
Voxelization of solids using simplicial coverings

Antonio J. Rueda, Rafael J. Segura, Francisco R. Feito, Juan Ruiz de Miras,
Carlos Ogáyar

Universidad de Jaén
Escuela Politécnica Superior

Avda. Madrid, 35
 Spain (E) 23071, Jaén

{ajrueda,rsegura,ffeito,demiras,cogayar}@ujaen.es

ABSTRACT
Rasterization of polygons in 2D is a well known problem, existing several optimal solutions to solve it. The
extension of this problem to 3D is more difficult and most existing solutions are designed to obtain a voxelization
of the solid. In this paper a new approach to rasterize and voxelize solids in 3D is presented. The described
algorithms are very simple, general and robust. The 3D algorithm is valid to be used in the new 3D displays, and
it can also be used to voxelize solids delimited by planar faces (with or without holes, manifold or non-manifold).
The proposed methods are very suitable for an implementation in graphic hardware rendering system, because it
does not use any additional data structure or complex operation.

Keywords
Geometric Modeling, Solid Modeling, Voxelization, 3D Rasterization, 3D Displays.

1. INTRODUCTION
Rasterization of polygons in a 2D visualization

display is one of the basic and most common
operations in any graphic system. As a very
desirable feature, this must be able to handle any
kind of polygon, including non-convex, holed or
non-manifold polygons. Two approaches have been
traditionally used for this purpose: rasterize the
polygon as it is using an scanline method, or
decompose the polygon into triangles that can be
rasterized very efficiently in most current graphic
systems. The scanline polygon fill algorithm
[Fol94] is a popular approach for the rasterization
of polygons. The basic idea beyond it is to perform
a line sweep of the polygon, using a list of the
active edges intersected by the current scanline to
determine which pixels must be set in the

framebuffer. By far, the most common approach is
based on a previous tessellation of the polygon and
the rasterization the resulting triangles. Its
motivation is to take advantage of the efficient
hardware triangle rasterization available in most
current graphic systems. Nevertheless, general
polygon triangulation is a hard problem [Bern92],
and a reasonable solution can only be done in
O(n·log n). The complexity of these solutions
mades very unpractical an implementation in
hardware. For instance, OpenGL is only able to
display convex polygons and triangles, but it
includes an efficient software tessellator that can be
used to triangulate complex polygons.

In the last years, the advances towards the
construction of cheap 3D displays have been very
important [Blundell00]. This kind of displays can
be grouped basically in two categories [Pastoor00]:
3D displays based on stereoscopic images, in which
the three dimensional environment is simulated by
compositing several images on 2D displays; and
real 3D displays, in which a real 3D image is
displayed, not depending on the position of the
observer. On the second category, the most
promising ones are the crossed-beam displays
(CBD) [Ebert99], based on the excitation of ions by
two lasers of different wavelength. Other interesting

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WSCG SHORT Communication papers proceeding
WSCG 2004, February 2-6, 2003, Plzen, Czech Republic.
Copyright UNION Agency – Science Press

displays are those based on holography, although
the subjacent mechanism is similar to CBD.

Apart from the specific technical problems,
another important problem in 3D visualization is the
absence of algorithms and libraries to help the
programmer to manage the large data structures
needed to visualize them in a easy and quick way.
In this sense, some intents to construct libraries to
these type of data has been made in the last years;
the main proposal has been to extend some of the
well known libraries to 2D Displays (as OpenGL,
Java3D) by adding new functionality. In the case of
rasterizing volumetric solids, there are few
algorithms to solve the problem directly; instead of
it, the algorithms used are extension of voxelization
algorithms.

The simplest approach to perform a solid
voxelization consists of testing the inclusion of the
center of every voxel in the solid. The inclusion of
the center of a voxel can be calculated using Jordan
Curve Theorem. The main drawback of this method
is its low performance (for each point to be tested
all polygons must be checked for intersection,
unless a preprocessing stage is done). In addition,
this process only works with solids.

Another straightforward way to voxelize a solid
is based on a scanline algorithm. This approach
works by casting rays following an axis aligned
direction (e.g. x-axis direction). Each ray is cast for
testing the list of intersections for a given span (e.g.
spans of the voxel space in x-direction); then, the
list of intersections is used in a scanline algorithm
way to rasterize a 3D span of the voxel space.

Huang [Huang98] describes a method for
voxelizing planar objects which provides
topological comformity through geometric
measurements. This method eliminates common
voxelization artifacts at edges and vertices. It is
based on 3D discrete spaces and separability, that
is: to voxelize a plane (and a polygon) two parallel
planes are built, so the plane to be voxelized lies
between then (all planes are parallel). This method
works fine, but it does not allow the voxelization of
the inner part of the solid.

Sramek [Sramek99] introduces the
Voxelization Model (V-model), which is an alias-
free voxelization method for geometric objects. The
V-model of an object represents it in a three-
dimensional continuous space by a trivariate density
function. This function is sampled during the
voxelization and the resulting values are stored in a
volume buffer. Several filtering and interpolation
methods can be applied to the surface density
profile. This method allows an alias-free discrete

representation of an object, but it does not take care
of the inner part of the solid.

The method presented by Haumont
[Haumont02] converts complete polygonal scenes
into voxelized representations. It stores the status
(in/out) of the volumetric space areas in the cells of
an octree. First, the algorithm looks for a point in
the scene for which the status can be determined;
second, the status is propagated to the surrounding
visible cells. This two steps are repeated until the
status of all the cells in the octree is determined.
The advantage of this method is its robustness, it
can successfully handle issues like cracks, holes,
interpenetrating meshes and overlapping
geometries. The drawbacks of this technique are its
noticeable slow performance and its high memory
requirement.

Jones [Jones96] presents a method which
voxelizes a model using a point to triangle distance
function. With this approach, each voxel on the grid
is treated as a point, and its distance to each triangle
of the model is calculated. There are several
optimizations to enhance the performance, but in
general it is a slow method. Like other approaches,
it does not take care of the interior of the solid.

In this paper, a method to rasterize polygons
and its extension to 3D solids are presented. These
methods do not require tessellations, sortings or
complex data structures, so they can be easily
implemented in hardware. The second method is
designed specifically to rasterize solids in real 3D
displays, and can be easily included in 3D libraries.
The method can be also used to voxelizate solids
delimited by planar faces. For other type of solids,
the algorithm can be also used: in order to do it, the
process is similar than the one used to draw it using
some of the libraries (OpenGL, DirectX, ...): first,
the solid is approximated using triangles, and then
these triangles are drawn. In our case, the triangles
will be used to obtain the rasterization of the solid.

2. THEORETICAL FOUNDATIONS
The following definitions are the theoretical

basis of the Solid Modelling by simplicial coverings
[Segura01], and let us obtain a theorem to represent
the solids.

Definition 1. Let x∈ℜ . The function sign(x) is
defined as

<−
=
>

=
01
00
01

)(
xif
xif
xif

xsign

Definition 2. Let T=(A,B,C) be a triangle; the
signed area of T (denoted by [T]) is defined as

 []

=

1
1
1

·
2
1

cc

bb

aa

yx
yx
yx

signT

Let four points be A,B,C,D ∈ R³. The signed
volume of the tetrahedron of vertices D, A, B, and
C, denoted by [DABC], is defined as

[]

=

1
1
1
1

·
6
1

ddd

ccc

bbb

aaa

zyx
zyx
zyx
zyx

signDABC

It is said that a triangle/tetrahedron is a positive
triangle/tetrahedron if its signed area/volume is
positive It can be easily proved that a tetrahedron
has positive orientation (that is, the remaining
vertices are ordered counterclockwise with respect
to one vertex) if the signed volume is positive.

Definition 3. The signed volume of a pyramid
P with vertex V and base F(V1V2…Vn), is denoted
by [P] and is computed as

 [] []∑
=

⊕=
n

i
iiVVQVP

1
1

being Q an arbitrary point laying on plane
defined by F. If the vertex of the pyramid coincides
with the origin of co-ordinates it is said to be an
original pyramid.

Theorem 1.[Fei97a]} Generator System. Let S
be a solid with faces F1F2...Fm, given in consistent
orientation (the normal vector goes outside the
solid). Then

 []∑
=

⋅
m

i
ii PPS

1
=

where Pi represents the original pyramid
obtained by joining the face Fi with the origin of co-
ordinates.

Proof. See [Fei97a]

In the case of 2D polygons, equation of
theorem 1 is also valid, although instead of
pyramids we have triangles OFi defined between the
origin and an edge Fi of the polygon and the sign of
the triangles is defined by their signed area.

Instead of using pyramids, we can use
tetrahedra; this will allow us a simplification in the
computations [Fei97a]. As it can be seen, the
pyramids do not have to be disjoint. This will allow
us to work with coverings of the solids, instead of

disjoint partitions of them. The main advantage of
this approach is that the covering can be obtained in
a very simple way with an linear algorithm, keeping
the initial representation of the solid (a vertex-edge-
face graph). Another advantage is that it is not
neeeded to store the triangulation of the solid; it is
only needed to know the edges of the solid and an
arbitrary point, and therefore, there is no additional
information to store.

Definition 5. Let P be a polygon, the covering
of the P, denoted as Cp, is the set of triangles
obtained by joining an arbitrary point of the plane
of P (by example, the centroid of the polygon) with
every edge of the polygon.

Analogy, let S be a solid, the covering of S,
denoted as Cs, is the set of tetrahedral obtained by
joining every triangle of the covering of every face
of S with an arbitrary point (by example, the
centroid of the solid).

Theorem 2. [Fei97b]. Let Q be a point, and S
be a solid (a polygon in 2D). Then Q is inside S if

[]∑ =
i

ii TTQsign 1)·,(

where Ti∈ Cs, [Ti] is the signed volume (or
signed area in 2D) of the simplex, and the function
sign(Q,Ti) returns the signed volume (or area in 2D)
of the simplex formed by point Q and simplex Ti
(an edge in 2D or a face in 3D).

Corollary 1. Let Q be a point inside solid S.
Then ∃ 1Ti∈ Cs, [Ti]>0, with Q included in Ti.

Proof. Trivially, it can be seen that, when the
inclusion of a point in a solid is computed, we only
use algebraic adding operations. So, at any moment
it must be true that the sign of Ti is positive to
obtain a positive result. Also, it is trivial to prove
that the points of the solid included in negative Ti
are also included in, at least, two positive Tj,
because the result must be positive.

Corollary 2. Let Q be a point be and an
original positive tetrahedron T=(OABC). Then Q is
inside T if

[] [] [] 000 ≥∧≥∧≥ OCAQOBCQOABQ

Proof. Trivially this corollary can be proved by
considering the particular case of tetrahedra for
solids of the theorem 2. In the case of negative
tetrahedra, the sense of the comparison must be
changed.

3. 3D RASTERIZATION

Theorem 1 and 2 give us a method to construct
solids in 2D and 3D. Figure 1 illustrates the
construction of a 2D solid by the method shown in
def. 4. An rasterization method of complex polygon
based on these theorems is shown in [Rueda02].
The polygon and triangle algorithms are resumed in
figures 2 and 3. The algorithms uses an intermediate
buffer, called P-Buffer (Presence Buffer) in order to
store each simplex of the covering of the polygon.

The 3D rasterization is similar to the 2D
rasterization, but in this case we have a 3D
framebuffer and a 3D P-Buffer.

Each position of the P-Buffer stores the presence
value of the voxels, i.e. if the voxel belongs or not
to the solid. The representation of this presence
value is a bit, which is sucessively flipped during
the rasterization when a tetrahedron covers it.

Once the rasterization of the solid has been
completed, the information stored on the P-buffer is
transferred to the framebuffer, applying its
corresponding colour. The colour of every voxel
depends on the properties of the solid. If we
consider only homogeneous solids, the color of
every voxel is always the same.

The application of the color to every voxel is not an
easy process because requires a separate
computation of the texture of the voxel. The
detailed steps of the 3D rasterization are shown in
algorithm of figure 4.

Rasterizing Tetrahedra
As it has just been shown, the kernel of the

previous algorithm is the rasterization of a
tetrahedron OABC. In order to solve it, we propose
an extension of the ordinary scan-line trough
different slices of the tetrahedron. The proposed
method is given by four steps:

Figure 2. Rasterization algorithm for polygons

1. Compute the minimal bounding box and
the centroid of the polygon.

2. Construct a triangle between the origin
vertex (centroid) and one edge of the
polygon.

3. Rasterize the triangle in the P-buffer,
flipping all positions covered by it.

4. Return to step 2 until there are not any
edges left.

5. Transfer all positions from the P-buffer in
the minimal bounding box of the polygon
and presence values equal to 1 to the
framebuffer, applying its corresponding
color.

1. Sort the vertices ABC by their y
coordinates.

2. xl=xr=C.x ; y=C.y
// C is the vertex with the least y coordinate

3. Initialize il and ir to the slopes of the
segments CA and CB respectively. If ir is
less than il, swap ir and il, and xr and xl.

4. If y reaches B.y then set ir or il (if it was
swapped in step 2) to the slope of the
segment BA .

5. Add or subtract the sign of the triangle to
each position of the P-Buffer from (xl,y) to
(xr,y).

6. y++; xl+=il; xr+=ir

7. If y A.y, return to step 4.

1. For every triangle of the covering of each
face of the solid, construct tetrahedra by
joining the triangle with the origin of co-
ordinates.

2. Rasterize every tetrahedra obtained in
previous step in the P-Buffer, changing the
value of the positions covered by the
tetrahedron.

3. Transfer all positions with presence value
being equal than 1 to the frame buffer, by
applying a function such as, given a point of
the solid, it returns the corresponding colour
of the solid in that point. The definition of
this function depends on every solid.

Figure 4. Algorithm for voxelization of solids

Figure 1. Polygon construction through
additions and subtractions of triangles

Figure 3. Rasterization algorithms for triangles

1. Initially it is necessary to determine which
plane will be used to make the sweeping. In
order to do it, we consider the maximum
absolute value of the co-ordinates of the normal
vector of the base of the tetrahedron. This
vector will be the same for every triangle of a
face of the solid (see fig. 5). We will suppose in
the algorithm that the rasterization must be
done respect the Y direction. If the maximum is
negative, then the tetrahedron will be inverted
with respect to the y coordinate; at the end of
the process, the obtained voxel (xi,yi,zi) will be
also inverted to (xi,-yi,zi).

2. On the second step, we search for the vertex of
the tetrahedron with maximum value in
coordinate y. In figure 5 the point with
maximum y coordinate is vertex A. Once the
maximum is obtained, we use the equation of
the edges to compute the increments of the
triangles in every slice. It is necessary to do it
for the edges AB, AC, BC, OA, OB and OC.
These increments are computed as :

zz

z

yy

y

xx

x

AB
Az

AB
Ay

AB
Ax

−
−

=
−
−

=
−

−

then

() () x
AB

yx
yy

xx
yx m

AyA
AB
AB

AyAx 1·· −+=
−
−

−+=

() ()
z
AB

yz
yy

zz
yz m

AyA
AB
AB

AyAz 1·· −+=
−
−

−+=

Also, for edge OA,

zyx A
z

A
y

A
x ==

and then

x
OAy

x

m
y

A
Ayx 1·· == ,

z
OAy

z

m
y

A
Ayz 1·· ==

In order to simplify the notation, it is called

mAB as the pair (
x
ABm ,

z
ABm). Equally, we will

use mAC, mBC, mOA, mOB and mOC. It is
important to note that the extremes of the
triangle in every step can be computed using an
incremental approach. So, for the edge OA, in
the step i+1,

x
OA

ii
x

i

x

i

x

i

m
xx

A
y

A
y

A
x 11

1
11 +=⇒

+
== +

++

z
OA

ii
z

i

z

i

z

i

m
zz

A
y

A
y

A
z 11

1
11 +=⇒

+
== +

++

For the other edges, a similar approach is used.
We can also use the incremental approach used
in the algorithm to draw lines [Fol94], in order
to avoid the use of divisions.

3. On the third step, we have to rasterize the
triangle obtained as intersection of the
tetrahedron with the plane Y=yi. We consider
only the slices between the maximum y
coordinate of the base of the tetrahedron and
the minimum y coordinate of the vertices of the
tetrahedron (in our case, it will be always zero).
The extremes of the slice to be considered are
computed using the corresponding parameter
m. So, if the y coordinate of the slice is greater
than By, then the parameter mAB will be used to
update the extreme of the triangle over the edge
AB. In other case, we must use the parameter
mOB to update this extreme. The vertex C will
be updated equally. For the vertex A, the
parameter mOA will be always used.
In order to rasterize the triangle, the scan-line
algorithm to fill polygon in 2D (adapted to
triangles) must be used. For any pixel (xi,zi)
inside the triangle, the corresponding voxel
(xi,yi,zi) must be changed from 1 to 0, or from 0
to 1. Initially, all the voxels are initialized to 0.
It is important to note that when Bi>yi>Ci then
the slice obtained is a polygon with four
vertices (see fig.6.c). In this case, the polygon
is decomposed in two triangles.

Algorithm appearing in fig.7 summarizes the
process described here.

Figure 5. Process of rasterization of a solid

a)

b)

c)

d)

4. PERFORMANCE.

In order to prove the validity of the algorithm,
some tests have been made using different kind of
solids. Figure 9 shows some of the results obtained.
As it can be seen on figure 9, the obtained images
present zones with aliasing. Both in two and three
dimensions, the main problem of the rasterization
(voxelization) algorithms is the aliasing. This effect
appears by using integer arithmetic on floating
objects (polygons or solids). There are several ways
to minimize (not to eliminate) this problem. Most of
these techniques can be easily extended to the
proposed algorithm.

In order to compare the performance of the
proposed algorithm, we have made some tests using
different solids and different grid resolutions. We
have compared our method with Sramek’s one and
the one based on scanline (noted in the tables as
Jordan method). The results obtained are shown in
table 1. Tests have been made on a Pentium III
1GHz with 768 MB of RAM memory. The
algorithm have been implemented using C++
language. The times obtained with the method
based on scaline are very high, and therefore they
are not considered in the study.

The algorithm proposed in figure 7 is quicker

than Sramek and Jordan based ones in most of the
situations. Sramek’s method is quicker than our
method for lower resolutions; when the number of
faces of the solid grows up, then the difference
decreases, but when resolution is increased, then the
difference between our algorithm an the Sramek’s
one is higher. Figure 8 shows a comparison between
both methods (we use logarithmic scale for times to
show the difference in a more clear way). It is
obvious that our method depends on the number of
faces of the solid in a clearer way than the Sramek
one; times obtained with Sramek’s algorithm
depend only on the resolution of the grid and the
volume of the solid; our method also depends on the
number of faces.

One disadvantage of Sramek’s method is that it
only rasterizes the boundary of the solid; our
method obtain a complete voxelization of the solid
in one pass, and it can be adapted easily to obtain a
rasterization of the boundary of the solid. In order
to do it, it is only necessary to consider in each
iteration the spans obtained by joining the points Bi
and Ci (or Di and Ci when By<y<Cy), because they
are the points belonging to the boundary of the solid
(see fig.6 and algorithm of fig.7). In Table 2 the
times obtained by the new algorithm obtaining only
the rasterization of the boundary of the solid are
shown. As it can be seen, times are better than the
one’s obtained with the Sramek’s algorithm,
although no antialising solutions are provided.

Figure 7. Rasterization of a tetrahedron

Initialize the matrix of voxels.
Sort ABC with respect to the y co-ordinate
y=Ay
Compute mAB, mAC, mBC, mOA, mOB, mOC
Ai=A; mB=mAB; mC=mAC
if By=y then Bi=B; mB=mOB
else mB=mAB; Bi=Ai+(B-A)·mB
if Cy=y then Ci=C; mC=mOC
else mC=mAC; Ci=Ai+(C-A)·mC
While (y>0)
 Rasterize2D (Ai,Bi,Ci)
 y--;
 if (y<Bi) then mB=mOB
 if (y<Ci) then mC=mOC
 if (By>y>Cy) then
 Di=B+(C-B)·mBC
 Rasterize2D(Bi,Di,Ci)

Update Ai,Bi,Ci with the corresponding
increment

Figure 6. Process of rasterization of a
tetrahedron

0,001

0,010

0,100

1,000

10,000

100,000

Faces

New (16)

Sramek (16)

New (128)

Sramek (128)

0,100

1,000

10,000

100,000

1000,000

10000,000

Faces

New (256)
Sramek (256)
New (512)
Sramek (512)

Vertices Faces New Sramek New Sramek New Sramek
25 42 0,001 0,03 0,05 1,743 1,992 402,999
120 234 0,001 0,03 0,141 1,542 3,254 251,882
1849 2366 0,05 0,05 0,24 1,012 2,163 244,893
8736 2912 0,07 0,04 0,33 1,181 3,515 400,677

13025 25946 0,271 0,341 0,731 1,372 3,605 139,111
23370 46205 0,781 0,661 4,156 2,504 24,635 237,601
100250 202520 2,874 2,694 12,488 4,006 51,013 1512,128

16 128 512

Also, Sramek’s method is not suitable to be

applied to heterogeneous solids, because the interior
of the solids are not considered in the process of
rasterization. This is an advantage of our algorithm
because it can be addapted for rasterization and
voxelization problems.

Vertices Faces 16 128 512
25 42 0,008 0,017 0,699

120 234 0,017 0,068 0,886
1849 2366 0,034 0,085 0,937
8736 2912 0,051 0,119 1,038
4763 9522 0,136 0,238 1,310

13025 25946 0,393 0,478 1,446
23370 46205 0,733 0,869 2,485

100250 202520 1,512 3,234 4,715

5. CONCLUSIONS AND FUTURE
WORK

In this paper we have presented an original
approach for the rasterization and voxelization of
3D solids, obtained as generalization of a similar
algorithm for rasterization in 2D. It is conceptually
simpler than traditional methods and valid for
general polyhedra.

Because of its simplicity (no complex data
structures or algorithms are used) it is a very good
candidate for a partial or full hardware fast
implementation. It can also be easily parallelized
because each tetrahedron can be rasterized in
parallel by different processors, although this still
needs a much deeper study.

The first line of future work is the develop of
hardware implementations for these approaches. A
second area of interest is their extension to handle
curved-edges polygons and solids defined by curved
surfaces.

6. ACKNOWLEDGEMENTS
This work has been partially granted by the

Ministry of Science and Technology of Spain and
the European Union by means of the ERDF funds,
under the research project TIC2001-2003-C03-03

7. REFERENCES
[Bern92] Bern, M., Eppstein, D. Mesh generation

and optimal triangulation, Computing in
Euclidean Geometry, World Scientific, 1992.

[Blundell00] Blundell, B., Schwarz, A., Volumetric
Three-Dimensional Display Systems, John
Wiley, 2000.

 [Ebert99] Ebert, D., Bedwell, E., Maher, S.,
Smoliar, L., Downing, E. Realizing 3D
visualition using crossed-beam volumetric
displays, Communications of the ACM,
42(8):101-107, 1999.

 [Fang00]Fang, S., Chen, H., Hardware Accelerated
voxelization, Computer & Graphics, 24(3):433--
442, 2000.

[Fei97a] Feito, F., Torres, J.C., Boundary
Represen-tation of Polyhedral Heterogeneous in
the context of a Graphic Object Algebra. The
Visual Computer}, Vol. 13, 64--77, 1997.

 [Fei97b] Feito, F., Torres, J.C., Inclusion test in
general polyhedra. Computer & Graphics, Vol.
21(1), 23--30, 1997.

[Fol94] Foley , J. e.a. Introduction to Computer
Graphics, Addison Wesley, 1994.

Figure 8. Comparison of times between
Sramek’s and the proposed algorithms

Table 2: Times obtained by the algorithm,
considering only the boundary of the solid

Table 1. Comparison of times (sec.) with
different resolutions

[Haumont02] Haumont, D., Warzée, N. Complete
Polygonal Scene Voxelization. Journal of
Graphics Tools, 7(3) pp:27-41, 2002

[Huang98] Huang, J., Yagel, R., Filippov, V.,
Kurzion, Y. An accurate Method for Voxelizing
Polygon Meshes. Proceedings of the IEEE
symposium on Volume Visualization, pp: 119-
126, 1998.

 [Jones96] Jones, M.W., The Production of Volume
Data from Triangular Meshes Using
Voxelisation. Computer Graphics Forum. Vol.
15, No. 5, pp. 311-318. 1996.

[Pastoor00] Pastoor, S., Kiesewetter, R., 3-D
Displays: A review of current technologies,
DISPLAYS 17, pp. 100-110, 1997.

[Rueda02] Rueda, A.J., Segura, R.J., Ruiz, J., Feito,
F.R., An Unified Approach for 2D and 3D
Rasterization. Proc. of 1st Ibero-American
Symposium in Computer Graphics, Guimaraes,
Portugal, 2002.

 [Segura01] Segura, R. J., Modelado de Sólidos
mediante Recubrimientos Simpliciales, PhD.,
Dep. Lenguajes y Sistemas Informáticos,
Universidad de Granada, 2001 (In Spanish)

 [Sramek99] Sramek, M., Kaufman, A. Alias-Free
Voxelization of Geometric Objects. IEEE
Transactions on Visualization and Computer
Graphics, Vol. 5(3), 1999.

Figure 9. Voxelizing volumetric solids using different
resolutions (16, 32 y 512 voxels per axis)

