [Tel03] are given for
a GeForce 3 Ti 400 and for very asymmetric resolu-
tions of property fields, it is hard to compare their
numbers with ours. They achieve some 10 fps for
steady flow advection with a property texture of
resolution 2562 · 50, which is roughly 20 percent of
our performance for the same number of property
field texels. Even when we take into account the
higher rendering speed of the Radeon 9800, we still
see some performance advantages of our single-pass
advection scheme compared to the multi-pass ap-
proach of 3D IBFV. Moreover, our implementation
already includes the effort of building a 3D texture,
which is required for the subsequent volume render-
ing part anyway.

 (a) (b)

 (c) (d)

 (e) (f)
Figure 4: Visualization of a tornado dataset. Images (a)-(d) are rendered with velocity masking: (a) dense
noise injection, (b) sparse noise injection, (c) additional red dye, (d) different lengths for blue and green ma-
terial. Image (e) shows a dense visualization without masking; (f) the same with a slanted clipping plane.

9. CONCLUSION
We have presented an interactive texture-based sys-
tem for the dense visualization of arbitrary unsteady
3D flow fields. The core of this system is an advec-
tion scheme that realizes all intrinsically three-
dimensional objects, such as property and vector
fields, as 3D textures. An implementation on current
GPUs allows a slice of the 3D representation to be
updated in a single rendering pass and therefore
achieves interactive frame rates. The 3D texture ap-
proach with built-in trilinear interpolation allows the
resolution, size, orientation and position of the prop-
erty field, the vector field, and the injection textures
to differ and to be separately controlled by specifying
affine transformations of texture coordinates. There-
fore, interactive changes of these parameters are pos-
sible without revoxelization. Moreover, we have
proposed an enhanced blending scheme that aban-
dons the restriction to an affine combination of ad-
vected and newly injected values. In addition, the
advection and rendering schemes have been extended
to transport and display different materials instead of
combined colors and opacities. In this way, a unified
description of a wide range of noise and dye advec-
tion approaches is possible, and parts of the visuali-
zation can be specifically faded out or emphasized.

In future work, more advanced interaction techniques
for volume clipping could be incorporated to facili-
tate the exploration of interior details. The rendering
part could be further improved by perception enhanc-
ing approaches, such as depth cueing or halos.

10. ACKNOWLEDGMENTS
We would like to thank Roger Crawfis for providing
the tornado data set used in Figure 4. Thanks to Bet-
tina Salzer for proof-reading. This project was sup-
ported by the “Landesstiftung Baden-Württemberg”.

11. REFERENCES
[Cab93] Cabral, B. and Leedom, L.C. Imaging vector fields using

line integral convolution. Proc. ACM SIGGRAPH 93, pp.
263-272, 1993.

[Cab94] Cabral, B., Cam, N., and Foran, J. Accelerated volume
rendering and tomographic reconstruction using texture map-
ping hardware. Proc. Symp. Volume Visualization, pp. 91-98,
1994.

[For95] Forssell, L.K. and Cohen, S.D. Using line integral convo-
lution for flow visualization: curvilinear grids, variable-speed
animation, and unsteady flows. IEEE Transactions on Visuali-
zation and Computer Graphics 1, No. 2, pp. 133-141, 1995.

[Had03] Hadwiger, M., Berger, C., and Hauser, H. High-quality
two-level volume rendering of segmented data sets on con-
sumer graphics hardware. IEEE Visualization '03, pp. 301-
308, 2003.

[Hau02] Hauser, H., Laramee, R.S., and Doleisch, H. State-of-the-
art report 2002 in flow visualization. Technical report TR-
VRVis-2002-003, VRVis Research Center, 2002.

[Hei99] Heidrich, W., Westermann, R., Seidel, H.-P., and Ertl, T.
Applications of pixel textures in visualization and realistic im-
age synthesis. ACM Symp. Interactive 3D Graphics, pp. 127-
134, 1999.

[Int97] Interrante, V. and Grosch, C. Strategies for effectively
visualizing 3D flow with volume LIC. IEEE Visualization '97,
pp. 421-424, 1997.

[Job00] Jobard, B., Erlebacher, G., and Hussaini, M.Y. Hardware-
accelerated texture advection for unsteady flow visualization.
IEEE Visualization '00, pp. 155-162, 2000.

[Job02] Jobard, B., Erlebacher, G., and Hussaini, M.Y. Lagran-
gian-Eulerian advection of noise and dye textures for unsteady
flow visualization. IEEE Transactions on Visualization and
Computer Graphics 8, No. 3, pp. 211-222, 2002.

[Max95] Max, N. and Becker B. Flow visualization using moving
textures. Proc. ICASW/LaRC Symp. Visualizing Time-
Varying Data, pp. 77-87, 1995.

[Lar03] Laramee, R., Jobard, B., and Hauser, H. Image space
based visualization of unsteady flow on surfaces. IEEE Visu-
alization '03, pp. 131-138, 2003.

[Li03] Li, G.-S., Bordoloi, U.D, and Shen, H.-W. Chameleon: an
interactive texture-based rendering framework for visualizing
three-dimensional vector fields. IEEE Visualization '03, pp.
241-248, 2003.

[Rez99] Rezk-Salama, C., Hastreiter, P., Teitzel, C., and Ertl, T.
Interactive exploration of volume line integral convolution
based on 3D-texture mapping. IEEE Visualization '99, pp.
233-240, 1999.

[San00] Sanna, A., Montrucchio, B., and Montuschi, P. A survey
on visualization of vector fields by texture-based methods.
Recent Res. Devel. Pattern Rec. 1, pp. 13-27, 2000.

[She96] Shen, H.-W., Johnson, C., and Ma, K.-L. Visualizing
vector fields using line integral convolution and dye advec-
tion. Proc. Symp. Volume Visualization, pp. 63-70, 1996.

[She98] Shen, H.-W., Kao, D.L. A new line integral convolution
algorithm for visualizing time-varying flow fields. IEEE
Transactions on Visualization and Computer Graphics 4, No.
2, pp. 98-108, 1998.

[Sta95] Stalling, D. and Hege, H.-C. Fast and resolution independ-
ent line integral convolution. Proc. ACM SIGGRAPH 95, pp.
249-256, 1995.

[Tel03] Telea, A. and van Wijk, J.J. 3D IBFV: hardware-
accelerated 3D flow visualization. IEEE Visualization '03, pp.
233-240, 2003.

[Ver99] Verma, V., Kao, D.L., and Pang, A. PLIC: Bridging the
gap between streamlines and LIC. IEEE Visualization '99, pp.
341-348, 1999.

[Weg97] Wegenkittl, R., Gröller, E., and Purgathofer, W. Animat-
ing flow fields: rendering of oriented line integral convolution.
Computer Animation '97, pp. 15-21, 1997.

[Wei01] Weiskopf, D., Hopf, M., and Ertl, T. Hardware-
accelerated visualization of time-varying 2D and 3D vector
fields by texture advection via programmable per-pixel opera-
tions. Proc. VMV '01, pp. 439-446, 2001.

[Wei02] Weiskopf, D., Erlebacher, G., Hopf, M., and Ertl, T.
Hardware-accelerated Lagrangian-Eulerian texture advection
for 2D flow visualization. Proc. VMV '02, pp. 77-84, 2002.

[Wij91] van Wijk, J.J. Spot noise - texture synthesis for data visu-
alization. Computer Graphics (Proc. ACM SIGGRAPH 91)
25, pp. 309-318 1991.

[Wij02] van Wijk, J.J. Image based flow visualization. ACM
Transactions on Graphics 21, No. 3, pp. 745-754, 2002.

[Wij03] van Wijk, J.J. Image based flow visualization for curved
surfaces. IEEE Visualization '03, pp. 123-130, 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [595.000 842.000]
>> setpagedevice

