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ABSTRACT
This work presents an implementation of a hierarchical disparity estimation algorithm entirely executed
on programmable 3D graphics hardware. In contrast to previous hardware based implementations of
computational stereo algorithms, our method calculates disparities either for rectified stereo images or
uncalibrated pairs of stereo images without known epipolar geometry. We exploit features of modern
graphics hardware to search for correct disparity vectors efficiently. The hierarchical approach increases
the speed and the robustness of the algorithm. Additionally, we use bidirectional matching to remove
false matches. We observe up to 50 fps for input images with 256 × 256 pixels resolution on desktop
graphics cards and up to 30 fps on mobile 3D hardware.
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1 INTRODUCTION

Since programmable 3D graphics hardware has in-
creased its algorithmic and computational power,
several research teams exploit the SIMD (single
instruction, multiple data) facilities of 3D graphic
processing unit (GPU) to accelerate applications
not related to rendering and visualization. Using
graphics hardware for image processing and com-
puter vision tasks is very natural, since graphics
hardware is optimized to access and manipulate
2D images. Even with very early 3D boards it
was possible to perform image warping efficiently
using the texture mapping feature. With the cur-
rent generation of GPUs supporting floating point
channels and highly programmable fragment pro-
grams it is possible to execute more advanced sci-
entific algorithms on such hardware.
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In this work we propose a hierarchical algorithm
to estimate disparities between two stereo images,
which can be executed on DirectX 8.1 class 3D
hardware (e.g. on an ATI Radeon 9000 Mobility).
The result of the procedure is a dense disparity
map, which assigns a vector pointing to the corre-
sponding pixel in the right image for every pixel in
the left image. The disparity map can be option-
ally verified by a back-matching procedure, which
identifies and discards false matches.

2 RELATED WORK

The demand for more complex and more re-
alistic virtual realities has accelerated the de-
velopment of highly programmable 3D graph-
ics hardware (e.g. [Lindh01]). The programma-
bility and computational power of recent 3D
hardware is used for non-graphical purposes as
well, e.g. for numerical calculations and simula-
tions ([Hopf99b], [Hopf99a], [Harri02], [Thomp02],
[Krü03], [Bolz03]).
Programmable graphics hardware is used in the
field of image processing for linear and non-
linear filtering ([Hadwi01], [Yang02a], [Sugit03],
[Colan03], [Viola03]). Some authors present per-



formance comparisons between optimized CPU
and GPU implementations of image processing
methods. In general, if the GPU’s facilities for
parallel computation and fast texture access can
be exploited, GPU based algorithms can be sev-
eral times faster than the CPU based counterpart.
Yang et al. [Yang02b] present a real-time depth
estimation method utilizing graphics hardware
working with several calibrated cameras to in-
crease robustness. Depth values are obtained by a
plane sweep through the 3D world space, therefore
the time complexity is linear in the desired depth
resolution. Later, Yang and Pollefeys refined the
method to work even for two camera setups using
mipmapping facilities of graphics hardware to cal-
culate a more robust similarity function [Yang03].
Sugita et al. [Sugit03] compare the performance
of CPU and GPU implementations of several im-
age filters and implemented a rather simple stereo
matching algorithm. Their method is a block-
based matching procedure using rectified images
as input. The GPU implementation of the stereo
matcher runs about twice as fast as the optimized
CPU implementation using the Intel Performance
Primitives library.
This work extends our earlier work [Zach03a] in
several aspects. Our previous implementation it-
eratively refines the vertices of the current 3D
mesh hypothesis and keeps track of the best lo-
cal modification so far. Evaluating the current
mesh hypothesis requires rendering a large mesh,
which decreases the overall performance. In later
work we improved the speed of the algorithm sig-
nificantly [Zach03b], but the basic idea remained
the same. In contrast to our current method the
previous one calculates depth (or disparity) val-
ues only for mesh vertices, which are placed every
4 pixels. We still utilize the hierachical approach
already used in the earlier implementations and
the idea of iterated local refinement of the current
hypothesis.

3 OUR METHOD

3.1 Overview of Block Matching

The search for corresponding points in two images
is based on block matching, i.e. the method deter-
mines the best matching region in the right image
for every pixel in the left image. Typically, a rect-
angular template window is moved over the right
image and a similarity (or correlation) function
with a fixed window in the left image is evaluated.
Since programmable graphics hardware offers only
limited control and data flow, only simple corre-

lation functions are applicable for hardware accel-
erated implementations. In particular, the sum of
absolute differences (SAD) between the pixels in
the windows, and the sum of squared differences
(SSD) are suitable candidates. The result of the
block matching procedure is a usually dense dis-
parity image, which maps pixels in the left image
to corresponding pixels in the right image.
If the relative orientation between the camera po-
sitions is known, the search for corresponding re-
gions can be restricted to a one-dimensional line
search. In these cases the source images can be re-
sampled (rectified), such that a search along hor-
izontal scan-lines is sufficient. Furthermore, the
search range can be bounded.

3.2 Hierarchical Matching

The input of the matching procedure consists of
two gray-level images. After transfering the in-
put images into textures in graphics memory, an
image pyramid is created (either automatically
by the graphics hardware or explicitly, if auto-
matic mipmap generation is not available or non-
functional). Starting from a coarse image repre-
sentation (32×32 in our current implementation),
the current disparity map is refined in every level
of the pyramid. The initial disparity map used in
the next (finer) level is the upsampled map ob-
tained in the previous level. Figure 1 shows sev-
eral intermediate disparity maps generated in the
hierarchy. The final disparity map is shown in
Figure 3(d). The number of disparity variations
evaluated is currently the same in all levels, and
the tested disparity range is halved from one level
to the next to enable more precise search.

3.3 Disparity Refinement

In this section we describe the procedure executed
within a given level in the image pyramid. The
disparity map generated in the previous level is
refined to obtain a map with higher resolution.
This procedure essentially searches for the optimal
disparity variation to minimize the sum of abso-
lute differences (SAD) accumulated in the tem-
plate window.
The procedure consists of two passes: In the first
pass the absolute difference pixels between the left
image and the warped right image wrt. the current
disparity hypothesis are calculated and accumu-
lated over a window. In the second pass a com-
parison step is performed to determine the optimal
disparity value for each pixel.



(a) Coarsest level (32 × 32
pixels)

(b) Intermediate level (64×
64 pixels)

(c) Intermediate level
(128× 128 pixels)

Figure 1: Disparity maps generated in successive levels of the hierarchy.

3.3.1 Image Warping and SAD accumula-
tion

The right image is warped using a dependent tex-
ture lookup. The left image, the right image and
the disparity map are bound to texture units. The
currently evaluated disparity variation is an addi-
tional argument for the fragment program, which
performs the required texture lookups and calcu-
lates the absolute difference of single pixels be-
tween the left image and the warped right image.
We allow matching with subpixel accuracy by op-
tionally scaling the disparity values.
In order to calculate the sum of absolute differ-
ences within a window, we execute the warping
pass repeatedly with suitably jittered texture co-
ordinates. The generated absolute differences be-
tween single pixels are accumulated using frame
buffer blending with source and destination fac-
tors set to GL_ONE. Using bilinear texture access
we perform SAD computation for an n×n window
using only n/2 × n/2 passes. The original input
images are sampled at corner positions to obtain
the average value of four adjacent pixels (see Fig-
ure 2). For example, a 4 × 4 window generates
4 instead of 16 texture accesses and the number
of blending passes is reduced accordingly. Since
absolute differences are calculated after sampling
the input images, the result is only an approxi-
mation of the true SAD within an n× n window.
Nevertheless we observed that this approach is a
reasonable tradeoff between speed and robustness
using larger template windows.

3.3.2 Comparison Step

After the SAD for every pixel wrt. the current dis-
parity hypothesis is computed, the current errors

Figure 2: In order to calculate the SAD in a 4× 4
region, only the positions indicated by the dots
are sampled to interpolate between four adjacent
pixels (designated by the gray region).

are compared with the errors of the optimal dis-
parity found so far. The previously optimal dis-
parity values (stored in the red and green channel)
together with the corresponding SAD (stored in
the alpha channel) are represented by an off-screen
pixel buffer, which is bound to a texture unit. The
SAD values associated with the currently evalu-
ated disparities (as computed in Section 3.3.1) are
bound to a second texture unit and a fragment
program calculates the pixel-wise minimum of the
SAD values and selects the superior disparity. On
more powerful graphics hardware providing depth
value assignment inside the fragment program, a
more efficient method can be used for pixelwise
comparison (see Section 3.5.2).

3.4 Disparity Verification

The role of the input images can be exchanged
and the matching procedure can be applied to the
reversed pair of images (back-matching, bidirec-
tional matching, see [Egnal02] for a comparison of
disparity verification methods). In addition to the



left-to-right disparity map DL a map DR of right-
to-left disparities is obtained. We discard the dis-
parity value for pixel p, if the following consistency
condition is false:

|DR(p + DL(p)) + DL(p)| < ε

The disparity value of the corresponding pixel in
the right image should point back to the origi-
nal pixel (within some allowed threshold). Be-
cause of the hierarchical approach we evaluate the
disparity range at sparse positions and the opti-
mized right-to-left disparity calculation described
in [Müh02] cannot be applied. In our framework
right-to-left disparity estimation is completely in-
dependent from left-to-right disparity calculation
and requires the same amount of operations.

3.5 Optimizations

3.5.1 Batched Evaluation

Evaluating exactly one disparity modification in
every iteration does not exploit the parallel ex-
ecution of fragment instructions working simula-
teously on each channel. Therefore our implemen-
tation evaluates four disparity modifications in
one step and stores the accumulated errors in the
red, green, blue and alpha channel. Technically,
the four tested disparity variations are stored in
four sets of texture coordinates, which are used
by the fragment program to warp the right im-
age four times. The obtained (gray-level) pixel
values from the right image are shuffled into one
register and the absolute difference with the left
image pixel is stored in the generated color frag-
ment. This batched approach reduces the num-
ber of time consuming pixel buffer switches (see
also [Zach03b]) and uses the fill rate to full capac-
ity.

3.5.2 Depth Replacement for Minimum
Determination

The ARB fragment program OpenGL extension
allows depth values to be assigned by the frag-
ment program.1 This feature can be exploited to
accelerate the comparison step described in Sec-
tion 3.3.2. Moving the error value stored in the
appropriate color channel into the depth compo-
nent allows the depth test to be used to determine
the disparity change with the smallest error effi-
ciently [Zach03b], [Sugit03]. This feature is not
available on the ATI Radeon 9000 Mobile, there-
fore the search for the optimal disparity requires

1Traditionally, depth values are interpolated from ver-
tex geometry and cannot be changed on a fragment basis.

two alternating buffers, which are swapped after
every iteration. In combination with the batched
evaluation described in the previous section it is
possible to process two disparity variations within
one pass.

4 RESULTS

Table 1 presents performance results for the
Tsukuba dataset on mobile and desktop graphics
hardware. This dataset consists of rectified small-
baseline stereo images, therefore a 1-dimensional
disparity search is sufficient. The input images
were converted to gray-scale images and rescaled
to 256 × 256 pixels resolution. The number of
evaluated disparity variation is 44 for unidirec-
tional matching and 88 for bidirectional match-
ing. We set the range of disparities to the inter-
val [−75/4, 75/4] containing 151 values (but not
every value is actually tested due to the hierar-
chical approach). The desktop 3D hardware (ATI
Radeon 9700 Pro) outperforms the mobile hard-
ware (Radeon 9000 Mobility) for two reasons: (a)
the fill rate is higher because of increased clock
speed and raised number of parallel pixel pipelines
and (b) the depth replace optimization desribed
in Section 3.5.2 can be applied. Surprisingly, the
timings observed for bidirectional matching are
slightly better than the expected timings (i.e. dou-
bled time for unidirectional matching). Using
larger window templates increases the matching
time sublinearly, too.
We can compare the performance results with
the numbers presented by Sugita et al. [Sugit03]:
They report 50ms required by an ATI Radeon
9700 Pro for 256 × 256 image resolution and a
disparity search range of 50 (i.e. 50 disparity val-
ues are evaluated). Our implementation requires
28ms on the same graphics hardware for 44 itera-
tions, but with a much higher potential accuracy
(150 possible disparity values instead of 50).
Figure 3 gives visual results for the Tsukuba
dataset. Figure 3(a) shows the left input image for
this data and Figures 3(b)–(e) present the com-
puted disparity maps using the hierarchical ap-
proach. Figure 3(f) shows the disparity map ob-
tained by a non–hierarchical disparity search. The
number of detected false matches in Figure 3(e) is
7.9%, whereas in Figure 3(f) 9.3% of the pixels are
rejected. Since the hierachical approach has more
isolated false matches, a median filter with small
window size is well applicable. Note that this re-
sult should not indicate that hierarchical matching
has higher accuracy in general, but the quality of
disparity maps obtained by dense and hierarchical



Hardware Resolution Window size Backmatching Time
Radeon 9000 Mobile 256x256 4x4 - 29ms

yes 51ms
8x8 - 79ms

yes 152ms
512x512 4x4 - 94ms

yes 187ms
8x8 - 291ms

yes 595ms
Radeon 9700 Pro 256x256 4x4 - 12ms

yes 20ms
8x8 - 28ms

yes 51ms
512x512 4x4 - 32ms

yes 59ms
8x8 - 92ms

yes 180ms

Table 1: Timing results for the Tsukuba Head and Lamp dataset. The original input images are scaled
to a resolution of 256× 256 pixels and 512× 512 pixels, respectively.

approaches should be comparable.
We tested our algorithm on an artificially gen-
erated dataset consisting of one textured sphere.
Two small-baseline views of the sphere were ren-
dered and captured. This dataset requires a two-
dimensional search for correct disparities. In Fig-
ure 4 we show generated disparity maps with pixel
and subpixel accuracy. We display 2D disparity
maps as gray-level images showing the length of
the disparity vector. Finally, Figure 5 presents re-
sults for small baseline stereo images obtained by
a webcam. Since the images do not have known
relative orientation, 2D disparity vectors are de-
termined. The procedure performs 484 iterations
and requires about 240ms, and the range of po-
tential disparity vectors has 151 × 151 = 22801
elements.

5 DISCUSSION

Beside the sum of absolute differences we have im-
plemented and evaluated other window correlation
functions. We tested the sum of squared differ-
ences, which resulted in worse disparity maps due
to saturation effects and due to the limited accu-
racy of color channels and registers in the frag-
ment shader. Using a multiresolution correlation
function based on mipmapping facilities of graph-
ics hardware [Yang03] generated inferior results as
well. In summary, calculating the absolute differ-
ence between pixel values is beneficial on hardware
with limited precision, since differencing does not
change the magnitude of the result.

Non-hierarchical methods have the advantage,
that correlation values generated during the
search process can be reused e.g. for backmatch-
ing, since the correlation function is densely eval-
uated in the search space. Therefore computation
of the correlation function for right-to-left match-
ing can be omitted and replaced by an appropri-
ate lookup of correlation values generated by the
prior left-to-right matching. Consequently, the to-
tal computation time for bidirectional matching is
only increased by approximately 20–25% [Müh02].
Additionally, the result of image differencing can
be reused in these cases as well (see Sugita et
al. [Sugit03]). Our hierarchical approach evaluates
the window correlation function sparsely and these
optimizations are not applicable. Nevertheless we
consider a hierarchical approach more efficient for
large search spaces, in particular for estimation of
2D disparity vectors. There are differences in the
quality of obtained disparity maps for hierarchi-
cal and non-hierarchical approaches, too. Hierar-
chical refinement operating on an image pyramid
may fail, e.g. if the source images contain solely
high frequencies (random dot stereograms, for ex-
ample), which are nonexistent in the coarser levels
of the pyramid. On the other hand, hierarchical
methods will have a higher probability to find cor-
rect disparity values in the case of repetitive tex-
tures than non-hierarchical approaches. Since real
scenes have usually a wide range of frequencies, we
favor hierachical matching for its efficiency.



6 CONCLUSION AND FU-
TURE WORK

We presented a fast hierarchical disparity estima-
tion algorithm running entirely on programmable
3D graphics hardware. For relatively small 1D dis-
parity search ranges we achieve even real-time be-
haviour on desktop PCs and still interactive rates
on mobile hardware. Additionally, unreliable dis-
parity values can be detected using bidirectional
matching.
We expect that using full color images instead of
gray-level (intensity) images increases the accu-
racy and robustness for the uncalibrated setup,
where the search space includes 2D disparity vec-
tors. We would like to extend this work for cali-
brated stereo setups without the need to perform
image rectification. In this setting epipolar lines
do not coincide with horizontal scan-lines.

7 ACKNOWLEDGEMENTS

We would like to thank Roland Perko for helpful
suggestions and discussion.
This work has been done in the VRVis re-
search center, Graz and Vienna/Austria
(http://www.vrvis.at), which is partly funded
by the Austrian government research program
Kplus.

References

[Bolz03] J. Bolz, I. Farmer, E. Grinspun, and
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(a) Left image (b) Disparity obtained with
a 4× 4 window

(c) Disparity obtained
by bidirectional matching
with a 4× 4 window

(d) Disparity obtained with
an 8× 8 window

(e) Disparity obtained
by bidirectional matching
with an 8× 8 window

(f) Disparity obtained by
non-hierarchical matching
with an 8× 8 window

Figure 3: Matching results for the Tsukuba head and lamp data set. White pixels indicate false matches
detected with backmatching. Disparities are discarded, if left-to-right and right-to-left disparities disagree
by one pixel.

(a) Left image of the
sphere dataset

(b) Disparity map with
pixel accuracy

(c) Disparity map with
half pixel accuracy

(d) Disparity map with
quarter pixel accuracy

Figure 4: Results for the synthetic sphere dataset. This dataset requires a 2D search for disparities. The
time for matching is about 240ms on a Radeon 9700 Pro. Note the Mach-banding in Figure (a) because
of the single pixel accuracy. The silhouette of the sphere is noisy due to the textureless background.



(a) Left image (b) Right image (c) Disparity map

(d) Left image (e) Right image (f) Disparity map

Figure 5: Disparity maps for webcam images. The images have unknown orientation, hence unconstrained
matching is applied. The matching procedure is applied to a 256×256 image region cut out of the original
image generated by the webcam.


