
Cinematic Camera Control in 3D Computer Games

Ting-Chieh Lin
Department of Computer and
Information Science, National

Chiao Tung University
1001 Ta-Hsueh Rd,

30010, Hsinchu, Taiwan.

gis90525@cis.nctu.edu.tw

Zen-Chung Shih
Department of Computer and
Information Science, National

Chiao Tung University
1001 Ta-Hsueh Rd,

 30010, Hsinchu, Taiwan.

zcshih@cis.nctu.edu.tw

Yu-Ting Tsai
Department of Computer and
Information Science, National

Chiao Tung University
1001 Ta-Hsueh Rd,

 30010, Hsinchu, Taiwan.

gis91812@cis.nctu.edu.tw

ABSTRACT
Good camera control and planning techniques in 3D computer games can give players deeper feelings about
atmosphere of games. However, most modern computer games use fixed point-of-view techniques to control the
scene camera. We believe applications of some basic cinematic camera planning methods in computer games
will enrich player’s gaming experience. In this paper, we discuss the principles of camera control in real-time
3D computer games and concepts of cinematography, encapsulating both of them into camera modules. We also
present a system for event-driven camera modules selection which is connected to the interactive environment in
3D computer games. Furthermore, some methods to solve the conflict between camera placement and frame
coherence are also described. Finally, a practical method to avoid obstruction is used in this system to consider
the visibility of important objects.

Keywords
Computer Graphics, 3D Computer Games, Cinematic Camera Control, Constraint-Based Camera Planning.

1. INTRODUCTION
In the trend of current computer games, good
storytelling techniques become more and more
important since designers wish players to be able to
feel the atmosphere deeply while playing the game.
Like motion pictures, camera techniques can enhance
the viewer’s experience. Current computer games
often use a fixed point of view or a first-person view.
These camera settings are easy to design and control
but just offering a view for player to see the scene.
Film industry has many experiences in camera
techniques and already developed many heuristic
methods and principles. However, there are still some
differences while integrating them into interactive
computer games. The camera in games needs to move
automatically to a specific position based on
cinematography without player’s order. It also has to
avoid bothering players’ control feelings. Therefore,
we implement a game to show how the cinematic

camera control improves the effect of games.
In this paper, we propose a mechanism of camera
control in 3D computer games. The system can
automatically direct the camera based on some
cinematic heuristics. Because a game can usually be
de-composed to several specific scenes which often
occur in motion pictures, we use a sequence of shots
similar to cinematic heuristics to describe the camera
behavior in a scene.

The goal of our system is to integrate these cinematic
camera techniques into a game system and let the
camera control undisturbed. Therefore, players can
feel that the atmosphere the story wants to reveal
more easily. Some well concepts of camera control
from other researchers, such as camera module
[Coh96a][Dru94a][Dru95a][Hal01a], and constraint
solver [Bar00a][Dru94a][Dru95a] [Hal01a], are used.
Compared to other researches about cinematic
camera control or camera engines for games, our
method is similar to [Hal01a] but we devote to the
implementation of a playable game with camera
control module and demonstrate how the cinematic
camera control improves the effect of a game.
Therefore, some extensions are provided to make the
system more robust. The occlusion can be predicted
and a new camera position is generated by the system.
When the most proper camera setting is not available,
an expedient one will be generated.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WSCG SHORT Communication papers proceedings
WSCG’2004, February 2-6, 2004, Plzen, Czech Republic.
Copyright UNION Agency – Science Press

This paper is organized as follows. In Section 2, we
review the previous related researches of camera
control and take a look at the methods we reference.
Section 3 describes the heuristics of camera
techniques and principles in cinematography. We
discuss the architecture of our system, explain each
component, present a demonstrating game integrated
with the cinematic camera control system, and
analyze the detail techniques of implementation
detail in Section 4. Finally, we make conclusions and
discuss our work in Section 5.

2. RELATED WORKS
There are various areas in which related work has
been explored. The camera settings of current games
may be important references. They have provided
players useful interfaces to play games. Some work
assists users in directly manipulating camera, but the
camera process should be invisible to the user in
games. Allowing communication of visual goals
should be enabled so that players could know what
happens in the game. Another characteristic of the
camera in game is that it can only be directed when
the director engine knows what is likely to happen
next. Its relationship to game context cannot be
ignored.

Most real-time games use specialized camera routines.
However, one kind of camera routines cannot handle
variously visual goals. Here we discuss some famous
examples. Tomb Raider lets player control a female
adventurer. The camera follows her back with the
ability to explore surroundings. Many 3D action or
RPG games, such as Phantasy Star Online and
Ultima IX, adapt this routine. This camera routine
makes navigation passably easy, but emotional
effects and visual goals are ignored. Biohazard
divides the whole scene into several independent
blocks and places one camera in each block. The
game selects a camera according to the block in
which the character is. While the character moves to
another block, the camera corresponding to the block
replaces the old one. This creates a cinematic style
but an inflexible one. Moreover, this faces a problem
that when a player wants his character interact with
an object or character in a block different from the
one your character in, for example, shooting a distant
monster, the camera will not be able to show the
target. An immovable camera also ignores the
visibility problem such that important visual goals are
sometimes occluded. Doom, Quake, and Half-Life are
“first-person shooter” type games. The entire screen
shows a straight-ahead view of what you are seeing.
This first-person view allows player having a large
freedom to control camera. However, it can’t
improve the effect of storytelling. Ultima Online
offers top-down camera style as many adventure

games use. As the player’s party wanders around the
world, the camera watches them from high above.
This provides easy navigation but is expressionless.

[Bli88a] described the mathematics for defining low-
level camera parameters. Given the geometry of the
scene and the desire actor placements, some algebra
techniques can decide the proper values of camera
parameters. [Dru94a] and [Dru95a] presented
CamDroid system which is able to assist in
developing camera frameworks for widely disparate
types of graphical environments. [Bar00a] uses a
constraint solver to find a solution to various user-
imposed requirements of camera viewing. Besides,
[Hal00a] uses a genetic algorithm to find a good
camera placement. [Hal01a] proposed a camera
engine for computer games, and pay particular
attention to a trade-off between constraint satisfaction
and frame-to-frame coherence. An algorithm for
consideration of visibility is also presented by finding
potential visibility regions on depth map obtained
from the actor’s view.

The Virtual Cinematographer [Coh96a] uses the
concept of idiom, and treats sequences of shots as a
finite state machine. A state represents a shot, and an
arc represents the available shot transition. [Haw02a]
and [Haw02b] introduced the availability of
cinematic camera in games. Some techniques of
obtaining visual goals are provided and he mentioned
the work that the virtual director and editor should do,
such as how to determine the interesting shot.
[Tom00a] proposed a behavior-based autonomous
cinematography system by encoding the camera as a
creature. This creature has motivational desires,
controlling camera and lighting in order to augment
emotional content. There is an animation tool
providing autonomous cinematography [Ken02a].
This planning system employs concepts of expert
system. Cinematographic knowledge is stored in a
database and this system will choose a proper camera
pattern according to the action description given by
users. Besides, Cognitive Modeling [Fun99a] is also
an AI method which has ability to reason the camera
position from provided knowledge.

3. CINEMATIC CAMERA
TECHNIQUES
The camera does so much work more than just taking
a picture of a situation. It gives audience certain
impression of a subject and its surroundings.
Shooting it one way and the subject can appear
important, dominating its environment. Shot from
another angle, the subject become quite incidental.
Therefore, we need to classify shots in order to
organize and arrange how we are going to shoot any
situation. Furthermore, knowledge of adjusting

composition for appropriate effect and principles to
make the visual effect consistent is also important.

Cinematography Principles
Filmmakers have found numerous heuristics for
selecting good shots and informally specified
constraints on avoidance of inappropriate shots for
scenes. We surveyed and picked some important
principles as considerable factors of camera control.
These principles are:

 Do not cross the line: The exact line of action
depends on the number of actors in the scene. For
one actor the line of action is the vector in the
direction the actor is facing. For two actors the
line of action is the connected line between two
actors. Once an initial shot is taken from the left
or right side of the line of action, subsequent
shots should remain on the same side. This rule
ensures the direction of the actor’s motion being
clear.

 Avoid jump cut: There should be a marked
difference in composition, such as size, view, or
number of actors, between the two shot crossed
by a cut. An inappropriate cut creates a jerky,
sloppy effect.

 Use establishing shots: Establish a scene before
moving to close shots. When there is a new
development in the scene, the situation must be
re-established.

 Let the actor lead: The actor initiates all
movement, and then the camera follow it.
Therefore, camera setup should be considered
before the actor.

 Break movement: A scene illustrating motion
should be broken into two shots. When the actor
appears to move across the middle of the screen, a
shot is often cut to another shot.

4. CINEMATIC CAMERA CONTROL
SYSTEM
The architecture of a computer game with the
cinematic camera control system is illustrated in
Figure 1. Beside of the camera control system, the
other two parts consists of the real-time application
and the renderer. The real-time application supplies
the renderer with game content, including any static
geometry, material properties, lights, and the story,
that will affect the environmental parameters. At each
time tick, the following events occur in this system:

 The real-time application sends the camera
control system a list of parameters which are
important to the decision making of the camera
settings in that tick. According to the game

context and significant scenes, these parameters
may be an actor’s position, orientation, equipment,
action, and user input, etc.

 The cinematic camera control system uses the
parameters from the real-time application plus the
existent state of the camera settings (e.g. how
long the current shot has lasted and the current
camera settings) to produce an appropriate
camera specification and then output it to the
renderer.

 The renderer collects the animation parameters
and description of the current environment sent
by the application, and the camera specification
and acting hints sent by the camera control system.

The camera control system (Figure 2) has two
components: camera modules and descriptions of
shots. Camera modules implement the camera
placements and transitions. Descriptions of shots are
sequences of shots according to the formula of
cinematography used in scenes. These descriptions
are organized hierarchically, from more general ones
near the top. Each shot in the descriptions of shots is
corresponding to a camera module. Because camera
modules can solve the constraints defined by a shot,
the final camera settings are obtained.

Camera Modules
A camera module represents an encapsulation of the
constraints and a transformation of user input and
parameters from application to desired shots. As
shown in Figure 3, a generic camera module contains
three components: the local camera state, analyzer,
and constraint lists.

Real-time
application
(game
content)

Cinematic
camera control
system Queries

Renderer Animation
parameters, static
geometry, actor
models, lights, etc.

Events, geometry
information

Figure 1. A game with cinematic control
system.

 The local camera state: This module always

contains information about camera position, view
normal, up vector, and field of view. It can also
contain parameters for deriving camera
parameters, such as value of time or other local
information specific to operations of the module.

 Analyzer: The analyzer can add information to
constraints or camera state to adjust the shot
generated by this module.

 Constraint lists: The constraint lists contain
constraints to be satisfied during the period when
the module is active. Details are described in the
next sub-section.

Constraint Lists
In our system, the constraint lists can be viewed as a
black box that produces values for some degrees of
freedom of the camera. We adapt the constraint

Nearest fit

Preserve position

Level at

Angle to line-of-action

Visibility solver

Look at

size

Preserve angles

Preserve height

Height angle

Facing

Figure 4. Constraint solver.

Camera module

Constraint Lists

Camera Parameters

Analyzer

Figure 3. A generic camera module.

User input

Parameters from
descriptions of
shots Local Camera

State

Camera modules

Move

Two talk Three talk

Over-the-shoulder Close Shot Pan Fixed

Root

Conversation

Descriptions of shots

Figure 2. Cinematic camera control system.

solver (Figure 4) described in [Hal01a] to solve the
constraints. Experience in previous work provided
the specifications of constraints that can sufficiently
define a camera position and viewing direction as
well as a desired shot.

 Level at: The camera should offset at a certain
height relative to the object.

 Angle to line-of-action: This constraint describes
the angle relative to the line-of-action.

 Facing: Each object has a vector which defines
the front of the object. By setting the desired
viewing angle relative to object’s front direction
can create many useful shots.

 Size: This constraint controls the camera’s
distance to the target.

 Height angle: It instructs the camera to watch the
target at a specified height angle.

 View at angle (X and Y): This one determines
the position of the target on the screen. X angles,
other than 0.0, move the projection of the target
to the left or right side of screen; the Y angle is
used to push the target toward the top or the
bottom.

 Visibility: The target should be visible to the
viewer, such that obstructions are avoided.

Frame Coherence
In many conditions, a sudden jump cut will annoy
players while playing the game. A jump cut that

occurs during a hard fight will totally spoil the game
playing experience. Moreover, a camera sometimes
needs to cross the line of action for some reasons,
and the only way to keep the viewer’s sense of
direction is to move the camera smoothly. Therefore,
the analyzer in camera modules decides whether the
camera should move smoothly by collected
parameters, such as the camera module used
previously. If the frame coherence is necessary,
position and angle of the camera are interpolated in
each time tick. Otherwise, the camera parameters will
be replaced by active camera module immediately.

Obstruction Avoidance
In our system, we employ a less expensive technique
to determine if a shot is obstructed. We use a line-
intersection test that uses a line going from the
camera to the bounding sphere of the actor. Besides,
as mentioned in previous works, predictive camera
planning [Hal01a] is necessary for frame-to-frame
coherence and smooth camera movement. Therefore,
we replace the line-intersection test with a cylinder
when there is a demand on smooth camera movement.
By using a cylinder for intersection test, obstruction
can be detected before it happens. Furthermore, along
the way by which the object has passed, there should
be an area in which the camera can be placed without
being occluded. To orientate camera to the inverse
direction that the object recently headed to is a
solution to avoid occlusion. Figure 5 illustrates one
of the situations of obstruction avoidance by our
method.

Past target positions

Current target position

Predicted target positions

Occluder

Predicted occlusion

Predicted solution

Figure 5. Obstruction avoidance.

Game Description
In our game system, players can explore the world,
listen to a non-player character’s words, pick up
weapons, touch objects, and fight enemies with a gun
or a crowbar. The player has to control his character
to escape the danger area. For this purpose, the player
have to defeat enemies who will try to kill the player,
get information or assistance from useful people,
activate some switches to solve puzzles. These event
scenes are suitable for a description of shots to
capture, and our mechanism will perform this duty.
We classify possible conditions in the game to four
states as shown in Figure 6.
Each state is an event scene corresponding to a
description of shots in our system. There is also a
finite state machine which describes how to capture
the event scene. Transitions between states are driven
by specific events and these events are defined in the
game content explicitly. The description of shots for
exploration is shown in Figure 7. Figure 8 illustrates
the finite state machine for a scene of conversation.
In the condition of gun fight and close fight, we use
simply one camera module for each state to handle
the task. More details about camera modules we use
will be discussed in the next sub-section.

Results
We implemented our system with C++ language and
run it on a PC platform with Pentium 4 2133MHz
CPU and 256 MB RAM. It includes eight camera
modules to handle all necessary situations, including
“fixed”, “track”, “pan”, “point of view”, “over the
shoulder”, “close shot”, “gun fight”, and “close
fight”. The function of each module is described in
the following paragraphs:

 Fixed: A fixed camera is placed in the scene
without movement or rotation. It is a good choice
to reveal important information or handle a small
space.

 Track: The camera focuses on the target and is
kept a distance away from the target. However,
the player cannot control the camera. This camera
module is suitable for storytelling because it is
often used in cinematography. In the situation that
the “point of view” module cannot handle (e.g.
obstruction occurs), the “track” module is
sometimes used.

 Pan: The camera is rotated on a side-to-die basis.
It is a well-known cinematic camera control
technique. We can use it for cinematic effects.

 Point of view (Figure 9a): The camera follows
the player’s back with the ability to explore
surroundings. Because the camera is toward the
direction that the character faces to, the player can
observe the environment easily.

 Over the shoulder (Figure 9b): It is a good
composition to capture the interaction of two
people.

 Close shot (Figure 9c): It can emphasize the
character in action. We often choose it to be one
shot for a conversation.

 Gun fight (Figure 9d and Figure 9e): To capture
a scene of gun fight, we need to consider a handy
control and make the target visible. A focus on
target and the player’s character appearance on
screen are necessary conditions. Frame-coherence

Over the shoulder

Close shot

Figure 8. Description of shots for conversation.

Point of view

Fixed

Figure 7. Description of shots for exploration.

Track Pan

Conversation

Exploration

Close fight

Figure 6. States in the game.

Gun fight

and the principle, “do not cross the line”, should
be followed because the can keep the sense of
direction and avoid jump cuts.

 Close fight (Figure 9f): In order to enhance the
effect which emphasizes both fighters, a close
fight should be featured by a close camera. Like
“gun fight”, frame coherence is necessary, and
they should also be visible on the screen.

5. CONCLUSIONS AND FUTURE
WORKS
In this paper, we propose a cinematic camera control
mechanism which is suitable for 3D computer games
involving virtual characters and stories. The control
mechanism collects and analyses information from
the game content and automatically directs the
camera to capture event scenes. We encapsulate
cinematic camera techniques into camera modules
and encode the procedure of shooting a scene into a
description of shots which is actually a finite state
machine. Therefore, the system can also assist
designers to add effects of cinematic camera control
by providing camera modules and descriptions of
shots. Moreover, we described a procedure to solve
constraints and discussed how it works in a camera
module. The concept of frame-coherence is
integrated into our system for smooth camera
movement and we provide a method to predict
occlusion and avoid it in some cases. With all these
features, this camera control module can
automatically generate shots and arrange these shots
to provide a cinematic effect and suitable for game
playing.

So far, our experiments have opened several topics
for future research:

 Our system is based on Half-Life’s game engine
at present time. To generalize our system to fit
any graphic engine can make it more extensive
and useful for game designers.

 More camera techniques and more effects can be
integrated into the system. Therefore, techniques
for characters’ emotional states can extend the
ability of our system.

 Camera planning becomes very complex when
there are too many conditions which need to be
considered. Even though the system offers
encapsulated camera modules and descriptions of
shots, how to use them is still a difficult task.
Expert system might be a solution to help
designers to use or build the components in the
camera control module efficiently by encoding
cinematography knowledge into database and
transforming cinematic principles into rules.

6. REFERENCES
[Bar00a] Bares , W.H., Thainmit, S., and McDermott,

S. A model for constraint-based camera planning.
In Smart Graphics: Papers from the AAAI Spring
Symposium (Stanford, March 20-22, 2000),
Menlo Park, AAAI Press, pp. 84-91, 2000.

[Bli88a] Blinn, J.F. Jim Blinn’s corner: Where am I?
What am I looking at? IEEE Computer Graphics
and Applications 8, No.4, pp.76-81, Jul., 1988.

[Coh96a] He, L., Cohen, M.F., and Salesin, F.H. The
virtual cinematographer: A paradigm for
automatic real-time camera control and directing.
SIGGRAPH 96 Conference Proceedings, Annual
Conference Series, ACM SIGGRAPH, Addison
Wesley, pp. 217-224, Aug., 1996.

[Dru94a] Drucker, S. Intelligent camera control for
graphical environments. PhD thesis, MIT Media
Lab, 1994.

[Dru95a] Drucker, S.M., and Zelter, D. CamDroid: A
system for implementing intelligent camera
control. 1995 Symposium on Interactive 3D
Graphics, ACM SIGGRAPH, pp. 139-144, Apr.,
1995.

[Fun99a] Funge, J. Cognitive modeling for computer
games. AAAI Spring Symposium on Artificial
Intelligence and Computer Games, Stanford
University, Mar. 22-24, 1999.

[Hal00a] Halper, N., and Olivier, P. CAMPLAN: A
camera planning agent. In Smart Graphics: Papers
from the AAAI Spring Symposium (Stanford,
March 20-22, 2000), Menlo Park, AAAI Press, pp.
92-100, 2000.

[Hal01a] Halper, N., Helbing, R., and Strothotte, T.
A camera engine for computer games: Managing
the trade-off between constraint satisfaction and
frame coherence. Proceedings of
EUROGRAPHICS 2001.

[Haw02a] Hawkins, B. Creating and event-driven
cinematic camera, part one. Game Developer
Magazine, pp. 34-40, Oct., 2002.

[Haw02b] Hawkins B. Creating and event-driven
cinematic camera, part two. Game Developer
Magazine, pp. 36-39, Nov., 2002.

[Ken02a] Kennedy, K. and Mercer, R.E. Planning
animation cinematography and shot structure to
communicate theme and mood. Proceedings of
the 2nd international symposium on Smart
Graphics (SMARTGRAPH '02), Hawthorne, NY,
USA, Jun. 11-13, 2002.

[Tom00a] Tomlinson, B., Blumberg, B., and Nain, D.
Expressive autonomous cinematography for
interactive virtual environments. Proceedings of
the 4th International Conference on Autonomous
Agents (AGENTS-2000), NY, ACM Press, pp.
317-324, Jun. 3-7, 2000.

(c) Module: close shot
Description of shots: conversation

(e) Module: gun fight
Description of shots: gun-fight

(a) Module: point of view
Description of shots: exploration

(b) Module: over the shoulder
Description of shots: conversation

(d) Module: gun fight
Description of shots: gun-fight

(f) Module: close fight
Description of shots: close-fight

Figure 9. Camera modules.

