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ABSTRACT 

Synthesis of textures is a very popular and active area of research; the applications and the areas of interest are 
various and significant. In the last years, much work has been done in order to optimize the synthesis process, 
speeding up the methods and minimizing the processing errors. Recent efforts in this area are concentrated in 
producing flexible algorithms and in introducing tools, which augment the texture with artistic effects. In this 
work we present a novel approach for flexible texture synthesis: starting from an input sample the process 
generates an arbitrary resolution output image; the characteristics of this output texture are user-defined, as the 
user can freely choose a force field, determine color variations and add further features. The synthesis process is 
fully automatic and does not require additional intervention. The resulting outputs can be interpreted as filtered 
versions of a texture or as being obtained through transfer functions. 

Keywords 
Personalized texture synthesis, user-dependent settings, force fields, data visualization, artistic effects, image-
processing filters. 

 

1 INTRODUCTION 
Image generation and image handling are very 
fascinating fields of research, lots of current works 
deal with producing special effects and variations of 
an original image; filter synthesis and analysis also 
offer many possibilities for image manipulation.  
Texture synthesis as well is a major area of study: 
texture mapping is often utilized to add more variety 
to computer-generated scenes and to provide objects 
with complex materials appearance (e.g. color, bump 
mapping, transparency, shading) and patterns: this 
improves the perception of shape and geometry and 
increases the realism on surfaces.  
In this work we present a new idea for personalized 
texture synthesis. We start by introducing motivation 
and applications and then we present some previous 

work done in this field. Next, we explain our 
algorithm: a novel flexible and straightforward 
process, which is easy to implement and adapt to 
several conditions. We show some of our results and 
summarize the features of the approach; at last, we 
conclude with discussion and address some possible 
future work. 

2 MOTIVATION AND PREVIOUS 
WORK 

Recently, lots of effort has been put in texture 
synthesis and image processing. The intention of 
texture synthesis is the following: given a sample of 
a texture, synthesize an arbitrary resolution output 
texture that is perceptually similar to the input. 
Regarding image processing, the objective is in 
general to produce algorithms and methods, which 
are as flexible and interactive as possible. In this 
chapter we will briefly summarize some of the 
preceding work done in these fields, then we refer to 
the works that are more directly related to our study. 
Regarding the research for texture synthesis 
applications and image processing, many novel ideas 
are notable; some of them are directly based on 
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texture synthesis techniques, some others are inspired 
by the texture synthesis theory.  

       

Figure 1. Synthesizing an arbitrary resolution 
output texture from an input sample.  

Drori at al. [Dro03] propose an interesting method 
for fragment-based completing missing parts after 
their removal from the original image.   Bertalmio et 
al. [Ber00], [Ber03] also fill in missing regions of a 
picture, for example for restoration and reconstitution 
- inpainting - of images. Their approach works for 
the structure and for the texture (image details) of the 
picture as well.   Hertzmann et al. [Her01] process 
images by examples: their method involves two 
stages: a design phase, in which a pair of images 
(one is a filtered version of the other) is presented as 
training data, and an application phase, in which the 
learned filter is applied to a new target image in 
order to create an analogous filtered result. Brooks et 
al.  [Bro02] proposes self-similarity texture warping, 
Freeman et al. [Fre02] performs super-resolution by 
example: they train using different pairs of images 
with low and high resolution. Ashikhmin [Ash01] 
produces the effect of rendering a given image with 
the texture appearance - texture transfer - of a sample 
image.     Applications of the texture synthesis theory 
can also be found in scientific visualization [Tap03], 
where a synthesis approach based on Markov 
Random Fields model is used to generate vector 
fields, providing the visualization with various 
appearances and smooth transitions.   Regarding 
color effects, Welsh et al. [Wel02] introduce a 
technique for colorizing grayscale images by 
transferring color between a source color-image and 
a destination grayscale-image.   Greenfield et al. 
[Gre03] present a method for recoloring a destination 
image according to the color scheme found in a 
source image. The painting’s palette can be then 
inverted or applied to a different image. 
Interesting 3d approaches for synthesizing textures 
on surfaces are somehow similar to our idea, but they 
are mostly used to texture a manifold surface, 
adapting the direction field for the texturing. Praun et 
al. [Pra00] propose „Lapped Textures“, an approach 

that uses overlapping sample patches and copies 
them over a surface.   Zhang et al. [Zha03] realize a 
progressively variant synthesis for texture mapping 
on surfaces. Turk [Tur01] proposes the use of 
oriented patches for surface texture synthesis.  
Another significant approach that synthesizes 
textures directly on surfaces is from [Wei01].  

2.1 Texture synthesis 
The intention of texture synthesis is fundamentally 
the following: given a sample of a texture, synthesize 
a new texture of arbitrary resolution that appears to 
be generated by the same underlying process (see 
Figure 1). That is, two texture images are perceived 
by human observers to be the same if some 
appropriate statistics of these images match: this has 
to be achieved by the synthesis algorithm. 

2.1.1 Patch-based texture synthesis 
One way to synthesize textures in a fast way is the 
block-by-block method of Efros and Freeman (See 
[Efr01] for more details). This process - image 
quilting - is a simple and fast image-based method: 
the block substitution is here optimized by stitching 
together small patches of existing images and 
minimizes the error on the boundary cut where the 
patches join. Interesting alternative methods that 
generate images from examples are the fast and 
patch-based technique of [Xuy00], [Lia02] and more 
recently [Nea03], [Kwa03], [Coh03]. For patches-
based synthesis methods, the size of a block depends 
on the structure of the texture we want to synthesize.  

2.1.2 Pixel-based texture synthesis 
Many approaches use Markov Random Fields (MRF) 
theory to model a texture, and they generate the 
output pixel-by-pixel [Efr99]. The large texture is 
produced in scan-line order, where each pixel is set 
after comparing its neighborhood to all similar 
shaped neighborhoods in the sample texture, which is 
both stationary and local [Wei00]. This comparison 
leads to a distance function, which corresponds to the 
probability needed to choose the best fitting pixel 
(the most similar one). This operation is naturally a 
time consuming process, which can be speeded up 
using optimization algorithms such as tree-structured 
vector quantization [Ger92], [Wei00] and image 
pyramids1. We have implemented this multi-
resolution analysis using Gaussian pyramids (each 
level is here obtained via successive filtering and 

                                                           
1 The image pyramids is a multi-resolution synthesis 

process based on sub-band transforms: the pyramid is a 
multi-scale set of image levels. In the lower levels are 
comprised the coarse large-scale features of a picture, 
while in the higher levels - high resolution - the details 
are to find (see also [Hee95], [Bon97], [Por00]). 



down-sampling operations by a factor of 2 – i.e. the 
images result to be blurred and decimated versions of 
the original one, through low pass filtering). For 
pixel-by-pixel synthesis methods, the size of the 
neighborhood depends on the structure of the texture 
we want to synthesize: the neighborhood has to 
comprise enough information in order to be able to 
reconstruct the texture pattern in the output image. 
Using multi-resolution, smaller neighborhoods 
produce analogous results to larger ones in single-
resolution. 

3 OUR APPROACH 
Our method has been inspired by a previous work 
[Tap03], which visualizes precise and smooth vector 
fields, using texture synthesis theory. The target of 
our technique is to offer a flexible user-dependent 
tool to intervene in the texture synthesis and modify 
patterns and images. Basically, we generalize and 
extend the texture synthesis process: starting from a 
sample image or, here more generally, from a various 
set of sample images, the user can additionally 
decide how to complete the process, choosing 
between variation options, which affect the original 
input sample at a per-pixel level. For every point in 
the output image during the scan-line synthesis 
process, the information, which depends on the 
parameters set by the user, is mapped in the pixel. 
The choice of a particular image-processing filter 
influences the appearance of the sample, for instance 
to gradually change the color of the output texture in 
the desired way (Figure 11, Figure 12, Figure 13); 
the choice of a direction field determines scaling 
variations -  magnitude or norm - (Figure 8), which 
transform the original pattern, and new directions - 
phase -  (Figure 7), along which the sample image 
has to be rotated.  
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Figure 2. Blocks’ scheme of the process flow for a 
standard application case (single input). 

To perform this, the starting sample is rotated, 
amplified or minimized, distorted or sheared. We 
explain the algorithm in more detail in the following 
section. For our work we use a pixel-by-pixel texture 

synthesis2, which is slow, but guaranties smoother 
results and preserves continuity, especially in critical 
points. 

4 ALGORITHM 
4.1 Standard Input sample 
In Figure 2, we exemplify the process flow in case of 
a single input image. The user chooses the sample, 
hence defines a force field (for instance the one of 
Figure 3) and may set additional variable parameters.  
Modified texture synthesis is then executed. In 
Figure 4 and Figure 5 one can observe the resulting 
textures.  

                      
Figure 3. An example of force field. 

    
Figure 4. Modified texture synthesis, obtained 

using the force field of Figure 3. 

    
                                                           
2  Based on the work of Wei and Levoy [Wei00]. 



Figure 5. Accentuating a main direction in the 
input sample of Figure 1 produces a stronger 

spiraling effect in the output texture. 

4.2 Input set 
In addition to the section above, we want here to use 
a set of input samples in place of an only one: the set 
can be pre-selected or also user-defined. This can be 
particularly useful in case the user wants to 
emphasize or differentiate regions of the output.  
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Figure 6. Blocks’ scheme in case of multiple input 
samples (input set). 

4.3 Input set variations 
The input sample or sample set is modified as 
follows: as briefly described in Section 3, the user 
defines a force field and this influences the output 
textures in amplitude and rotation: see some results 
in Figure 10 and from Figure 15 to Figure 20.  

     
Figure 7. Rotating the input sample of Figure 1. 

     
Figure 8. Scaling the input sample of Figure 1. 

To achieve this, every input sample has been rotated 
(see Figure 7) and scaled (see Figure 8) according to 
the specific field. That is, for each sample a number 
of modified versions is calculated, or, better, pre-
computed. Two correspondent results are in Figure 4, 
Figure 5. Naturally the direction influence of the 
field is stronger for input samples that are 
characterized by a more accentuated major direction 
of anisotropy. The way the system chooses a 
particular sample from the whole set depends on the 
information contained in the corresponding output 
pixel that has to be drawn. In detail, the output 
texture is being synthesized per-pixel in scan line 
order; at every step a pixel value has to be set: the 
algorithm looks for the best matching pixel, by 
comparing the neighborhood of the searched pixel 

with all the similar ones in the input sample; this 
input sample in turn is being chosen from the 
complete input set, depending on the user-provided 
information contained in the point at the current 
position in the output. Concluding, each pixel in the 
output texture can communicate the decided 
characteristics of color and pattern, as it univocally 
corresponds to a specific sample image. 

                       

Figure 9. For each pixel in the output, the sample 
texture is transformed through the vector value 

(thick arrow) at the pixel position. 
More formally, and for a standard case with single 
input texture T , the algorithm steps are the 
following. In the output texture, every pixel at the 
generic position (  is characterized by a vector 
value v

), yx
r

: 
dvyx ℜ∈⇒

r),(  

where d  is the vector dimension. 

Every vector vr , depending on the set force field, 
comprises scaling and rotating information; hence it 
corresponds to a particular modified (scaled and/or 
rotated) version, T , of the original sample 

texture 
),( yx

T  (this is illustrated in Figure 9): 

),(),( yxTyxv ⇔
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More generally, when further user-defined 
parameters have been set, we can connect a specific 
transformation  (e.g. through filtering operation) 

to every texture sample T , which belongs to the 

input set:   

f

),( yx

),(),( yxyxv Tf ⇔r  

Here, the transformation  respectively corresponds 
to scaling, rotating, coloring, blurring, sharpening, 
etc. operations: 

f
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Figure 10. We used here different direction fields 
to influence the output texture. The input sample 

is the previous one from Figure 20. 

4.4 Appearance 
In Figure 10, we show some results we obtained for 
the sample “cane pattern” (from Figure 20), changing 
the direction field each time. Afterward (Figure 15 to 
Figure 20), we show further results obtained using a 

variety of patterns, which correspond to common 
material appearances, obtained this time always 
choosing the force field illustrated in Figure 3. 

4.5 Areas of interest 
Particular points of interest or critical points can be 
highlighted in the output, just by choosing a special 
sample or a significant color or filter to match the 
properties on that point. Figure 11 shows how color 
transitions map different amplitudes or areas of 
interest.  

4.6 Transformations 
We also tried out creating transitions between 
different images: using multiple input samples, it is 
possible to generate an output image, which 
combines multiple appearances. Therefore, 
transformations occur in the output texture, which 
are smooth, due to the features of the pixel-based 
method. We are still perfectioning this technique and 
we refer our preliminary results as future work. 

5 RESULTS 
The main contribution of our work is to offer 
personalized options for the generation of user-
dependent textures and to combine together several 
artistic effects in the synthesis process. 

 

     

        
Figure 11. Starting from a simple line pattern, we curved these lines along the field direction,  

and applied color masks to different regions; this generates color gradient transitions. 



 
Figure 12. Color effects. 

  
Figure 13. Color effects. 

The starting sample pattern (or set of patterns) is 
freely modified and filtered, and then reproduced in 
an arbitrary resolution personalized output texture. 
We applied our idea to different sets of sample 
images, obtaining the following results. In the 
Figures above (Figure 4 to Figure 13 and from 
Figure 14 to Figure 20), it is possible to observe 
some of the possibilities of this algorithm. Note that, 
independently of the input sample’s pattern, the 
method guarantees a smooth output texture. Our 
technique works well for stochastic textures as well 
as for structured textures, however we applied the 
technique mainly using structured anisotropic 
samples, as directional textures better highlight how 
the orientation of the image follows the user-
specified direction field (see for example the 
difference between Figure 4 and Figure 5); in 
particular fine-structured sample textures are 
particular suited to produce precise output also in 
case of strong curvature changes in the output image. 
In case of a coarser structure in the sample, instead, a 
bigger sized neighboring area around each pixel is 
required to learn and reproduce the sample pattern. 

Furthermore, the user can better highlight a flow or a 
specific area using color filtering in addition. 
Regarding the sampling rate of the superimposed 
force field, it is defined by the pixel count in the 
output image, i.e. the output dimension. Textures are 
important for numerous applications, for example the 
use of textures is fundamental for large scenes and 
terrains, therefore operating with a force field 
formula would add relevant features for better 
visualizing streams of winds, gas or fluids. Texturing 
3d surfaces also needs curving the texture and 
adapting it to fit the 3d object, thus, again force fields 
and color or light effects are fundamental to modify 
the appearance and to add more realism to the scene. 

 
Figure 14. Bricks texture. 

6 CONCLUSIONS 
We have presented a new and versatile technique that 
allows a user to synthesize a texture in a flexible 
way. Thanks to user-dependent options and to the 
possibility of influencing the output image through a 
free choice of input parameters and values, a variety 
of desired outputs can be obtained and promising 
extensions are possible. There is no limitation in the 
choice of the force fields; this makes this method 
general.  Our examples have shown that this 
approach provides smooth transitions between 
different color or pattern areas and generates good 
outputs also in presence of critical points in 
particular orientation fields. The pixel-by-pixel 
process guaranties high-quality texture results, as it 
selects, at every step, the best choice fitting its 
neighbors. Consequently, the accuracy that is 
achieved by this approach is high and provides good 
results also in scientific visualization. Using different 
sample images to generate a single output texture 
also leads to interesting image transformation effects.  
Using several kinds of filters, painting and artistic 



effects can be attained. Furthermore the method is 
general and easy to use. In general, the main 
applications of our approach are in the fields of 
image manipulations, in the generation of artistic 
effects on images and in the production of user-
defined patterns. Our methods allow a user-defined 
filter application at a per-pixel level, although also 
pre- and post-processing filtering is possible. 

7 FUTURE WORK 
Possible extensions can be achieved by investigating 
new kinds of filters and various artistic effects in 
order to further differentiate and map particular 
samples to different regions of the output. 
Transitions and transformations between different 
images also need to be further explored. 
Improvements may be possible by speeding up the 
software or combining algorithms together to 
improve the performances. 
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Figure 15. Obtaining the same output pattern 

using different input samples: wool tricot pattern. 
Figure 18. Sand pattern. 

        
Figure 16. Waves pattern. Figure 19. Fabric pattern. 

        
Figure 17. Bricks pattern. Figure 20. Cane pattern.
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