
User-defined texture synthesis

Francesca Taponecco
Interactive Graphics Systems Group

Department of Computer Science
Technische Universität Darmstadt

Fraunhoferstr. 5,
 64283 Darmstadt, Germany

ftapone@gris.informatik.tu-darmstadt.de

ABSTRACT

Synthesis of textures is a very popular and active area of research; the applications and the areas of interest are
various and significant. In the last years, much work has been done in order to optimize the synthesis process,
speeding up the methods and minimizing the processing errors. Recent efforts in this area are concentrated in
producing flexible algorithms and in introducing tools, which augment the texture with artistic effects. In this
work we present a novel approach for flexible texture synthesis: starting from an input sample the process
generates an arbitrary resolution output image; the characteristics of this output texture are user-defined, as the
user can freely choose a force field, determine color variations and add further features. The synthesis process is
fully automatic and does not require additional intervention. The resulting outputs can be interpreted as filtered
versions of a texture or as being obtained through transfer functions.

Keywords
Personalized texture synthesis, user-dependent settings, force fields, data visualization, artistic effects, image-
processing filters.

1 INTRODUCTION
Image generation and image handling are very
fascinating fields of research, lots of current works
deal with producing special effects and variations of
an original image; filter synthesis and analysis also
offer many possibilities for image manipulation.
Texture synthesis as well is a major area of study:
texture mapping is often utilized to add more variety
to computer-generated scenes and to provide objects
with complex materials appearance (e.g. color, bump
mapping, transparency, shading) and patterns: this
improves the perception of shape and geometry and
increases the realism on surfaces.
In this work we present a new idea for personalized
texture synthesis. We start by introducing motivation
and applications and then we present some previous

work done in this field. Next, we explain our
algorithm: a novel flexible and straightforward
process, which is easy to implement and adapt to
several conditions. We show some of our results and
summarize the features of the approach; at last, we
conclude with discussion and address some possible
future work.

2 MOTIVATION AND PREVIOUS
WORK

Recently, lots of effort has been put in texture
synthesis and image processing. The intention of
texture synthesis is the following: given a sample of
a texture, synthesize an arbitrary resolution output
texture that is perceptually similar to the input.
Regarding image processing, the objective is in
general to produce algorithms and methods, which
are as flexible and interactive as possible. In this
chapter we will briefly summarize some of the
preceding work done in these fields, then we refer to
the works that are more directly related to our study.
Regarding the research for texture synthesis
applications and image processing, many novel ideas
are notable; some of them are directly based on

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WSCG Short Communication papers Proceedings
WSCG’2004, February 2-6, 2004, Plzen, Czech Republic.
Copyright UNION Agency – Science Press

texture synthesis techniques, some others are inspired
by the texture synthesis theory.

Figure 1. Synthesizing an arbitrary resolution
output texture from an input sample.

Drori at al. [Dro03] propose an interesting method
for fragment-based completing missing parts after
their removal from the original image. Bertalmio et
al. [Ber00], [Ber03] also fill in missing regions of a
picture, for example for restoration and reconstitution
- inpainting - of images. Their approach works for
the structure and for the texture (image details) of the
picture as well. Hertzmann et al. [Her01] process
images by examples: their method involves two
stages: a design phase, in which a pair of images
(one is a filtered version of the other) is presented as
training data, and an application phase, in which the
learned filter is applied to a new target image in
order to create an analogous filtered result. Brooks et
al. [Bro02] proposes self-similarity texture warping,
Freeman et al. [Fre02] performs super-resolution by
example: they train using different pairs of images
with low and high resolution. Ashikhmin [Ash01]
produces the effect of rendering a given image with
the texture appearance - texture transfer - of a sample
image. Applications of the texture synthesis theory
can also be found in scientific visualization [Tap03],
where a synthesis approach based on Markov
Random Fields model is used to generate vector
fields, providing the visualization with various
appearances and smooth transitions. Regarding
color effects, Welsh et al. [Wel02] introduce a
technique for colorizing grayscale images by
transferring color between a source color-image and
a destination grayscale-image. Greenfield et al.
[Gre03] present a method for recoloring a destination
image according to the color scheme found in a
source image. The painting’s palette can be then
inverted or applied to a different image.
Interesting 3d approaches for synthesizing textures
on surfaces are somehow similar to our idea, but they
are mostly used to texture a manifold surface,
adapting the direction field for the texturing. Praun et
al. [Pra00] propose „Lapped Textures“, an approach

that uses overlapping sample patches and copies
them over a surface. Zhang et al. [Zha03] realize a
progressively variant synthesis for texture mapping
on surfaces. Turk [Tur01] proposes the use of
oriented patches for surface texture synthesis.
Another significant approach that synthesizes
textures directly on surfaces is from [Wei01].

2.1 Texture synthesis
The intention of texture synthesis is fundamentally
the following: given a sample of a texture, synthesize
a new texture of arbitrary resolution that appears to
be generated by the same underlying process (see
Figure 1). That is, two texture images are perceived
by human observers to be the same if some
appropriate statistics of these images match: this has
to be achieved by the synthesis algorithm.

2.1.1 Patch-based texture synthesis
One way to synthesize textures in a fast way is the
block-by-block method of Efros and Freeman (See
[Efr01] for more details). This process - image
quilting - is a simple and fast image-based method:
the block substitution is here optimized by stitching
together small patches of existing images and
minimizes the error on the boundary cut where the
patches join. Interesting alternative methods that
generate images from examples are the fast and
patch-based technique of [Xuy00], [Lia02] and more
recently [Nea03], [Kwa03], [Coh03]. For patches-
based synthesis methods, the size of a block depends
on the structure of the texture we want to synthesize.

2.1.2 Pixel-based texture synthesis
Many approaches use Markov Random Fields (MRF)
theory to model a texture, and they generate the
output pixel-by-pixel [Efr99]. The large texture is
produced in scan-line order, where each pixel is set
after comparing its neighborhood to all similar
shaped neighborhoods in the sample texture, which is
both stationary and local [Wei00]. This comparison
leads to a distance function, which corresponds to the
probability needed to choose the best fitting pixel
(the most similar one). This operation is naturally a
time consuming process, which can be speeded up
using optimization algorithms such as tree-structured
vector quantization [Ger92], [Wei00] and image
pyramids1. We have implemented this multi-
resolution analysis using Gaussian pyramids (each
level is here obtained via successive filtering and

1 The image pyramids is a multi-resolution synthesis

process based on sub-band transforms: the pyramid is a
multi-scale set of image levels. In the lower levels are
comprised the coarse large-scale features of a picture,
while in the higher levels - high resolution - the details
are to find (see also [Hee95], [Bon97], [Por00]).

down-sampling operations by a factor of 2 – i.e. the
images result to be blurred and decimated versions of
the original one, through low pass filtering). For
pixel-by-pixel synthesis methods, the size of the
neighborhood depends on the structure of the texture
we want to synthesize: the neighborhood has to
comprise enough information in order to be able to
reconstruct the texture pattern in the output image.
Using multi-resolution, smaller neighborhoods
produce analogous results to larger ones in single-
resolution.

3 OUR APPROACH
Our method has been inspired by a previous work
[Tap03], which visualizes precise and smooth vector
fields, using texture synthesis theory. The target of
our technique is to offer a flexible user-dependent
tool to intervene in the texture synthesis and modify
patterns and images. Basically, we generalize and
extend the texture synthesis process: starting from a
sample image or, here more generally, from a various
set of sample images, the user can additionally
decide how to complete the process, choosing
between variation options, which affect the original
input sample at a per-pixel level. For every point in
the output image during the scan-line synthesis
process, the information, which depends on the
parameters set by the user, is mapped in the pixel.
The choice of a particular image-processing filter
influences the appearance of the sample, for instance
to gradually change the color of the output texture in
the desired way (Figure 11, Figure 12, Figure 13);
the choice of a direction field determines scaling
variations - magnitude or norm - (Figure 8), which
transform the original pattern, and new directions -
phase - (Figure 7), along which the sample image
has to be rotated.

Input
sample

user-defined
texture synthesis

process

Output
texture

additional
user controls

force field
and filters

Figure 2. Blocks’ scheme of the process flow for a
standard application case (single input).

To perform this, the starting sample is rotated,
amplified or minimized, distorted or sheared. We
explain the algorithm in more detail in the following
section. For our work we use a pixel-by-pixel texture

synthesis2, which is slow, but guaranties smoother
results and preserves continuity, especially in critical
points.

4 ALGORITHM
4.1 Standard Input sample
In Figure 2, we exemplify the process flow in case of
a single input image. The user chooses the sample,
hence defines a force field (for instance the one of
Figure 3) and may set additional variable parameters.
Modified texture synthesis is then executed. In
Figure 4 and Figure 5 one can observe the resulting
textures.

Figure 3. An example of force field.

Figure 4. Modified texture synthesis, obtained

using the force field of Figure 3.

2 Based on the work of Wei and Levoy [Wei00].

Figure 5. Accentuating a main direction in the
input sample of Figure 1 produces a stronger

spiraling effect in the output texture.

4.2 Input set
In addition to the section above, we want here to use
a set of input samples in place of an only one: the set
can be pre-selected or also user-defined. This can be
particularly useful in case the user wants to
emphasize or differentiate regions of the output.

Input
sample

user-defined
texture synthesis

process

Output
texture

Input
sample

Input
sample

...

additional
user controls

force field
and filters

Figure 6. Blocks’ scheme in case of multiple input
samples (input set).

4.3 Input set variations
The input sample or sample set is modified as
follows: as briefly described in Section 3, the user
defines a force field and this influences the output
textures in amplitude and rotation: see some results
in Figure 10 and from Figure 15 to Figure 20.

Figure 7. Rotating the input sample of Figure 1.

Figure 8. Scaling the input sample of Figure 1.

To achieve this, every input sample has been rotated
(see Figure 7) and scaled (see Figure 8) according to
the specific field. That is, for each sample a number
of modified versions is calculated, or, better, pre-
computed. Two correspondent results are in Figure 4,
Figure 5. Naturally the direction influence of the
field is stronger for input samples that are
characterized by a more accentuated major direction
of anisotropy. The way the system chooses a
particular sample from the whole set depends on the
information contained in the corresponding output
pixel that has to be drawn. In detail, the output
texture is being synthesized per-pixel in scan line
order; at every step a pixel value has to be set: the
algorithm looks for the best matching pixel, by
comparing the neighborhood of the searched pixel

with all the similar ones in the input sample; this
input sample in turn is being chosen from the
complete input set, depending on the user-provided
information contained in the point at the current
position in the output. Concluding, each pixel in the
output texture can communicate the decided
characteristics of color and pattern, as it univocally
corresponds to a specific sample image.

Figure 9. For each pixel in the output, the sample
texture is transformed through the vector value

(thick arrow) at the pixel position.
More formally, and for a standard case with single
input texture T , the algorithm steps are the
following. In the output texture, every pixel at the
generic position (is characterized by a vector
value v

), yx
r

:
dvyx ℜ∈⇒

r),(

where d is the vector dimension.

Every vector vr , depending on the set force field,
comprises scaling and rotating information; hence it
corresponds to a particular modified (scaled and/or
rotated) version, T , of the original sample

texture
),(yx

T (this is illustrated in Figure 9):

),(),(yxTyxv ⇔
r

More generally, when further user-defined
parameters have been set, we can connect a specific
transformation (e.g. through filtering operation)

to every texture sample T , which belongs to the

input set:

f

),(yx

),(),(yxyxv Tf ⇔r

Here, the transformation respectively corresponds
to scaling, rotating, coloring, blurring, sharpening,
etc. operations:

f

•)),((),(yxvScalef yxv
r

r =

•)),((),(yxvRotatef yxv
r

r ∠=

•))),(((),(yxvgBlurf Bluryxv
r

r =

•))),(((),(yxvgSharpenf Sharpenyxv
r

r =

• …

gfmhghfhfgdgdgdfgddgdfgdfgdfgdfgdhhdghhhhhhhhhhhhhhhhhhhhhhhhhguh.kh.i.lkj.lkj.lkj.lk.lk

Figure 10. We used here different direction fields
to influence the output texture. The input sample

is the previous one from Figure 20.

4.4 Appearance
In Figure 10, we show some results we obtained for
the sample “cane pattern” (from Figure 20), changing
the direction field each time. Afterward (Figure 15 to
Figure 20), we show further results obtained using a

variety of patterns, which correspond to common
material appearances, obtained this time always
choosing the force field illustrated in Figure 3.

4.5 Areas of interest
Particular points of interest or critical points can be
highlighted in the output, just by choosing a special
sample or a significant color or filter to match the
properties on that point. Figure 11 shows how color
transitions map different amplitudes or areas of
interest.

4.6 Transformations
We also tried out creating transitions between
different images: using multiple input samples, it is
possible to generate an output image, which
combines multiple appearances. Therefore,
transformations occur in the output texture, which
are smooth, due to the features of the pixel-based
method. We are still perfectioning this technique and
we refer our preliminary results as future work.

5 RESULTS
The main contribution of our work is to offer
personalized options for the generation of user-
dependent textures and to combine together several
artistic effects in the synthesis process.

Figure 11. Starting from a simple line pattern, we curved these lines along the field direction,

and applied color masks to different regions; this generates color gradient transitions.

Figure 12. Color effects.

Figure 13. Color effects.

The starting sample pattern (or set of patterns) is
freely modified and filtered, and then reproduced in
an arbitrary resolution personalized output texture.
We applied our idea to different sets of sample
images, obtaining the following results. In the
Figures above (Figure 4 to Figure 13 and from
Figure 14 to Figure 20), it is possible to observe
some of the possibilities of this algorithm. Note that,
independently of the input sample’s pattern, the
method guarantees a smooth output texture. Our
technique works well for stochastic textures as well
as for structured textures, however we applied the
technique mainly using structured anisotropic
samples, as directional textures better highlight how
the orientation of the image follows the user-
specified direction field (see for example the
difference between Figure 4 and Figure 5); in
particular fine-structured sample textures are
particular suited to produce precise output also in
case of strong curvature changes in the output image.
In case of a coarser structure in the sample, instead, a
bigger sized neighboring area around each pixel is
required to learn and reproduce the sample pattern.

Furthermore, the user can better highlight a flow or a
specific area using color filtering in addition.
Regarding the sampling rate of the superimposed
force field, it is defined by the pixel count in the
output image, i.e. the output dimension. Textures are
important for numerous applications, for example the
use of textures is fundamental for large scenes and
terrains, therefore operating with a force field
formula would add relevant features for better
visualizing streams of winds, gas or fluids. Texturing
3d surfaces also needs curving the texture and
adapting it to fit the 3d object, thus, again force fields
and color or light effects are fundamental to modify
the appearance and to add more realism to the scene.

Figure 14. Bricks texture.

6 CONCLUSIONS
We have presented a new and versatile technique that
allows a user to synthesize a texture in a flexible
way. Thanks to user-dependent options and to the
possibility of influencing the output image through a
free choice of input parameters and values, a variety
of desired outputs can be obtained and promising
extensions are possible. There is no limitation in the
choice of the force fields; this makes this method
general. Our examples have shown that this
approach provides smooth transitions between
different color or pattern areas and generates good
outputs also in presence of critical points in
particular orientation fields. The pixel-by-pixel
process guaranties high-quality texture results, as it
selects, at every step, the best choice fitting its
neighbors. Consequently, the accuracy that is
achieved by this approach is high and provides good
results also in scientific visualization. Using different
sample images to generate a single output texture
also leads to interesting image transformation effects.
Using several kinds of filters, painting and artistic

effects can be attained. Furthermore the method is
general and easy to use. In general, the main
applications of our approach are in the fields of
image manipulations, in the generation of artistic
effects on images and in the production of user-
defined patterns. Our methods allow a user-defined
filter application at a per-pixel level, although also
pre- and post-processing filtering is possible.

7 FUTURE WORK
Possible extensions can be achieved by investigating
new kinds of filters and various artistic effects in
order to further differentiate and map particular
samples to different regions of the output.
Transitions and transformations between different
images also need to be further explored.
Improvements may be possible by speeding up the
software or combining algorithms together to
improve the performances.

8 REFERENCES
[Ash01] Michael Ashikhmin. Synthesizing natural textures.

In 2001 ACM Symposium on Interactive 3D Graphics,
pages 217–226, March 2001. ISBN 1-58113-292-1.

[Ber00] M. Bertalmio, G. Sapiro, V. Caselles and C.
Ballester. Image Inpainting. In Proceedings of ACM
Siggaph 2000, ACM Press, pp. 417 – 424.

[Ber03] M. Bertalmio, L. Vese, G. Sapiro and S. Osher.
Simultaneous structure and texture image inpainting. In
IEEE Conference on Computer Vision and Pattern
Recognition. Vol. 12, No. 8, August 2003.

[Bon97] Jeremy S. De Bonet. Multiresolution sampling
procedure for analysis and synthesis of texture images.
Proceedings of SIGGRAPH 97, pages 361–368, August
1997. ISBN 0-89791-896-7.

[Bro02] Stephen Brooks and Neil Dodgson. Self-similarity
based texture editing. ACM Transactions on Graphics,
21(3): 653–656, July 2002. ISSN 0730-0301
(Proceedings of ACM SIGGRAPH 2002).

[Coh03] M. F. Cohen, J. Shade, S. Hiller, O. Deussen.
Wang Tiles for image and texture generation. ACM
Siggraph 2003.

[Cri03] A. Criminisi, P. Perez, K. Toyama. Object
Removal by Exemplar-based Inpainting. Proceedings
CVPR 2003, Madison, US, June 2003.

[Dro03] Iddo Drori, D. Cohen-Or and H. Yeshuun.
Fragment-Based Image Completion. 2003 Proceedings
of ACM SIGGRAPH 2003.

[Efr99] A. Efros and T. Leung. Texture synthesis by non-
parametric sampling. In International Conference on
Computer Vision, pages 1033–1038, 1999.

[Efr01] Alexei A. Efros and William T. Freeman. Image
quilting for texture synthesis and transfer. In
Proceedings of ACM SIGGRAPH 2001, Computer
Graphics Proceedings, pp. 341–346. ACM
SIGGRAPH, August 2001

[Fre02] W. Freeman, T. R. Jones and E. C. Pasztor.
Example-based super-resolution. IEEE Computer
Graphics and Applications 2002, pp. 56 – 65.

[Ger92] A. Gersho and R. M. Gray. Vector Quantization
and Signal Compression. Kluwer Academic Publisher,
1992

[Gre03] Gary G. Greenfield and Donald D. House. Image
Recoloring Induced by Palette Color Associations,
WSCG 2003, February 2003.

[Hee95] David J. Heeger and James R. Bergen. Pyramid-
based texture analysis/synthesis. Proceedings of
SIGGRAPH 95, pages 229–238, August 1995. ISBN 0-
201-84776-0. Held in Los Angeles, California.

[Her01] Aaron Hertzmann, Charles E. Jacobs, Nuria
Oliver, Brian Curless, and David H. Salesin. Image
analogies. In Proceedings of ACM SIGGRAPH 2001,
Computer Graphics Proceedings, pp. 327–340. ACM
Press / ACM SIGGRAPH, August 2001.

[Kwa03] V. Kwatra, A. Scoedl, I. Essa, G. Turk, A.
Bobick. Graphcut textures: Image and Video Texture
Synthesis using graph cut. ACM Siggraph 2003.

[Lia02]L. Liang, C. Liu, Y.-Q. Xu, B. Guo, and Heung
Shum. Real-time texture synthesis by patch-based
sampling. ACM Transactions on Graphics, 20(3):127--
150, July 2001. 4

[Nea03] A. Nealen and M. Alexa. Hybrid Texture.
Eurographics Symposium of Rendering 2003. Leuven ,
Belgium, June 2003.

[Por00] Javier Portilla and Eero P. Simoncelli. A
parametric Texture Model Based on Joint Statistics of
Complex Wavelet Coefficients. International Journal of
Computer Vision, October 2000.

[Pra00] Emil Praun, Adam Finkelstein, and Hugues Hoppe.
Lapped textures. Proceedings of SIGGRAPH 2000,
pages 465–470, July 2000. ISBN 1-58113-208-5.

[Tap03] F. Taponecco and M. Alexa. Vector Field
Visualization using Markov Random Field Texture
Synthesis. Eurographics / IEEE TCVG Visualization
Symposium Proceedings, pp.195 – 202, Grenoble,
France, May 2003.

[Tur01] Greg Turk. Texture synthesis on surfaces. In
Proceedings of ACM SIGGRAPH 2001, Computer
Graphics Proceedings, Annual Conference Series,
pages 347– 354. ACM SIGGRAPH, August 2001.

[Wei00] Li-Yi Wei and Marc Levoy. Fast texture synthesis
using tree-structured vector quantization. Proceedings
of SIGGRAPH 2000, pages 479–488, July 2000. ISBN
1-58113-208-5.

[Wei01] Li-Yi Wei and Marc Levoy. Texture synthesis
over arbitrary manifold surfaces. In ACM, editor, SIG-
GRAPH 2001 Conference Proceedings, August 2001,
Los Angeles, CA, pages 355–360, New York, 2001.

[Wel02] T. Welsh, M. Ashikhmin and K. Mueller.
Transferring color to greyscale images. ACM Siggraph
2002. San Antonio, July 2002, pp. 277 – 280

[Wit91] Andrew Witkin and Michael Kass. Reaction-
diffusion textures. Computer Graphics (Proceedings of
SIGGRAPH 91), 25(4): 299–308, July 1991. ISBN 0-
201- 56291-X. Held in Las Vegas, Nevada.

[Xuy00] Y. Xu, B. Guo and H.-Y. Shum. Chaos mosaic:
Fast and mamory efficient texture synthesis. Tech.
Rep. MSR-TR2000 -32, Microsoft Research, 2000.

[Zha03]J. Zhang, K. Zhou, L. Velho, B. Guo, H.-Y. Shum.
Synthesis of progressively-variant textures on arbitrary
surfaces. ACM Siggraph ’03, August 2003.

Figure 15. Obtaining the same output pattern

using different input samples: wool tricot pattern.
Figure 18. Sand pattern.

Figure 16. Waves pattern. Figure 19. Fabric pattern.

Figure 17. Bricks pattern. Figure 20. Cane pattern.

	INTRODUCTION
	MOTIVATION AND PREVIOUS WORK
	Texture synthesis
	Patch-based texture synthesis
	Pixel-based texture synthesis

	OUR APPROACH
	ALGORITHM
	Standard Input sample
	Input set
	Input set variations
	Appearance
	Areas of interest
	Transformations

	RESULTS
	CONCLUSIONS
	FUTURE WORK
	REFERENCES

