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ABSTRACT 
 

Dynamic-susceptibility-contrast magnetic resonance imaging, a popular perfusion imaging technique, records 
signal changes on images caused by the passage of contrast-agent particles in the human brain after a bolus 
injection of contrast agent. The temporal signal changes on different brain tissues characterize distinct blood 
supply patterns which are critical for the profound analysis of cerebral hemodynamics. Under the assumption of 
the spatial independence among these patterns, independent component analysis (ICA) was applied to segment 
different tissues, i.e., artery, gray matter, white matter, vein and sinus and choroids plexus, so that the spatio-
temporal hemodynamics of these tissues were decomposed and analyzed. An arterial input function was modeled 
using the concentration-time curve of the arterial area for the deconvolution calculation of relative cerebral blood 
flow. The cerebral hemodynamic parameters, such as relative cerebral blood volume (rCBV), relative cerebral 
blood flow (rCBF), and relative mean transit time (rMTT), were computed and their averaged ratios between 
gray matter and white matter were in good agreement with those in the literature.  
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1. INTRODUCTION 
Extraction of differently regional blood flow in brain 
is vital for the analysis of brain perfusion and 

assessment of cerebral-vascular diseases. By using 
the dynamic-susceptibility-contrast (DSC) MR 
imaging tool, signal changes embodying different 
blood supply patterns can be recorded after injecting 
a bolus of contrast agent intravenously [Aro95a, 
Guc96a, Ost96a, Rem94a, Ros90a, Sor97a]. With the 
bolus profile of arterial compartment being identified, 
cerebral hemodynamic parameters, namely cerebral 
blood volume (CBV), cerebral blood flow (CBF), 
and mean transit time (MTT), can be computed based 
on indicator dilution theory [Zie65a]. It has been 
demonstrated that the hemodynamic parameter maps 
have important clinical applications, including the 
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assessment of brain tumors [Aro95a; Ost96a; Sor97a], 
brain ischemia [Ros90a; Ost96a; Sor97a], occlusive 
cerebral-vascular disease [Guc96a], and radiation 
necrosis [Aro95a; Sor97a]. 

It is desirable to classify bolus transit profiles into 
different clusters so as to group together spatially 
distributed tissues with similar temporal signal-time 
curves. The segmentation of spatio-temporal 
hemodynamics enables us to 1) extract the arterial 
area and model a brain-feeding arterial input function 
in plane, rather than use the carotid, vertebral or 
middle cerebral artery at a remote slice location 
[Rem94a, Guc96a, Ost96a], for accurate estimation 
of rCBV and rCBF; 2) segment regions enduring 
perfusion deficiency for facilitating the diagnosis and 
staging of brain diseases. To classify signal-time 
curves of perfusion images, a commonly used method 
is to manually select single or multiple pixels for the 
tissue of interest and employ their temporal profiles 
to form a reference function in producing a similarity 
map. Pixels with large intensities on such a map have 
highly temporal correlations with the reference 
function and can be classified into the same group via 
thresholding. This method has been applied to 
segment astrocytoma and cysts [Rog94a], and to 
dissect gray and white matter from perfusion images 
[Wia01a]. While this method is advantageous on easy 
implementation, it is, however, limited to extraction 
of single tissue pattern per similarity map. When 
different tissue patterns are to be segmented out, 
multiple similarity maps are required which mandate 
cumbersome selections of reference pixels and are 
prone to operator influence. 

Independent component analysis (ICA), a data-
driven method for multivariate data analysis, is a 
promising tool that attempts to separate mixed signals 
into independent source components [Hyv97a, 
Hyv01a]. Such a ‘blind source separation’ process 
has successful applications on magnetoen-
cephalographic data to reveal temporally independent 
neuronal activities [Lee03a], on MR perfusion images 
to identify and remove the confounding signals of 
large blood vessels from hemodynamic parameter 
maps [Car02a], on T2 and diffusion-weighted images 
to separate a portion of noise content within the 
diffusion tensor imaging datasets [Arf02a], and on 
dynamic H2

15O PET images to separate the ventricles 
and myocardium [Lee01a].  

In this study, we employ the FastICA [Hyv01a] 
on MR perfusion images to develop a systematic 
method for multi-tissue hemodynamic classification 
and delineation of an appropriate in-plane AIF. The 
hemodynamic parameter maps, rCBV, rCBF and 
rMTT, of each segmented region are subsequently 
quantified. The use of ICA is motivated by two 

inherent assumptions: 1) partial volume mixing, that 
is, signal intensity of each pixel is a linear mixture 
contributed from different tissues; and 2) the spatially 
anatomic structures of pure types do not overlap with 
each other and their corresponding signal-time curves 
are distinct from each other. The whole classification 
process is looped by two alternative steps: 1) the first 
step is to identify a major tissue type on each 
independent image resulted from FastICA based on 
the corresponding signal-time curve, and 2) the 
second step is to automatically extract regions of the 
major tissue from a selected independent image by 
using an optimal thresholding [Ots79a]. All pixels 
belonging to the tissue of interest are removed from 
the perfusion images and number of independent 
components decreases by one before the loop 
continues. Among all tissues of interest, arterial 
compartment is first extracted to model an in-plane 
arterial input function (AIF), which in turn is used to 
compute the rCBV, rCBF and rMTT maps on a pixel-
by-pixel basis. Once all tissues of interest (artery, 
vein and sinus, choroid plexus, gray matter, white 
matter, etc.) are dissected, their averaged (true) 
signal-time curves, concentration time curves, rCVB, 
rCBF and rMTT maps are computed. 

2. MATERIAL AND METHOD 
Subjects and Data Recording 
Five healthy volunteers aged from 18 to 47 
participated in this study. They were 3 males and 2 
females with body weights between 49 and 70 kg. 
Written informed consent was obtained from each 
volunteer before this study. A multi-slice gradient-
echo EPI pulse sequence on a 1.5 Tesla scanner 
(Signa® CV/i, GE Medical Systems, Milwaukee,WI, 
USA) was used to acquire the dynamic perfusion 
images. The imaging parameters were trans-axial 
imaging, TE/TR = 60/1000 ms, flip angle = 90 
degree, FOV = 24 cm × 24 cm, matrix = 128×128, 
slice thickness/gap = 5/5 mm for 7 slices, one 
acquisition, and 100 images per slice location. 
Twenty ml of Gd-DTPA-BMA (Omnisacn®, 0.5 
mmol/ml, Nycomed Imaging, Oslo, Norway) 
followed by 20 ml of normal saline were delivered 
administratively by a power injector (Spectris®, 
Medrad, Indianola, PA, USA) at a flow rate of 3-4 
ml/sec in an antecubital vein. Figure 1 exhibits the 
15th through 34th perfusion images trans-axially 
through the body of lateral ventricle encompassing 
the first pass of circulation for a volunteer (a 18 year-
old female). The temporal resolution is one second.  
Since we are only interested in the dynamic images 
which have stable baselines and discernibly temporal 
signal changes, the first three and last twenty-seven 
images were removed from 100 images and seventy 
ones were kept in a slice location for analysis. All the 



routines were implemented using MATLAB 
(MathWorks, Inc., Natick, MA) code and performed 
on a 2 G-Hz Pentium-based personal computer. 

(a) 

(b) 

Figure. 1 Dynamic perfusion images (from left to right, 
top to bottom) at the upper (a) and middle (b) slice 
locations encompass the first circulation from a 18 year-old 
volunteer. 

Data Pre-processing 
The brain regions were extracted from the perfusion 
images by first setting all pixel values larger than 
15% of the maximum intensity to one and all values 
smaller than this threshold to zero. An erosion 
operation with a 3x3 structure element were applied 
to the resultant binary mask in removing pixels 
corresponding to skull and scalp areas, followed by a 
dilation operation with 5x5 structure element in 
filling holes of the brain region. In addition, spatial or 
temporal filtering could also be used to increase the 

signal-to-noise level. The area of cerebral spinal fluid 
(CSF) was also removed from the perfusion images 
before ICA analysis. Since the region of CSF usually 
contains much fewer pixels compared to those of 
other tissue types, the statistics resulting from 
insufficient samples makes the CSF difficult to be 
distinguished from other tissue types using ICA.   

The region of CSF, however, can be identified 
manually under the assumption that the contrast agent 
doesn’t enter the CSF massively (although little 
diffusion is possible) so that the pixels values of CSF 
remain relatively constant. To facilitate the CSF 
segmentation, we drawn region of interest around the 
CSF area on the image, which has the maximum 
intensity decrease compared with the baseline images, 
and selected the brighter pixels whose signal time 
curves are relatively constant. Only the pixels within 
the extracted brain region excluding CSF were 
subjected to further segmentation process. 

Assumption of linear partial volume 
mixing on perfusion image 
The effect of partial volume mixing appears when a 
pixel represents a combination of materials due to the 
finite resolution of imaging process. Assume that 
there are q pure tissue types presented on perfusion 
images and that signal intensity of each pixel is a 
linear combination of contributions from q pure 
tissues. If there are v pixels (without air background 
and CSF) for each image, the observation of p 
temporal images can be denoted by a p×v matrix X, 
i.e., each row is an image and each column is the 
signal intensities of a pixel through p time points.  
Based on the premise of partial volume mixing, the 
observation matrix can be expressed as follows: 

       
vqqpvp ×××

= FMX (1) 

where M is a p×q mixing matrix with each column 
representing a signal-time curve for a pixel occupied 
by a pure tissue type, and F is a q×v partial-volume 
matrix with each row representing a partial-volume 
image (value of each element between zero and one) 
for a tissue type.  An intermediate step of proposed 
method is the use of ICA to recover the partial-
volume matrix F from the only available signals X, 
and identify the tissue type of each partial-volume 
image (row vector) in F.  

Independent Component Analysis 
The ICA methods were developed to separate 
observed signals into statistically independent source 
signals [Bel95a, Jun01a, Hyv01a]. To apply ICA to 
perfusion images, each row of X (or F) in Eq. (1) is 
treated as samples generated from random variables, 
say xi (or fi), i = 1, 2, …, p, or random vector x (or f). 
The partial-volume images in F, which exhibit 



distinct tissues, are further assumed to be spatially 
independent: the joint probability distribution for all 
fi‘s can be factorized into the product of individual 
probability distributions, i.e., 

).()(),,( 11 pp fPfPffP mm =   

The ICA techniques find a q×p unmixing matrix, W, 
which converts the random vector x into another 
random vector, c=Wx, that is as mutually 
independent as possible. 

All calculations in the present study were carried out 
using the FastICA algorithm which features high 
speed calculation (cubic convergence) and does not 
require choice of the step size parameters or learning 
rate as compared to the gradient-based algorithm 
[Hyv97a, Hyv01a]. The FastICA technique first 
removes means of row vectors in the X sample matrix 
followed by a whitening process implemented by the 
principal component analysis (PCA).  Each random 
variable xi becomes zero-mean and the covariance 
matrix of the whitened data becomes an identity 
matrix. The whitening process provides an advantage 
that the sources or independent components may be 
estimated from the first N (N p≤ ) largest principal 
components, which interpret the greatest amount of 
variance.  After whitening, only the first N most 
significant principal components are preserved in the 
subsequent FastICA calculation. The next step is to 
look for a matrix that transforms the whitened data 
into a set of components as mutually independent as 
possible. Mutual information, as a measure of the 
independence of random variables, is used as the 
criterion for finding such a transformation. Hyvarinen 
has shown that mutual information can be expressed 
in terms of negentropy for measuring non-Gaussianity 
[Hyv97a, Hyv01a]. Therefore, the problem of finding 
the independent components (c) and the transform 
matrix (W) can be translated into a search for linear 
combinations of the whitened data that maximize the 
negentropy of the distributions of ci, for i = 1,…, N. 
The FastICA estimates such an optimal 
transformation W and produces the independent 
components in a matrix form: C=WX.  Each row in 
C is referred to as the independent component (IC) 
image and is related to one of the partial-volume 
images described by the rows of F matrix. Ideally, C 
and F are the same except that their rows differ from 
permutation and scaling (including the signs reverse). 
The signal-time curves for the independent-
component images can be obtained from the columns 
of pseudo-inverse of matrix W. 

Sequential FastICA Processing And 
Automatic Thresholding 
Before the FastICA was carried out, we needed to 
determine the number of IC images (N), that is, 

number of tissue type (q, q=N in this study). This can 
be done by either evaluating the eigenvalues which 
have dominant variances of the perfusion images, or 
computing Akaike information index [Aka74a], 
which employed information theoretic method to 
determine the model complexity.  Our results, 
nevertheless, indicated that neither method provided 
the index curves with sharp drop at certain number 
and ended up with indecisive solution. To decide the 
number of IC images, we have experimented with 
various N values, ranging from 3 up to 7, and 
inspected the outcomes. The IC images at N = 5 
exhibited distinctly discernible tissue types and 
appeared to agree with our knowledge of brain 
anatomy and physiology, that is artery, VS, GM, WM 
and CP. 

We have experienced that if the FastICA was applied 
only once, the output independent component (IC) 
images provided coarse segmentations and usually 
consisted of two or three tissue types of which one 
was dominant. The contribution from minor tissue 
types within the same IC image may contaminate the 
signal-time curve of the major tissue type.  Besides, 
the corresponding signal-time curve of each IC image 
was rescaled during the FastICA optimization process, 
which cannot be used for the calculation of 
hemodynamic parameters. To obtain accurate 
classification and true signal-time curve of each 
tissue type, the whole process was looped by 
repeatedly using FastICA following by a thresholding. 
In each loop, only one IC image was selected and 
brighter pixels were segmented out by an automatic 
threshold to represent a dominant tissue type.  The 
selection order of IC images was determined based 
on a priori knowledge of the spatial and temporal 
characteristics of each tissue type.  In general, the 
contrast agent arrives first at the artery, followed by 
gray matter, white matter, VS or CP (while, CP 
contains mixtures of arteriole, capillary and venule 
and present a group of multi-phasic hemodynamics). 
The selection of IC images started with the one 
containing artery as the major tissue type since the 
corresponding signal time curve has the fastest signal 
drop and can be easily identified.   Next, we selected 
the IC images whose dominant tissues consisting of 
fewer pixels. This is because the fewer pixels are 
within a cluster, the shaper is their distribution and 
the more reliable is the computed threshold and 
segmentation results.  Usually VS or CP consists of 
fewer pixels than that of gray matter and white matter. 
Taking both the spatial and temporal considerations 
into account, the rules of thumb for the selection 
order were: 1) in the first loop, select the IC image 
where the major tissue type was artery; 2) in the next 
two loops, select the IC images where the major 
tissue types have fewer pixels, e.g. VS or CP; and 3) 



in the last loop, select the IC image whose major type 
was gray matter.  Once a tissue type was identified at 
each loop, the intensities of associated pixels were 
averaged to produce the true signal-time curve and 
these pixels were deleted from the perfusion data 
before next loop. The number of IC images was 
reduced by one after each loop. The loop continues 
until all the pixels were classified. The last IC image 
was considered as white matter due to its flattest 
distribution.  

The Otsu’s method [Ots79a] was utilized to 
automatically determine a threshold in segmenting 
gray-scaled IC images. The procedure of this method 
is unsupervised and computationally effective since 
only the zeroth- and first-order cumulative moments 
of the gray-level histogram were calculated.  In our 
applications, the larger value from two thresholds for 
the three-class separation were determined for most 
tissue types, and one threshold for the two-class 
separation was determined for gray matter due to its 
dispersive distribution. In addition, manual 
adjustment of the threshold was provided as an 
additional option for IC images, which was used only 
when their histograms were fairly flat. 

Calculation of parametric images for 
relative CBV (rCBV), relative CBF 
(rCBF) and relative MTT (rMTT) 
Pixel-by-pixel parametric maps for CBV, CBF, and 
MTT were calculated for areas of classified tissues 
using the concentration-time curves. The 
concentration time curve ct(t) for a pixel was 
computed by the linear relationship with the change 

of relaxation rate, ∆R* 
2 (t): 









−=∆=

0

*
2 S

S(t)ln
TE
k(t)R(t)ct

            (2) 

where k is an unknown constant, TE was the echo 
time, and S(t) and S0 were the signal intensities of 
each pixel at time t and at the baseline, respectively 
[Ost96a, Rem94a, Ros90a, Fis91a, Wei94a]. Note 
that the concentration-time curve for the artery region 
on the same slice was used as an AIF, i.e., ca(t), in the 
following computation of  rCBV and rCBF. By using 
the indicator dilution theory, one can determine the 
rCBV as a ratio of the area integrating over the first 
pass of a contrast agent under the concentration-time 
curve, ct(t), to that under the AIF [Mei54a, Zie62a]:  
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The rCBF can be computed based on the relationship 
with concentration-time curve for a pixel of tissue: 

)()(r   )( tRtcCBFtc at ⊗⋅=                                           (4) 
where ⊗  denotes convolution, ⋅  denotes 
multiplication and R(t) is the residue function for the 
pixel [Ket60a]. The singular value decomposition 
(SVD) method [Ost96a] was employed and 
implemented to deconvolve Eq. (4) and calculate the 
rCBF · R(t) curve for each pixel. To minimize the 
oscillation effect on the solution, small singular 
values in the diagonal matrix produced by SVD were 
set to be zeros. The cut-off threshold was chosen as 
20% of the maximum singular value [Ost96a]. The 
value of rCBF, in theory, can be determined by the 
initial value of deconvolved curve, i.e. R(t=0) = 1, 
according to the indicator dilution theory.  However, 
the AIF can be affected by a time delay and 
dispersion of the bolus, causing the spreading of 
deconvolved curve. Ostergaard et al. suggested that 
the maximum value of rCBF · R(t) curve should be 
used instead of value at initial point to avoid 
underestimate of the flow. 
The rMTT of contrast-agent particles passing through 
a pixel can be calculated using the central volume 
principle [Rem94a, Ros90a; Ost96a]: 

   
rCBF
rCBVrMTT =                                                        (5) 

3. RESULTS 
Figures 2 and 3 show the resultant five IC images and 
the corresponding signal-time curves from the first 
loop of ICA computation with N (the number of 
independent components) = 5, respectively. The 
signal time curves were all normalized to unit 
variance and their baselines were shifted to 1.0 for 
the comparison.  The arterial component (component 
4) in Fig. 3 can be easily identified due to the fastest 
signal drop.  

 

 

(a)  

  

 



 

 (b)  

Figure. 2 Five IC images of the upper slice location (a) 
and the middle slice location (b) produced from the first 
loop. 

Figure. 3 The normalized signal–time curves 
corresponding to five IC images. The Component 4 can be 
easily identified as artery signal because of its fastest signal 
drop. 

Figure 4 and 5 depict the final results with five 
segmented tissue types, i.e., artery, CP, VS, GM, 
WM and their color-coded composite images. In 
order to analyze the hamodynamics, different colored 
areas of composite images at both upper and middle 
slice locations were used as region of interests to 
compute the average signal-time curves of different 
tissue types (see Fig. 6). 

Figure 7 (a) and (b) show the normalized 
concentration-time curves of five tissue types at the 
upper and middle slice locations, respectively. The 
concentration-time curves for the artery regions (red 
ones) at these two slice locations were modeled 
respectively as arterial input functions for subsequent 
relative CBF deconvolution calculations. Figure 8 (a) 
and (b) present parametric images for relative CBV 
(left), relative CBF (middle), and relative MTT (right) 
at the upper and middle slice locations, respectively.  

 

Figure 4. The final segmentation result for each tissue 
type at the upper slice location and their color composite 
map. . 

  
Figure. 5 The final segmentation result for each tissue 
type at the middle slice location and their color composite 
map. . 

 
Figure. 6 The averaged signal-time curves of 
corresponding segmented tissues at both upper and middle 
slice locations. 
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Figure 7. The concentration-time curves of five tissue 
types, artery, CP, GM, WM, VS, at the upper slice 
location (a) and at the middle slice location (b). The two 
vertical lines (blue and black lines) indicate the start and 
end of first pass of artery (red curve). 

(a) 

 
(b) 

 

Figure. 8 The parametric images for relative CBV (left), 
relative CBF (middle), and relative MTT (right) at the 
upper slice location (a) and at the middle slice location (b). 
The red and deep blue colors represent the maximum and 
minimum values, respectively. 

Segmentation results of the five subjects (two slice 
locations for each subject) of perfusion images can be 
summarized as follows: 1) artery areas were reliably 
segmented using N=5; 2) the contrast agent was 
consistently observed to arrive first at the artery, 
followed by GM, WM, VS and CP; and 3) the 
averaged ratios (shown in Table 1) for relative CBV, 
relative CBF, and relative MTT between gray matter 
and white matter were in good agreement with those 
in the literature [Cal99a]. 
 Upper slices 

(mean ±±±± std ) 

Middle slices 

(mean ±±±± std ) 
rCBV 2.2882±0.2774 2.1256±0.5178 

rCBF 2.3376±0.2199 2.2238±0.5568 

rMTT 0.9964±0.0544 0.9542±0.0661 

Table. 1 The averaged ratios for hemodynamic parameters 
between gray matter and white matter. 

4. CONCLUSIONS 
In conclusion, the proposed method for analyzing 
perfusion images has several advantages: 1) the 
systematic classification of tissues with different 
hemodynamic patterns; 2) the delineation of 
sequential passage of contrast agent to these tissues; 
and 3) the effective modeling of an arterial input 
function on the same slice location for the 
calculations of relative CBV, relative CBF and 
relative MTT. The resultant information on 
hemodynamics will further expand our knowledge of 
cerebral blood circulation in human brains 
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