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ABSTRACT 
Rasterization of polygons in 2D is a well known problem, existing several optimal solutions to solve it. The 
extension of this problem to 3D is more difficult and most existing solutions are designed to obtain a voxelization 
of the solid. In this paper a new approach to rasterize and voxelize solids in 3D is presented. The described 
algorithms are very simple, general and robust. The 3D algorithm is valid to be used in the new 3D displays, and 
it can also be used to voxelize solids delimited by planar faces (with or without holes, manifold or non-manifold). 
The proposed methods are very suitable for an implementation in graphic hardware rendering system, because it 
does not use any additional data structure or complex operation.  
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1. INTRODUCTION 
Rasterization of polygons in a 2D visualization 

display is one of the basic and most common 
operations in any graphic system. As a very 
desirable feature, this must be able to handle any 
kind of polygon, including non-convex, holed or 
non-manifold polygons. Two approaches have been 
traditionally used for this purpose: rasterize the 
polygon as it is using an scanline method, or 
decompose the polygon into triangles that can be 
rasterized very efficiently in most current graphic 
systems. The scanline polygon fill algorithm 
[Fol94] is a popular approach for the rasterization 
of polygons. The basic idea beyond it is to perform 
a line sweep of the polygon, using a list of the 
active edges intersected by the current scanline to 
determine which pixels must be set in the  

framebuffer. By far, the most common approach is 
based on a previous tessellation of the polygon and 
the rasterization the resulting triangles. Its 
motivation is to take advantage of the efficient 
hardware triangle rasterization available in most 
current graphic systems. Nevertheless, general 
polygon triangulation is a hard problem [Bern92], 
and a reasonable solution can only be done in 
O(n·log n). The complexity of these solutions 
mades very unpractical an implementation in 
hardware. For instance, OpenGL is only able to 
display convex polygons and triangles, but it 
includes an efficient software tessellator that can be 
used to  triangulate complex polygons. 

In the last years, the advances towards the 
construction of cheap 3D displays have been very 
important [Blundell00]. This kind of displays can 
be grouped basically in two categories [Pastoor00]: 
3D displays based on stereoscopic images, in which 
the three dimensional environment is simulated by 
compositing several images on 2D displays; and 
real 3D displays, in which a real 3D image is 
displayed, not depending on the position of the 
observer. On the second category, the most 
promising ones are the crossed-beam displays 
(CBD) [Ebert99], based on the excitation of ions by 
two lasers of different wavelength. Other interesting 
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displays are those based on holography, although 
the subjacent mechanism is similar to CBD. 

Apart from the specific technical problems, 
another important problem in 3D visualization is the 
absence of algorithms and libraries to help the 
programmer to manage the large data structures 
needed to visualize them in a easy and quick way. 
In this sense, some intents to construct libraries to 
these type of data has been made in the last years; 
the main proposal has been to extend some of the 
well known libraries to 2D Displays (as OpenGL, 
Java3D) by adding new functionality. In the case of 
rasterizing volumetric solids, there are few 
algorithms to solve the problem directly; instead of 
it, the algorithms used are extension of voxelization 
algorithms. 

The simplest approach to perform a solid 
voxelization consists of testing the inclusion of the 
center of every voxel in the solid. The inclusion of 
the center of a voxel can be calculated using Jordan 
Curve Theorem. The main drawback of this method 
is its low performance (for each point to be tested 
all polygons must be checked for intersection, 
unless a preprocessing stage is done). In addition, 
this process only works with solids. 

Another straightforward way to voxelize a solid 
is based on a scanline algorithm. This approach 
works by casting rays following an axis aligned 
direction (e.g. x-axis direction). Each ray is cast for 
testing the list of intersections for a given span (e.g. 
spans of the voxel space in x-direction); then, the 
list of intersections is used in a scanline algorithm 
way to rasterize a 3D span of the voxel space. 

Huang [Huang98] describes a method for 
voxelizing planar objects which provides 
topological comformity through geometric 
measurements. This method eliminates common 
voxelization artifacts at edges and vertices. It is 
based on 3D discrete spaces and separability, that 
is: to voxelize a plane (and a polygon) two parallel 
planes are built, so the plane to be voxelized lies 
between then (all planes are parallel). This method 
works fine, but it does not allow the voxelization of 
the inner part of the solid. 

Sramek [Sramek99] introduces the 
Voxelization Model (V-model), which is an alias-
free voxelization method for geometric objects. The 
V-model of an object represents it in a three-
dimensional continuous space by a trivariate density 
function. This function is sampled during the 
voxelization and the resulting values are stored in a 
volume buffer. Several filtering and interpolation 
methods can be applied to the surface density 
profile. This method allows an alias-free discrete 

representation of an object, but it does not take care 
of the inner part of the solid. 

The method presented by Haumont 
[Haumont02] converts complete polygonal scenes 
into voxelized representations. It stores the status 
(in/out) of the volumetric space areas in the cells of 
an octree. First, the algorithm looks for a point in 
the scene for which the status can be determined; 
second, the status is propagated to the surrounding 
visible cells. This two steps are repeated until the 
status of all the cells in the octree is determined. 
The advantage of this method is its robustness, it 
can successfully handle issues like cracks, holes, 
interpenetrating meshes and overlapping 
geometries. The drawbacks of this technique are its 
noticeable slow performance and its high memory 
requirement. 

Jones [Jones96] presents a method which 
voxelizes a model using a point to triangle distance 
function. With this approach, each voxel on the grid 
is treated as a point, and its distance to each triangle 
of the model is calculated. There are several 
optimizations to enhance the performance, but in 
general it is a slow method. Like other approaches, 
it does not take care of the interior of the solid. 

In this paper, a method to rasterize polygons 
and its extension to 3D solids are presented. These 
methods do not require tessellations, sortings or 
complex data structures, so they can be easily 
implemented in hardware. The second method is 
designed specifically to rasterize solids in real 3D 
displays, and can be easily included in 3D libraries. 
The method can be also used to voxelizate solids 
delimited by planar faces. For other type of solids, 
the algorithm can be also used: in order to do it, the 
process is similar than the one used to draw it using 
some of the libraries (OpenGL, DirectX, ... ): first, 
the solid is approximated using triangles, and then 
these triangles are drawn. In our case, the triangles 
will be used to obtain the rasterization of the solid. 

2. THEORETICAL FOUNDATIONS 
The following definitions are the theoretical 

basis of the Solid Modelling by simplicial coverings 
[Segura01], and let us obtain a theorem to represent 
the solids. 

Definition 1.  Let x∈ℜ . The function sign(x) is 
defined as  
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Definition 2. Let T=(A,B,C) be a triangle; the 
signed area of  T (denoted by [T]) is defined as 
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Let four points be A,B,C,D ∈  R³. The signed 
volume of the tetrahedron of vertices D, A, B, and 
C, denoted by [DABC], is defined as  
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It is said that a triangle/tetrahedron is a positive 
triangle/tetrahedron if its signed area/volume is 
positive It can be easily proved that a tetrahedron 
has positive orientation (that is, the remaining 
vertices are ordered counterclockwise with respect 
to one vertex) if the signed volume is positive. 

Definition 3. The signed volume of a pyramid 
P with vertex V and base F(V1V2…Vn), is denoted 
by [P] and is computed as  
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being Q an arbitrary point laying on plane 
defined by F. If the vertex of the pyramid coincides 
with the origin of co-ordinates it is said to be an 
original pyramid. 

Theorem 1.[Fei97a]} Generator System. Let S 
be a solid with faces F1F2...Fm, given in consistent 
orientation (the normal vector goes outside the 
solid). Then  
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where Pi represents the original pyramid 
obtained by joining the face Fi with the origin of co-
ordinates. 

Proof. See [Fei97a] 

In the case of 2D polygons, equation of 
theorem 1 is also valid, although instead of 
pyramids we have triangles OFi defined between the 
origin and an edge Fi of the polygon and the sign of 
the triangles is defined by their signed area. 

Instead of using pyramids, we can use 
tetrahedra; this will allow us a simplification in the 
computations [Fei97a]. As it can be seen, the 
pyramids do not have to be disjoint. This will allow 
us to work with coverings of the solids, instead of 

disjoint partitions of them. The main advantage of 
this approach is that the covering can be obtained in 
a very simple way with an linear algorithm, keeping 
the initial representation of the solid (a vertex-edge-
face graph). Another advantage is that it is not 
neeeded to store the triangulation of the solid; it is 
only needed to know the edges of the solid and an 
arbitrary point, and therefore, there is no additional 
information to store. 

Definition 5. Let P be a polygon, the covering 
of the P, denoted as Cp, is the set of triangles 
obtained by joining an arbitrary point of the plane 
of P (by example, the centroid of the polygon) with 
every edge of the polygon.  

Analogy, let S be a solid, the covering of S, 
denoted as Cs, is the set of tetrahedral obtained by 
joining every triangle of the covering of every face 
of S with an arbitrary point (by example, the 
centroid of the solid). 

Theorem 2. [Fei97b]. Let Q be a point, and S 
be a solid  (a polygon in 2D). Then Q is inside S if 
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where Ti∈ Cs, [Ti] is the signed volume (or 
signed area in 2D) of the simplex, and the function 
sign(Q,Ti) returns the signed volume (or area in 2D) 
of the simplex formed by point Q and simplex Ti 
(an edge in 2D or a face in 3D). 

Corollary 1. Let Q be a point inside solid S. 
Then ∃ 1Ti∈ Cs, [Ti]>0, with Q included in Ti. 

Proof. Trivially, it can be seen that, when the 
inclusion of a point in a solid is computed, we only 
use algebraic adding operations. So, at any moment 
it must be true that the sign of Ti is positive to 
obtain a positive  result. Also, it is trivial to prove 
that the points of the solid included in negative Ti 
are also included in, at least, two positive Tj, 
because the result must be positive. 

Corollary 2. Let Q be a point be and an 
original positive tetrahedron T=(OABC). Then Q is 
inside T if 

[ ] [ ] [ ] 000 ≥∧≥∧≥ OCAQOBCQOABQ  

Proof. Trivially this corollary can be proved by 
considering the particular case of tetrahedra for 
solids of the theorem 2. In the case of negative 
tetrahedra, the sense of the comparison must be 
changed. 



 

 

3. 3D RASTERIZATION 
 

Theorem 1 and 2 give us a method to construct 
solids in 2D and 3D. Figure 1 illustrates the 
construction of a 2D solid by the method shown in 
def. 4. An rasterization method of complex polygon 
based on these theorems is shown in [Rueda02]. 
The polygon and triangle algorithms are resumed in 
figures 2 and 3. The algorithms uses an intermediate 
buffer, called P-Buffer (Presence Buffer) in order to 
store each simplex of the covering of the polygon.  

The 3D rasterization is similar to the 2D 
rasterization, but in this case we have a 3D 
framebuffer and a 3D P-Buffer. 

 

 
Each position of the P-Buffer stores the presence 
value of the voxels, i.e. if the voxel belongs or not 
to the solid. The representation of this presence 
value is a bit, which is sucessively flipped during 
the rasterization when a tetrahedron covers it. 

Once the rasterization of the solid has been 
completed, the information stored on the P-buffer is 
transferred to the framebuffer, applying its 
corresponding colour. The colour of every voxel 
depends on the properties of the solid. If we 
consider only homogeneous solids, the color of 
every voxel is always the same. 

 

 
The application of the color to every voxel is not an 
easy process because requires a separate 
computation of the texture of the voxel. The 
detailed steps of the 3D rasterization are shown in 
algorithm of figure 4. 

 

 

Rasterizing Tetrahedra 
As it has just been shown, the kernel of the 

previous algorithm is the rasterization of a 
tetrahedron OABC. In order to solve it, we propose 
an extension of the ordinary scan-line trough 
different slices of the tetrahedron. The proposed 
method is given by four steps: 

Figure 2. Rasterization algorithm for polygons

1. Compute the minimal bounding box and 
the centroid of the polygon. 

2. Construct a triangle between the origin 
vertex (centroid) and one edge of the 
polygon. 

3. Rasterize the triangle in the P-buffer, 
flipping all positions covered by it. 

4. Return to step 2 until there are not any 
edges left. 

5. Transfer all positions from the P-buffer in 
the minimal bounding box of the polygon 
and presence values equal to 1 to the 
framebuffer, applying its corresponding 
color. 

1. Sort the vertices ABC by their y
coordinates. 

2. xl=xr=C.x ; y=C.y   
// C is the vertex with the least y coordinate 

3. Initialize il and ir to the slopes of the 
segments CA and CB  respectively. If ir is 
less than il, swap ir and il, and xr and xl. 

4. If y reaches B.y then set ir or il (if it was 
swapped in step 2) to the slope of the 
segment BA . 

5. Add or subtract the sign of the triangle to 
each position of the P-Buffer from (xl,y) to 
(xr,y). 

6. y++; xl+=il; xr+=ir 

7. If y A.y, return to step 4. 

1. For every triangle of the covering of each 
face of the solid, construct tetrahedra by 
joining the triangle with the origin of co-
ordinates. 

2. Rasterize every tetrahedra obtained in 
previous step in the P-Buffer, changing the 
value of the positions covered by the 
tetrahedron. 

3. Transfer all positions with presence value 
being equal than 1 to the frame buffer, by 
applying a function such as, given a point of 
the solid, it returns the corresponding colour 
of the solid in that point. The definition of 
this function depends on every solid. 

Figure 4. Algorithm for voxelization of solids 

Figure 1. Polygon construction through 
additions and subtractions of triangles 

Figure 3. Rasterization algorithms for triangles



 
 

 

1. Initially it is necessary to determine which 
plane will be used to make the sweeping. In 
order to do it, we consider the maximum 
absolute value of the co-ordinates of the normal 
vector of the base of the tetrahedron. This 
vector will be the same for every triangle of a 
face of the solid (see fig. 5). We will suppose in 
the algorithm that the rasterization must be 
done respect the Y direction. If the maximum is 
negative, then the tetrahedron will be inverted 
with respect to the y coordinate; at the end of 
the process, the obtained voxel (xi,yi,zi) will be 
also inverted to (xi,-yi,zi). 

2. On the second step, we search for the vertex of 
the tetrahedron with maximum value in 
coordinate y. In figure 5 the point with 
maximum y coordinate is vertex A. Once the 
maximum is obtained, we use the equation of 
the edges to compute the increments of the 
triangles in every slice. It is necessary to do it 
for the edges AB, AC, BC, OA, OB and OC. 
These increments are computed as : 
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In order to simplify the notation, it is called 

mAB as the pair (
x
ABm ,

z
ABm ). Equally, we will 

use mAC,  mBC, mOA, mOB and mOC. It is 
important to note that the extremes of the 
triangle in every step can be computed using an 
incremental approach. So, for the edge OA, in 
the step i+1, 
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For the other edges, a similar approach is used. 
We can also use the incremental approach used 
in the algorithm to draw lines [Fol94], in order 
to avoid the use of divisions. 

3. On the third step, we have to rasterize the 
triangle obtained as intersection of the 
tetrahedron with the plane Y=yi. We consider 
only the slices between the maximum y 
coordinate of the base of the tetrahedron and 
the minimum y coordinate of the vertices of the 
tetrahedron (in our case, it will be always zero). 
The extremes of the slice to be considered are 
computed using the corresponding parameter 
m. So, if the y coordinate of the slice is greater 
than By, then the parameter mAB will be used to 
update the extreme of the triangle over the edge 
AB. In other case, we must use the parameter 
mOB to update this extreme. The vertex C will 
be updated equally. For the vertex A, the 
parameter  mOA will be always used.  
In order to rasterize the triangle, the scan-line 
algorithm to fill polygon in 2D (adapted to 
triangles) must be used. For any pixel (xi,zi) 
inside the triangle, the corresponding voxel 
(xi,yi,zi) must be changed from 1 to 0, or from 0 
to 1. Initially, all the voxels are initialized to 0.  
It is important to note that when Bi>yi>Ci then 
the slice obtained is a polygon with four 
vertices (see fig.6.c). In this case, the polygon 
is decomposed in two triangles.  

Algorithm appearing in fig.7 summarizes the 
process described here. 

 

Figure 5. Process of rasterization of a solid 
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4. PERFORMANCE. 
 

In order to prove the validity of the algorithm, 
some tests have been made using different kind of 
solids. Figure 9 shows some of the results obtained. 
As it can be seen on figure 9, the obtained images 
present zones with aliasing. Both in two and three 
dimensions, the main problem of the rasterization 
(voxelization) algorithms is the aliasing. This effect 
appears by using integer arithmetic on floating 
objects (polygons or solids). There are several ways 
to minimize (not to eliminate) this problem. Most of 
these techniques can be easily extended to the 
proposed algorithm. 

In order to compare the performance of the 
proposed algorithm, we have made some tests using 
different solids and different grid resolutions. We 
have compared our method with Sramek’s one and  
the one based on scanline (noted in the tables as 
Jordan method). The results obtained are shown in 
table 1. Tests have been made on a Pentium III 
1GHz with 768 MB of RAM memory. The 
algorithm have been implemented using C++ 
language. The times obtained with the method 
based on scaline are very high, and therefore they 
are not considered in the study. 

 

 
The algorithm proposed in figure 7 is quicker 

than Sramek and Jordan based ones in most of  the 
situations. Sramek’s method is quicker than our 
method for lower resolutions; when the number of 
faces of the solid grows up, then the difference 
decreases, but when resolution is increased, then the 
difference between our algorithm an the Sramek’s 
one is higher. Figure 8 shows a comparison between 
both methods (we use logarithmic scale for times to 
show the difference in a more clear way). It is 
obvious that our method depends on the number of 
faces of the solid in a clearer way than the Sramek 
one; times obtained with Sramek’s algorithm 
depend only on the resolution of the grid and the 
volume of the solid; our method also depends on the 
number of faces. 

One disadvantage of Sramek’s method is that it 
only rasterizes the boundary of the solid; our 
method obtain a complete voxelization of the solid 
in one pass, and it can be adapted easily to obtain a 
rasterization of the boundary of the solid. In order 
to do it, it is only necessary to consider in each 
iteration the spans obtained by joining the points Bi 
and Ci (or Di and Ci when By<y<Cy), because they 
are the points belonging to the boundary of the solid 
(see fig.6 and algorithm of fig.7). In Table 2 the 
times obtained by the new algorithm obtaining only 
the rasterization of the boundary of the solid are 
shown. As it can be seen, times are better than the 
one’s obtained with the Sramek’s algorithm, 
although no antialising solutions are provided. 

Figure 7. Rasterization of a tetrahedron 

Initialize the matrix of voxels. 
Sort ABC with respect to the y co-ordinate 
y=Ay 
Compute mAB, mAC, mBC, mOA, mOB, mOC 
Ai=A; mB=mAB; mC=mAC 
if By=y then Bi=B; mB=mOB 
else mB=mAB; Bi=Ai+(B-A)·mB  
if Cy=y then Ci=C; mC=mOC  
else mC=mAC; Ci=Ai+(C-A)·mC  
While (y>0) 
 Rasterize2D (Ai,Bi,Ci) 
 y--; 
 if (y<Bi) then mB=mOB 
 if (y<Ci) then mC=mOC    
 if (By>y>Cy) then 
  Di=B+(C-B)·mBC 
  Rasterize2D(Bi,Di,Ci) 

Update Ai,Bi,Ci with the corresponding 
increment 

Figure 6. Process of rasterization of a 
tetrahedron 
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Vertices Faces New Sramek New Sramek New Sramek
25 42 0,001 0,03 0,05 1,743 1,992 402,999
120 234 0,001 0,03 0,141 1,542 3,254 251,882
1849 2366 0,05 0,05 0,24 1,012 2,163 244,893
8736 2912 0,07 0,04 0,33 1,181 3,515 400,677

13025 25946 0,271 0,341 0,731 1,372 3,605 139,111
23370 46205 0,781 0,661 4,156 2,504 24,635 237,601
100250 202520 2,874 2,694 12,488 4,006 51,013 1512,128

16 128 512

 

 
Also, Sramek’s method is not suitable to be 

applied to heterogeneous solids, because the interior 
of the solids are not considered in the process of 
rasterization. This is an advantage of our algorithm 
because it can be addapted for rasterization and 
voxelization problems. 

Vertices Faces 16 128 512
25 42 0,008 0,017 0,699

120 234 0,017 0,068 0,886
1849 2366 0,034 0,085 0,937
8736 2912 0,051 0,119 1,038
4763 9522 0,136 0,238 1,310

13025 25946 0,393 0,478 1,446
23370 46205 0,733 0,869 2,485

100250 202520 1,512 3,234 4,715  

 

5. CONCLUSIONS AND FUTURE 
WORK 

In this paper we have presented an original 
approach for the rasterization and voxelization of 
3D solids, obtained as generalization of a similar 
algorithm for rasterization in 2D. It is conceptually 
simpler than traditional methods and valid for 
general polyhedra. 

Because of its simplicity (no complex data 
structures or algorithms are used) it is a very good 
candidate for a partial or full hardware fast 
implementation. It can also be easily parallelized 
because each tetrahedron can be rasterized in 
parallel by different processors, although this still 
needs a much deeper study. 

The first line of future work is the develop of 
hardware implementations for these approaches. A 
second area of interest is their extension to handle 
curved-edges polygons and solids defined by curved 
surfaces. 
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Figure 9. Voxelizing volumetric solids using different 
resolutions (16, 32 y 512 voxels per axis) 


