
Collision Prediction Using MKtrees

M. Franquesa-Niubó
Dept. LSI

UPC
Av. Diagonal 647

 08028 Barcelona. Spain

marta@lsi.upc.es

P. Brunet
Dept. LSI

UPC
Ed. A0 Campus Nord

08028 Barcelona. Spain

pere@lsi.upc.es

ABSTRACT
In this paper, the collision prediction between polyhedra under screw motions and a static scene using a new
K dimensional tree data structure (Multiresolution Kdtree, MKtree) is introduced. In a complex scene
containing a high number of individual objects, the MKtree represents a hierarchical subdivision of the scene
objects that guarantees a small space overlap between node regions. The proposed MKtree data structure
succeeds in performing simultaneously space and scene subdivision. MKtrees are useful for broad phase
collision and proximity detection tests and for time-critical rendering in large environments requiring external
memory storage. The paper proposes an efficient broad phase collision prediction algorithm. Examples in ship
design applications are presented and discussed..

Keywords
Collision Prediction and Detection, Large Environments, Hierarchical Representations, Virtual Reality,
Screw motions.

1. INTRODUCTION
Our original interest is related to collision detection
and prediction in ship design applications. The
goal is to predict collisions between oil tanker
objects and a moving object (with application to
maintenance tasks). In ship design applications,
the number and distribution of objects are
complex. Thus, the number of objects involved is
high and therefore the environment is considered
Large.
To model the geometry of the oil tankers to speed
up the collision test, and to well manage information
between main memory and disk we use the MKtrees.
MKtrees were aimed to answer in a efficiently way
when a collection of objects can collide, when a
new object introduced in the geometrical model
collides with one existing object.

Computing collision queries amongst moving many
3D objects and between moving objects and static
obstacles has been a subject of research in several
areas as: virtual reality, robotics, medical, etc. We
address here on rigid polyhedra, and do not focus on
collisions of deformable models.
When complex 3D motions are involved, the
locations of each object can be evaluated using a
series of small time increments. At each stage of
this simulation, the transformed instance of each
object is tested against the instances of other
objects using a static interference test [Lin91].
Many techniques have been proposed to reduce the
bottleneck of testing for interference between all
pairs of N objects, O(N2).
Algorithms [Dob90, Sei90, Chu96, Lin91, Mir98,
Gil88, Cam97] and models have been introduced,
hierarchical models [Pob92, Bart96, Hub96, O'S99,
Klo98, Zac02,Got00, He99, Fra03a] and non--
hierarchical ones [Bor03, McN99].

The above approaches are based on Multiple
interference tests making use of static interference
tests sampling time. Redon et al. [Red02]
proposed collisions prediction solution which also
makes use of screw displacement, they used the
OBB (object oriented bounding box) hierarchies.
Kim and Rossignacc [Kim03] proposed a collision
prediction approach, in which they compute the

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WSCG’2004, February 2-6, 2004, Plzen, Czech Republic.
Copyright UNION Agency – Science Press

time and location of collisions directly from the
relative motion of pairs of objects. They detect all
occurrences of face/vertex and edge/edge collisions
and report the first one to occur.
To obtain a simple formulation of the exact
collision parameters, we approximate the relative
motion (the relative motion of an object A with
respect to a moving object B is the motion of A in
the body coordinate system of B) between any two
objects by a continuous series of screw motion
segments by using the technique presented by Kim
and Rossignac in [Kim03]. For each screw
motion segment, their method computes the times
of collision between all vertices of the first object
and the faces of the other, and between each edge of
the first object and each edge of the second
object. They report the smallest of these times.
The method assumes that objects are initially
disjoint.
Our environment is composed by hundreds of
thousands of polygons in a closed space, the usual
case in ship design applications.
The set of objects that are belonging to each oil
tanker constitute the static obstacles with which a
moving object can potentially collide. As the
number of static obstacles is high, their geometry
can not fit in main memory at once. Then, to store
the environment objects geometry and to handle
them in an efficient way, we designed a
hierarchical model based on out-of-core
techniques named MKtrees [Fra03a].
Efficient handling and spatial searching in complex
systems has been studied by several authors, also,
obtaining solutions based on different data
structures.
The first application that we have considered
was the efficient access to objects in a data structure
to solve collision and proximity detection
between objects. In [Lin98, Jim01, Fra03b] a recent
surveys can be found. Most of the algorithms use
bounding volume hierarchies to approximate
geometry of objects, such as OBBtrees (object
oriented bounding box trees) [Got96, Bar96,
Got00], sphere-trees [Pal95, Hub96, O'S99, Bra03],
AABBtrees (axis aligned bounding box trees)
[Coh95, Hel95, Ber97, Kle03] and K-dops
(discrete oriented polytopes) [Hel96, Klo98,
He99].

In this paper we combine the use of the
hierarchical model MKtree with an algorithm based
on the method proposed by Kim and Rossignac
[Kim03] to compute collision prediction in the
ship design applications environment.

In the next Section 2 we state the problem of
collision detection in our environment. In Section 3,
we present the collision detection algorithm. In
Section 4, we provide the results of our
implementation and the discussion of our method.
Finally, in Section 5 the conclusions and future
work are presented.

2. THE PROBLEM
The main problem that we are interested to solve is
to predict the collision between a moving object A
and objects that belong to a complex static
environment (an oil tanker in our case). The oil
tanker environment is modelled by using the
MKtree. To represent the moving object A (that
follows an screw motion trajectory) we store: The
bounding sphere of A: S(A) and the polygonal
representation (triangles): P(A). To represent the set
of static obstacles B we store their MKtree [Fra03c].
The MKtree:

- Is a hierarchical representation based at the
same time in spatial and scene object
partition.

- Spaces associated to different subtrees
do not overlap.

- Each leaf of the MKtree is corresponding to
one block on disk

- Each leaf of the MKtree stores:
• The axis-aligned-bounding-box of

each object, Oi, belonging to the
leaf: AABB(Oi)

• The set of bounding spheres that
cover each object S(Oi)

• The polygonal representation of
each object P(Oi)

The MKtree generation algorithm for a set of
objects Sn recursively computes the best dimension
and location to divide the initial list Sn in the sense
of minimizing the number of objects that overlap
the intersection space between the bounding boxes
of the two divided sublist Sn1 and Sn2. As the
overlap region is not always null [Fra03c], we split
this region in order to achieve a complete object and
space division.
Overlap splitting is represented by the so called
SplitTree. The SplitTree generation algorithm is
based on the hypothesis that, for any straight line h
parallel to the splitting direction, a point Z belonging
to h exists such that Intersection(Sn1,h) is separated
from Intersection(Sn2},h) by the point Z. We have
observed that this hypothesis is fulfilled in our
practical examples (spatially disjoint scene objects
required).

In fact, the SplitTree is a kind of Kdtree that splits
the overlap region by representing the set of
splitting points Z [Fra03c]. The SplitTree is very
compact, as every node is only storing the
corresponding splitting half space. It is stored as part
of the corresponding node n of the MKtree.

3. COLLISION PREDICTION
In this section, our proposed algorithm that consists
of four steps is presented. The first two ones solve
the collision prediction in the entire broad phase
and the two last solve the collision in the entire
narrow phase [Kit94, Hub95, O'S99, Fra03b]. The
algorithms are based on elementary set of tests that
are detailed below. The algorithm is based on:

- Test simplifications due to the screw
motions features,

- The double partition criteria (space and
scene objects) of the MKtree and,

- The MKtree representation on disk
The first step of our algorithm is a prediction test
between the bounding sphere S(A) of the moving
object A and the hierarchical MKtree representation
of the oil tanker. This is the main part of the
prediction test and, works by traversing the MKtree
and detecting the leaves of the tree that collide with
the sphere S(A) under screw motion.
The second step uses the multiresolution structure of
our MKtree and refines the predicted time intervals
for collision between S(A) and the tree leaves. It
uses a bounding set of spheres approximation of
the objects in individual tree leaves.
The last two steps of the main algorithm use
directly the test from Kim and Rossignac [Kim03]
and refine the predicted collision time intervals
using the polygonal representation of the individual
ship objects. The four steps are presented in the next
subsections.

3.1 Prediction Test between S(A) and the
MKtree(B)
The goal of this first test is to select the candidate
leaves of the MKtree that can be involved in a
collision with A. Only the leaf candidates will be
retrieved from disk. This fact, will reduce the
number of accesses to disk and will speed up the
whole process of collision query.
The first call to this test is done with:

- The bounding sphere of A, s
- The screw motion of object A, m
- Initial time interval in which the collision

can be found, Int. This is the time interval

between the beginning and the final of the
screw motion.

- The root node of the MKtree, n
{Prec: n is a node of the MKtree and Int is not void}
procedure SphereTree(inp s: sphere, m:motion,
Int:TimeInt, n:node)

{Post: returns the list of potential leaves of the
MKtree that can collide with the bounding sphere s
of A. Every list element contains a pointer to a
MKtree node leaf n and the time interval of potential
collision between s and n }

procedure SphereTree(inp s: sphere, m: :motion, Int: TimeInt
n: node)

{ Compute a sharp time interval }

tint = SphereBox(s,m,n,box,Int)

if

 IsLeaf(n) → AddToLeafList(n, tint)

 Void(SphereBox(s,m,(n.sr).box,tint) → SphereTree(s,m,tint,n.sl)

 Void(SphereBox(s,m,(n.sl).box,tint)→ SphereTree(s,m,tint,n.sr)

 otherwise → { the swept volume caps the overlap volume }

bint = Intersection(b, (n.sr).box, (n.sl).box)

 tint = SphereBox(s,m,bint,tint)

ns = SplitTreeRootNode(n)

case

 SphereSplitTree(s,m,bint,tint,ns)=left→

 SphereTree(s,m,tint,n.sl)

SphereSplitTree(s,m,bint,tint,ns)=right→

SphereTree(s,m,tint,n.sr)

SphereSplitTree(s,m,bint,tint,ns)=both →

SphereTree(s,m, tint,n.sl)

 SphereTree(s,m, tint,n.sr)

endcase

endif

endprocedure
Where: n.sr, n.sl and n.box are the son right pointer,
son left pointer and the bounding box of the node n,
AABB(n), respectively, bint is the resulting
intersection box between (n.sr).box and (n.sl).box
and, finally, ns is the root node of the SplitTree
associated to a node n of the MKtree. All arguments
to the previous procedure are input parameters.
The function SphereBox predicts the interval time
of collision between a moving sphere and a box.
It uses a conservative test and computes the
intersection between a point (the center of the
sphere) and an extended box (inflated box with the
sphere radius).
Equations (9)-(13) from [Kim03] are applied to the
six oriented planes of the extended box, and the
corresponding intersection times (with an entering-

-existing flag) are sorted in order to obtain a
first approximation of the predicted collision time
interval. The time interval extremes are finally
refined using a Newton-Raphson technique.
The SphereSplitTree function is called when s
intersects the overlap zone of the node n and, it
returns if the swept volume of s intersects with the
left son, only, with the right son, only, or with both.
The SplitTree is traversed and the sphere motion is
classified with respect to the planes that split the
overlap region between the two son nodes of n.

3.2 Prediction Test between S(A) and a
leaf of the MKtree n
This test is performed for each leaf of the computed
list in the SphereTree (previous subsection). For each
leaf in the list, S(A) is tested against each sphere of
the objects of the list:
{Prec: n is a leaf node of the MKtree, Int is not void}
function SphereLeaf(inp s:sphere, m:motion, Int:
TimeInt, n: node) return TimeIntList
{Post: returns the list of potential collision time
intervals between the bounding sphere s of the
object A and the bounding spheres of the MKtree
node n}

function SphereLeaf(inp s:sphere, m:motion, Int:
TimeInt, n: node) return TimeIntList
InitializeTimeIntervalList(tL)
for each bounding sphere b in n do
 tint= SphereSphere(s,m,b,Int)
 if no Void(tint) → InsertAndMerge(tint, tL) endif
enddo
return tL
endfunction
The InitializeTimeIntervalList(tL) initializes the tL
list to the empty list. In the InsertAndMerge
procedure, if the new time interval tint caps with any
of the list tL, then the union of both is what is
inserted in the list. The geometric test SphereSphere
is based on a point-sphere test (this sphere having a
radius equal to the sum of the radii of the initial
spheres) and uses an iterative algorithm similar to the
SphereBox algorithm.

3.3 Prediction Test between P(A) and
P(n)
We use this test for the leaves that have a non-null
time interval after the test described in the previous
Section. In this case, we directly use the algorithm
[Kim03] between the polygon al model of A and,

- A bounding polyhedron [And01] of the
candidate objects in the tree leaf. This test
is used as a first filter and the test has a
limited complexity order because bounding
polyhedra of not more than hundred faces
are used.

- The polyhedral model of the candidate
objects in all the cases where the result of
the test with the bounding polyhedron is
non-null time interval

4. RESULTS
We have generated several MKtrees from several
input data. All the data are portions of oil tankers.
Figures 1, 2, 3 and 4 show general and detailed
views of two of the oil tankers.

Figure 1. General view of one oil tanker

Figure 2. Inside view of one oil tanker

Figure 3. External view of one oil tanker

Figure 4. Detailed view of one oil tanker

Table 1 shows the input data description and the
MKtree results. In the two first columns, the
input data associated to the oil tankers are
described and, in the rest of columns, the
information of each MKtree generated is presented.
Each column in the Table 1 means:

- Npol: Number of polygons of the
corresponding oil tanker.

- TL: Maximum MKtree level.
- Ng and NL: Number of grey nodes and

number of leaves in the MKtree,
respectively.

- SpTL: Average SplitTree level.
- Mem: Memory occupancy of the MKtree.

Oil
tanker

Npol TL Ng NL SpTL Mem

ALL 139460 17 656 657 2.2 29842
LOW2 131849 21 1284 1285 2.7 70937
MODM 156767 21 1290 1291 2.4 67334
SBL 131323 17 376 377 2.1 18696
SC32 181972 16 1430 1431 2.4 74641
SC33 167059 19 1133 1134 2.2 57204
SFACL 169128 21 1406 1407 2.6 76147
SFACM 161257 20 1420 1421 2.6 76905
TEX 106703 21 810 811 3.0 43742
 Table 1. Results of MKtree generated from
 several oil tankers

On the other hand, in our present example the
moving object A is composed by 500 polygons and

it is bounded by a bounding sphere with a diameter
of 200mm.
As a consequence of the MKtree building
procedure that generates the tree taking into
account the double partition criteria: space and scene
object partition, in the limit as object A decreases
in size the time intervals will become disjoints and
the algorithm of prediction detection gives the
minimum number of leaves that can be involved in a
collision.
There are four parameters that describe a
trajectory under screw motion (see [Kim03] for
more detailed information). These parameters
define the direction of the screw axis v, a fixed
point on this axis p, the translation speed d along v,
and the speed of rotation b around the axis parallel to
v and passing through p. Another argument value
that we need to compute prediction is the point
location of the center of the sphere S(A) relative to
coordinate world of the MKtree at initial time, say
q(0). Then,

q(t) = p + t∗ d∗ v + Rotation(q(0) − p, t∗ b)

Where boldface parameters indicate vectors and
where the Rotation described a rotation of the
vector (q(0) – p) by an angle t∗ b.
Several screw motions for the moving object A
have been taken into account. Each motion is
described by the above trajectory parameters with v
= (1,0,0) and with the rest of values described in
Table 2.

motio
n

d p b q(0)

m1 40 p = q 0 CRx, CRy, CRz

m2 0 p ≠ q 20 CRx, CRy + BRy /10, CRz

m3 0 p ≠ q 20 CRx, CRy + BRy / 3, CRz

m4 0 p ≠ q 20 CRx + BRx / 3, CRy, CRz

m5 40 p ≠ q 20 CRx, CRy + BRy /10, CRz

m6 10 p ≠ q 20 CRx + BRx /10, CRy, CRz

m7 10 p ≠ q 20 CRx, CRy, CRz + BRz /4

m8 10 p ≠ q 30 CRx + BRx /10, CRy, CRz

Table 2. Screw motion input argument values

In Table 2 (CRx, CRy, CRz) is the center coordinate
of the AABB(n) box of the MKtree root node n and,
BRx, BRy and BRz are its dimensions.

The results of the collision prediction algorithm are
presented in Table 3. Each cell number in Table 3
is the number of candidate leaves that potentially
collide with the moving object A.

Ship m1 m2 m3 m4 m5 m6 m7 m8
ALL 22 34 30 3 43 12 13 10
LOW2 10 11 3 8 2 22 42 32
MODM 28 50 13 15 13 70 60 60
SBL 1 2 2 1 2 2 3 1
SC32 19 37 8 13 6 63 43 59
SC33 4 13 21 0 58 11 1 11
SFACL 13 6 8 7 11 31 11 25
SFACM 22 39 5 18 5 69 42 54
TEX 23 16 1 9 0 20 21 17

Table 3. Results of Collision Prediction
Alg1orithm applied to the MKtrees of Table 1.

Looking at this last Table we can observe and
conclude that the number of candidate leaves
involved in a possible collision with object A is low
compared with the total number of the leaves of the
MKtrees (from Table 1). For example, in the
MKtree of the oil tanker SC32 with 1431 leaves
(see Table 1), the number of candidate leaves
involved in a collision with object A moving under
a trajectory as m3 is only 8.
Now, taking into account that each leaf on disk has
a maximum size of 20 blocks (each one of 512
bytes), this means that for this oil tanker and motion
only 160 blocks will be retrieved from disk versus
28620 of the original MKtree (corresponding to
the 1431 leaves). This is true for all the screw
motion trajectories and oil tankers (as it can be
seen in tables 1 and 3).
Then, we can conclude that the use of MKtrees to
compute collision prediction permits to reduce the
number of disk access considerably.
In fact our algorithm not only determines the
candidate leaves of the MKtree for collision but
also computes a bound on the predicted collision
time interval. For instance, in the case of motion m2
and the model SFACL we have the results
exposed in Table 4.
Extensive results of algorithms from Subsections 3.1
and 3.2 (that are not presented here due to page
restrictions) can be found in [Fra03d].

Leaf Initial Collision
Time

Final Collision
Time

1150 0.01 0.24
1156 0.05 0.29
1148 0.06 0.27
987 0.10 0.22
1338 0.40 0.44
967 1.46 1.65

Table 4. Time intervals of Collision Prediction
between each candidate leaf of the MKtree of the

oil tanker SFACL and S(A) under m2 motion.

5. CONCLUSIONS
In this paper we have combined the advantages of
collision prediction making use of MKtrees to
model the static obstacles against objects that are
moving under screw motions using a method based
on the Kim and Rossignac algorithm [Kim03].

The use of the MKtrees reduces considerably the
main memory occupancy, the number of disk
accesses and the execution time.
In the future, we will continue with the analysis
and simulation of the presented algorithm (specially
in the narrow phase) and we will examine other
possibilities of bounding polyhedra for the objects in
the MKtree leaves.

6. ACKNOWLEDGMENTS
This work has been partially supported by the
CICYT project TIC-98-0586-C03-01.

7. REFERENCES
[And01] Andujar, C. and Brunet, P. and Ayala D.

Topology-reducing surface simplification using a
discrete solid. ACM Transactions on Graphics.
Vol 21. No. 2. pp 88-105. April. 2002.

[Bar96] Barequet, G. and Chazelle, B. and Guibas,
L.J. and Mitchell. J.S.B. and Tal, A. BOXTREE:
A Hierarchical Representation for Surfaces in
3D. EUROGRAPHICS Conf. Proc, vol 15, pp
387-396. Blackwell Publishers. August. 1996.

[Ber97] Bergen, G. Van Der. Efficient Collision
Detection of complex deformable models using
AABB trees. Journal of Graphic Tools, vol 2, No
4, pp 1-14. 1997

[Bor03] Borro, D. Colisiones en Estudio de
Mantenibilidad con Restitución de Esfuerzos
sobre Maquetas Digitales Masivas y Compactas.
PhD Thesis. Universidad de Navarra. 2003.

[Bra03] Bradshaw, G. and O'Sullivan, C. Adaptative
Medial-Axis Approximation for Sphere--Tree

Construction. ACM Transactions on Graphics.
Vol 22. No 4. 2003.

[Cam97] Cameron, S.A. Enhancing GJK: Computing
Minimum Penetration Distances Between Convex
Polyhedra. Proc. of the Int. Conf. on Robotics
and Automation. pp 3112-3117, 1997.

[Coh95] Cohen, J. and Lin, M. and Manocha, D. and
Ponamgi, K. I-COLLIDE: An Interactive and
Exact Collision Detection System for Large-
Scaled Environments. Proc. of ACM Int. 3D
Graphics Conference. Pp 189-196. 1995.

[Chu96] Chung, K. and Wang, W. Quick collision
detection of polytopes in virtual environments.
Proc. of ACM Symposium on Virtual Reality
Software and Technology. 1996

[Dob90] Dobkin D.P. and Kirkpatrick, D. G.
Determining the separation of preprocessed
polyhedra A unified approach. In Proc. 17th
Internat. Colloq. Automata Lang. Program.
Lecture Notes in Computer Science. Springer-
Verlag. Vol 443. pp 400-413. 1990

[Fra03a] Franquesa-Niubó, M. and Brunet, P.
Collision Detection using Mktrees. Proc. CEIG
2003. pp 217-232. July, 2003.

[Fra03b] Franquesa-Niubó, M. and Brunet, P.
Collision Queries: Models and Algorithms.
Technical Report. Software Dept. LSI. U.P.C.
2003. Ref: LSI-03-45-R
http://www.lsi.upc.es/dept/techreps/techreps.html

[Fra03c] Franquesa-Niubó, M. and Brunet, P.
MKtree: Construction and Applications.
Technical Report. Software Dept. LSI. U.P.C.
2003. Ref: LSI-03-40-R.
http://www.lsi.upc.es/dept/techreps/techreps.html
Submitted to the Computer Graphics Forum
Journal as: MKtrees and their applications

[Fra03d] Franquesa-Niubó, M. and Brunet, P.
Collision Prediction using MKtrees: Broad Phase
and Refinement Levels of the Narrow Phase.
Technical Report. Software Dept. LSI. U.P.C.
2003. Ref: LSI-03-46-R
http://www.lsi.upc.es/dept/techreps/techreps.html

[Gil88] Gilbert, E.G. and Johnson, D.W. and
Keerthi, S.S. A fast procedure for computing the
distance between complex objects in three-
dimensional space. IEEE Journal of Robotics and
Automation. vol 4. No 2. pp 193-203. April,
1988.

[Got96] Gottschalk, S. and Lin, M.C. and Manocha,
D. OBBtree: A Hierarchical Structure for Rapid
Interference Detection. ACM SIGGRAPH Conf.
Proc. pp 171-180. August, 1996.

[Got00] Gottschalk, S. Collision Queries using
Oriented Bounding Boxes. PhD Thesis.

University of North Carolina. Department of
Computer Science. 2000.

[He99] He, T. Fast Collision Detection Using
QuOSPO Trees. Symp. on Interactive 3D
Graphics, Atlanta, ACM. pp 55-62. 1999.

[Hel95] Held, M. and Klosowski, J.T. and Mitchell,
J.S.B. Speed Comparison of Generalized
Bounding Box Hierarchies. Technical Report.
Applied Math, SUNY Stony Brook. 1995

[Hel96] Held, M. and Klosowski, J.T. and Mitchell,
J.S.B. and Sowizral, H. and Zikan, K. Real-Time
Collision Detection for Motion Simulation within
Complex Environments. Technical Report.
Applied Math, SUNY Stony Brook. 1996

[Hub95] Hubbard, P. M. Collision Detection for
Interactive Graphics Applications. IEEE
Transactions on Visualization and Computer
Graphics. Vol 1. No 3. pp 218-230. September,
1995.

 [Hub96] Hubbard, P. M. Aproximating Polyhedra
with Spheres for Time-Critical Collision
Detection. ACM Transactions on Graphics. vol
15. No 3. pp 179-210. July, 1996.

[Jim01] Jimenez, P. and Thomas, F. and Torras, C.
3D Collision Detection: A Survey. Computers
and Graphics. Vol 25. Num 2. pp 269-285.
August. 2001.

[Kim03] Kim, B. and Rossignac, J. Collision
Prediction for Polyhedra under Screw Motions.
Proc. of the ACM SM'03. pp 4-10. Seatle,
Washington. ISBN:1-58113-706-0. June, 2003.

[Kit94] Kitamura, Y. and Takemura, H. and Ahuja,
N. and Kishino, F. Efficient Collision Detection
Among Objects in Arbitrary Motion Using
Multiple Shape Representation. Proceedings 12th
IARP Inter. Conference on Pattern Recognition.
pp 390-396. October, 1994.

[Kle03] Klein, J.and Zachmann, G. Probability-
Guided Collision Detection. Technical Report.
University of Paderborn. Ref: tr-ri-03-242.

 2003. http://www.upb.de/cs/ag-
madh/WWW/english/janklein.

[Klo98] Klosowski, J. T. and Held, M. and Mitchel,
J. S.B. and Sowizral, H. and Zikan, K. Eficient
Collision Detection Using Bounding Volume
Hierarchies of K-DOPs. IEEE Transactions on
Visualization and Computer Graphics. vol 4. No
1. pp 21-36. January-March. 1998.

[Lin91] Lin, M.C. and J.F. Canny . A Fast Algorithm
for incremental distance calculation. Proc. of the
IEEE Inter. Conf. on Robot and Automation,
Sacramento. CA. pp. 1008-1014, vol 2. 1991.

[Lin98]Lin, M.C. and Gottschalk, S. Collision
detection between geometric models: a survey.
Proc. of IMA Conference on Mathematics of
Surfaces. 1998.

[McN99] McNeely, W.A. and Puterbaugh, K.D. and
Troy, J.J. Six-degrees-of-fredom haptic rendering
using voxel sampling. Proceedings of
SIGGRAPH 99. pp 401-408. ISBN: 0-20148-
560-5. Los Angeles. CA. August, 1999.

[Mir98] Mirtich, B. V-Clip: Fast and Robust
Polyhedral Collision Detection}. ACM

 Transactions on Graphics. vol 17. No 3. pp 177-
208. July, 1998

[O'S99] O'Sullivan, C. and Dingliana, J. Real-time
collision detection and response using sphefe-
trees. In 15th Spring Conference on Computer
Graphics. pp 83-92. ISBN: 80-223-1357-2. April,
1999. http://citiseer.nj.nec.com/301042.html

[Pal95] Palmer, I.J. and Grimsdale, R.L. Collision
Detection for Animation using Sphere-trees.
Computer Graphics Forum. 1995

[Pob92] Pobil, A.P. Del and Serna, M.A. and Llovet,
J. A new representation for collision avoidance
and detection. IEEE Int. Conf. on Robotics and
Automation. vol 1, pp 246-251. Nice, France.
May, 1992.

[Red02] Redon, S. and Kheddar, A. and Coquillart,
A. Fast Continuous Collision Detection between
Rigid Bodies. Proc. Eurographics. Ed. G.
Drettakis and H.P. Seidel. Vol 21(3). September,
2002.

[Sei90] Seidel, R. Linear programming and convex
hulls made easy. In Proc. 6th Ann. ACM Conf.
on Computational Geometry. Berkeley, CA. pp
211-215. 1990

[Zac02] Zachmann, G. Minimal Hierarchical
Collision Detection. Proc. ACM Symposium on
Virtual Reality Sotfware and Technology
(VRST). pp 121-128. ISBN:1-58113-530-0.
Hong Kong, China. November. 2002

