
Vragments - Relocatability as an Extension to
Programmable Rasterization Hardware

Joachim Diepstraten†, Daniel Weiskopf†, Martin Kraus*, Thomas Ertl†

†Visualization and Interactive Systems Institute,

University Stuttgart, Universitätsstraße 38,
70569 Stuttgart, Germany

{diepstraten,weiskopf,ertl}@informatik.uni-
stuttgart.de

*Purdue University Rendering and
Perception Lab, Purdue Unversity, West

Lafayette, IN 47907, USA
kraus@purdue.edu

ABSTRACT

We propose an extension to the pixel pipeline of current programmable rasterization hardware to include the
possibility to freely locate the rasterization position of fragments and pixels. The corresponding new primitive
name is Vragment (variable fragment). We show how this new functionality could lead to new and wider classes
of algorithms in computer graphics, especially in image processing, scientific visualization, geometric modeling,
and rendering. A GPU-assisted simulator for programs running on the proposed architecture is presented.

Keywords
Rasterization hardware, programmability, shading language

1. INTRODUCTION
Tremendous changes and improvements have been
seen in the field of rasterization hardware since 3D
accelerators became a standard configuration for
today's PCs. In the last three years a transition from
a fixed-function pipeline to a configurable pipeline,
and eventually to a programmable pipeline has taken
place both for rasterization and vertex processing;
and there is still a race going on between different
graphics chip manufactures to include additional
features to make their hardware even more flexible.
When looking at the DirectX9 specification for pixel
shader version 3.0 [MS02] and vertex shader version
3.0 [MS02], or the OpenGL 2.0 shading language
proposals [Kes03], it is possible to get a glimpse on
what lies ahead for the upcoming or maybe even for
the next two upcoming generations of graphics chips.

Although past desktop computer graphics
innovations were mostly driven by the computer
games industry and their special demands [Kirk98],
it is likely that this will, in parts, change in the future
as manufactures are looking into different markets to
sell their hardware. These markets might have
different demands compared to the ones of the
gaming industry. Therefore, we propose a simple but
effective extension to current programmable
rasterization hardware to broaden the spectrum of
supported algorithms. Programmable relocation of a
fragment in the fragment processor makes possible
the implementation of a completely new class of
algorithms, or alternative implementations of
currently used algorithms. Furthermore, we provide
a simulator to the research community and graphics
chip manufactures to explore today the potential that
might be available tomorrow. Experiences of the
recent past show that increasing functionality of
graphics hardware stimulates researchers in the
visualization and computer graphics community to
exploit hardware in ways that were never considered
by the manufactures in the first place. An early
example is the work by Heidrich et al. [Hei99];
recent examples are works by Carr et al. [Carr02],
Purcell et al. [Pur02], Krüger and Westerman
[Krü03], and Hillesland et al. [Hil03]. Although we
present a number of useful algorithms in this paper

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WSCG SHORT Communication papers proceedings
WSCG’2004, February 2-6, 2003, Plzen, Czech Republic.
Copyright UNION Agency – Science Press

that become feasible with the proposed extension, we
believe that our simulator is even more important
because it could inspire other researchers to develop
more sophisticated hardware-based techniques.
The remainder of this paper is organized as follows:
In the next section a short overview of related work
is presented. Section 3 describes our extension in
more detail, Section 4 introduces the simulator, the
framework, and the extension to hardware shaders
we used to simulate the algorithms presented in
Section 5, specifically for binning, displacement
mapping, particle systems, flow visualization, fur
rendering, rendering of arbitrary curves, and special
effects. Finally, the paper closes with some results
and a discussion of open issues.

2. PREVIOUS WORK
Numerous proposals for extending graphics
hardware were made in the past, and some of these
eventually made it to products on the market. As a
good example, the proposal for the F-buffer by Mark
and Proudfoot [Mar01] has been implemented on the
R350 graphics processor by ATI. Another good
example of proposed extensions which made it
actually to product level are texture compression
algorithms, e.g. vector quantization in the PowerVR
architecture and the S3 texture compression [S398].
Although these two examples focus on the fragment
processing part of the graphics pipeline, other papers
describe extensions to different parts of the pipeline,
for example the vertex processing [Lin01] or
tessellation unit [Bóo01].

Another related field are shading languages. Our
framework relies on existing programming languages
to include only minor extensions for relocating
fragment positions. At the moment, the development
of shading languages is mainly divided between the
two most important rendering APIs: Direct3D with
its High-Level Shading Language (HLSL) [MS02]
for both fragment and vertex processing, the
assembler languages pixel shader version 2.0, 2.0+
(or extended), and 3.0 for fragment processing, and
the assembler-like vertex shader 2.0 and 3.0 for
vertex processing; OpenGL with
ARB_Fragmentprogram and ARB_Vertexprogram
extensions for assembler languages and the OpenGL
2.0 shading language proposal on a more abstract
level. Other work in this area targets API-
independence, such as Cg [Mar03] and the work by
McCool et al. [Cool02].

3. ARCHITECTURE
The vragment extension fits very well into the
structure of the rendering pipeline on current
graphics hardware. Figure 1 schematically shows our

proposal for a modified pipeline. Green and blue
boxes show elements that are already present on
today's GPUs and that are (almost) not changed by
our extension. The green boxes indicate parts that
are related to vertex and primitive processing; the
blue boxes concern operations on fragment and pixel
level. The additional parts for the vragment extension
are marked red. The “vragment relocation” module is
an add-on to the existing fragment processing unit. It
only slightly modifies this unit: A readable and
writable register that describes the x and y
coordinates of the current fragment in window
coordinates is added, along with all the functionality
that is available for other registers. Since GPUs
already provide numerical operations with floating-
point accuracy for a large number of registers, this
modification nicely fits into the existing architecture
The second change concerns the “vragment write”
module. This module actually writes the vragment
information from the fragment processing at the
position previously computed through the vragment
relocation module. Before writing, another viewport
clipping has to be executed as vragments can be
freely moved by a fragment program and maybe
even outside the viewport, otherwise memory page
faults would occur.
Writing pixels in a random order will definitely not
come without a penalty because writing vragments to
the framebuffer would require a random write access
to memory. An exact calculation of the costs for a
random write access would require a complete
emulation of today's memory technology and caching
strategies. Unfortunately most of them are unknown
to outsiders due to intellectual property of different
companies. But estimates can be extracted from
texture-indirection or dependent texture reads, which
are already possible with today’s graphics hardware.
They provide a random read access to memory and
several sources show that dependent texture fetches
lead to a significant performance decrease
[Rig03,Spi01]. On the other hand new memory
technology like DDRII, Rambus and an increasing
popularity of dependent texture reads for example in
shading calculations will hopefully help to decrease
this bottleneck in the future. The vragments
extension might also benefit from this as the same
strategies to speed up random memory reads could
also be used for writing. A special treatment could be
beneficial when fragment positions are not changed
at all (i.e., standard render code) because the same
access mechanisms as used in today's graphics
boards can be applied. If fragments positions are
changed in a coherent manner (e.g. moving in similar
directions), write-caching strategies will greatly
reduce memory accessing penalties.

 Vertex
data

Vertex
processing

Backface culling
Clipping
Viewport
transformation

Fragment
processing

Vragment
write

Blending &
Tests Frame buffer

Vragment
relocation

Triangle setup

Figure 1. Structure of the rendering pipeline. Green boxes indicate parts that are related to vertex and
primitive processing, blue boxes to fragment operations. The additional parts for the vragment
extension are marked red.

4. A SIMULATOR FOR VRAGMENTS
Our simulator for the programmable relocation of
fragments utilizes both hardware and software
support. It is based on DirectX 9. This API was
chosen in contrast to OpenGL or a completely self-
written software rasterization, because:

• Our extension has only little impact on the
rest of the graphics pipeline, and therefore
only slight changes to existing GPU support
should be introduced, ruling out a self-
written software rasterization.

• Only minimal changes to standard pixel
shader code is required; thus, our extension
does not require modifications of existing
fragment programs.

• All features of current graphics chips can be
used in the simulator.

• High resolution and / or floating-point
framebuffers formats and textures can be
accessed without using any special
extensions.

• It is easy to switch between a completely
software-based and a hybrid software /
hardware-based simulation.

• Features of upcoming graphics chips can be
simulated through the provided software
rasterizer in DirectX 9. This makes it
possible to test our extension even with
functionality from pixel shader version 3.0

and vertex shader version 3.0, which is not
yet available in hardware.

The simulator affects the use of the Direct3D API in
two ways: First, a parser translates pixel shader code
with our extensions to standard DirectX 9 in order to
generate a hardware-supported pixel shader program.
Second, the actual rendering of primitives has to be
called through special routines of the simulator.

4.1. Extension to pixel shaders
A few extensions are added to pixel shader versions
2.0 (ps2.0) and 3.0 (ps3.0) to provide control over
rasterization positions to a shader programmer. Ps3.0
already provides read access to a fragment's raster
position through the register vPos. For consistency,
this register name is used in our extensions as well.
Note that vPos only stores the x and y coordinates,
the z coordinate is stored in oDepth. New version
commands – vss.2.0 and vss.3.0 – are introduced to
distinguish our shaders from the standard pixel
shader versions.
The final position of a fragment is set by a mov
instruction applied to the vPos register. Also, the
vPos register has to be explicitly declared at the
beginning of the shader. A valid vragment shader
only allows one mov to vPos, which is consistent
with the usage of all other output registers oCn (n
describes the output target) and oDepth in ps2.0 and
ps3.0. The write operation acting on vPos can be
freely placed within the shader code, with one
exception: It has to be located before the output to
the color buffer, i.e., before mov oCn.

A tiny vragment shader code in assembler language
looks like this:
// shader begin

vss.2.0 // shader version 2.0

dcl v0 // declare input color

def c0, 10.0, 0.0, 0.0, 0.0

// constant describing a shift

dcl vPos.xy //declare fragment position

 //register

add r0, vPos, c0 // add 10 pixels to the

 // x-pos

mov vPos, r0 // set new fragment

 // position

mov oC0, v0 //set fragment output

 // color

// shader end

The changes to a conventional DirectX 9 pixel
shader program are minimal; a programmer can built
on her or his knowledge of GPU programming.

4.2. Constraints
The current simulator is subject to some restrictions
and constraints concerning shaders. First, the
number of available instruction slots is decreased by
two for both pixel shader versions because additional
operations are required to communicate fragment
positions to the simulator. One instruction slot is
used for a mov instruction that writes the fragment
position to a render target. We use 16 bit integer
targets to temporarily store these positions. Since the
supported range of values is restricted to the interval
[0,1], the coordinates are mapped to this range
before they are written to the render target. This
operation uses the second additional instruction slot.
Moreover, the number of available constant registers
is decreased for both pixel shader versions because
one constant register is needed to store the user-
specified multiplication factor for the above
mapping. Finally, one additional texture register is
lost for vss.2.0 because ps.2.0 does not provide a
readable rasterization position. Therefore, this
position register is emulated by a vertex shader
program that transfers the window coordinate
position of each vertex to texture coordinates.
Corresponding positions are obtained for each
fragment by linear interpolation during scan
conversion. So far, the implementation of the
simulator supports only a limited number of possible
render target formats, and no multiple render targets
at all.

5. BENEFITS OF VRAGMENTS
An extension to graphics hardware definitely stands
or falls with its usefulness for programs running on
this hardware. A change of the structure of the

underlying hardware is only justified if the benefits
of the additionally possible applications excel the
cost of chip design. Therefore, the simulator
presented in this paper is an important contribution
that helps to judge the usefulness of our extension
before any effort is spent on chip design.
This section describes and discusses different
scenarios and algorithms in which this extension is
valuable. This collection of algorithms is by no
means exhaustive, but rather presents a small glimpse
the possibilities offered by our extension.

5.1. Binning algorithms
Collecting and counting algorithms, or binning
algorithms, are a completely new class of algorithms
that become possible. This class plays a fundamental
role for many tasks in image analysis, image
manipulation, and computer vision [Seul00].
Basically, all these algorithms take information given
on an input texture and reorder this data into bins.
Since the number of bins usually is smaller than the
number of input texels, a compactification is
achieved.
As an example, a histogram of gray values in an
image can be computed by a vragment shader
program. The image is represented by an input
texture. A quadrilateral is rendered with the same
size as the input texture, establishing a one-to-one
mapping between generated fragments and input
texture. Without the vragment extension, these
fragments would be rendered at the same position as
the input texels. A vragment program, however,
allows us to move the fragment to another location
that corresponds to the gray value of the image texel.
For example, the n bins can be organized linearly in
the first column of the output image. Here, the
mapping takes the gray value v ∈ [0,1] and yields the
output position (x,y) = (0, v• n). The output color is
set to a constant value that represents the integer
value one for the output render target. A histogram
counts the number of elements belonging to a bin.
This counting operation is implemented by additive
blending. The vragment shader for this task looks
like this:
// shader begin

vss.2.0 // shader version 2.0

dcl_2d s0 // define sampler

dcl t0 // define texture coordinate

dcl vPos.xy // declare fragment position

 // register

def c2, 0.0, 0.0, 0.0, 0.0 // set some

 // constants

texld r0,t0,s0 // load texel

mul r1, r0.x, c0.x // compute luminance

mad r1, r0.y, c0.y, r1 // of texel

mad r1, r0.z, c0.z, r1

mul r1, r1, c1.x // map to corresponding

 // bin

mov r1.yzw, c2.x // zero y position

mov vPos, r1 // set new fragment position

mov r2, c1.y // set counter increase

mov oC0, r2 // write counter increase

// shader end

A more sophisticated counting algorithm allows for
the computation of the entropy of an image. The
image entropy can be deduced from the entropy of a
discrete random variable, which is defined as

)]([log)(xPExH x−=

∑
Ω∈

==−=
xix

ii xXPxXP),())(log(

where P(X) can be derived from a previously
computed histogram. Again, the summation over
several inputs is supported by the vragment
extension.

5.2. Displacements
Other techniques that become possible with freely
relocatable fragments are displacement mapping
[Cook84] and procedural texture synthesis for
hypertexture [Per89].
For doing displacements a vragment shader simply
maps each input fragment to a new output coordinate
by adding a directional offset to its 3D world
coordinate. Afterwards this new world coordinate is
transformed back to the window coordinate system.
The 3D coordinates of a fragment can be accessed
for example by storing the 3D world coordinates at
each vertex as texture coordinates.
The advantage compared to normal triangle-based
displacement mapping approaches is: No time-
consuming retesselation is required. The necessary
triangle setup stays the same as no new triangles
have to be sent down the pipeline. This also means
that the necessary workload does no longer depend
on the complexity of the displacement input map but
rather on the projection of the displaced object.
But not only full 3D displacements are possible; also
2D displacements in window coordinates can be
implemented or even a combination of both. For
example, we used a combination of 2D and 3D
displacements to simulate stains on paper. Figure
3(a) and 3(b) show the displacement of the 2D stain
geometry which is rendered to a texture and then
used again as input for a 3D displacement map on the
paper surface.
Unfortunately besides these advantages there are also
some drawbacks. The vragment approach works only
well with 3D displacements that have a rather small
magnitude otherwise the newly calculated distance
between pixels will be too large and holes are

starting to pop up. When trying to close these holes a
certain overdraw has to be ensured on the input
fragment side. At some point the expected cost of
tessellation and vertex processing will be lower than
the cost of overdrawing. But for displacements with
small magnitudes, for example crumpled paper or
objects covered by a thin snow layer, our approach
works well.

5.3. Particle systems
Vragments could also be exploited for simulating and
rendering a system of particles [Ree83]. Today,
particles are managed and simulated by the CPU and
transferred through the entire rendering pipeline. A
vragment program offers the advantage of computing
the motion of particles and the final rendering only
within the fragment processing stage. Therefore, data
transfer between CPU and GPU is obsolete, and the
vertex processing is unburdened.
In a vragment approach, the particle system is
represented by textures that store the current position
and any other property of each particle required for
simulation and rendering (e.g., color, age, mass,
momentum). One part of the vragment program
computes the animation by solving the equations of
motion on a per-texel basis. This task does not
require the vragment extension because each texel is
mapped to the very same element of the texture
representing the subsequent time step. In the second
part, particles are rendered to screen. Rendering
requires the extension to move the fragment to the
current position of the particle, as previously
computed by the simulation step.

5.4. Flow visualization
The study of flow fields plays a decisive role in
many scientific disciplines, such as computational
fluid dynamics (CFD) or meteorological and
oceanographic simulation. An important class of
visualization techniques computes the motion of
massless particles transported along the velocity field
to obtain characteristic structures like streamlines,
pathlines, or streaklines. Often a dense representation
by these lines is chosen. These dense representations
are typically implemented by textures [San00].
Texture advection is a most popular way of
implementing this approach on today's graphics
hardware: Dense texture representations are moved
along the velocity field of the flow. Due to the very
nature of graphics hardware, the texture
representation for a new time step is based on
lookups in the texture of the previous time step.
Stated differently, a backward mapping along the
velocity field has to be applied. In some
implementations, such as Lagrangian-Eulerian
advection [Job00], this causes problems because
input noise might be duplicated into several texels of

subsequent time steps, leading to a degradation of
image quality.
A vragment approach makes possible a forward
mapping: Texels of the dense representation can
actively move to their position at the following time
step. This process can be regarded as a special case
of a particle system in which the motion of massless
particles is governed by the velocity of the flow.
Forward mapping avoids texel duplication because a
single texel is only mapped to another single texel.
Typically, not all texels are touched by forward
mapping; however, these gaps can be filled with new
input noise by a second rendering pass.

5.5. Automatic LOD for fur and fur-like
materials
Rendering fur can be very time-consuming, as a lot
of individual primitives have to be sent down the
pipeline and transformed and finally rendered.
Therefore Level of Detail (LOD) algorithms for fur
and other fur-like materials can release some of the
strains lying on the graphics pipeline. One approach
would be to use volume textures [Len01]. Although
this approach can solve some of the problems, it
unfortunately introduces new ones. It is well known
that rendering volume textures forces a very high
memory demand and a high rasterization workload
on the graphics board. Using vragments could solve
both problems and even provide an automatic LOD
mechanism for free. The idea is closely related to the
previously mentioned particle systems. As with
particles the geometry of one single hair, brin, blade
of grass, etc. is stored in a texture. The size of this
texture defines the maximal detail of a single
element.
While rendering, a furry surface contains a repeated
pattern of this texture together with a second offset
texture which displaces each individual element to its
final position in 3D world coordinates. Whenever the
viewer gets closer to the furry surface more
vragments will automatically be spent for each
individual hair because more texels from the hair
primitive are read. In contrast, when the viewer
moves away from the surface only a few vragments
will be spent for each individual hair because less
texels are read.

5.6. Arbitrary curves
Rendering curves, for example Bézier, Hermite, and
arbitrary spline curves, is still an essential task in
Computer Aided Design. In today’s commercial
CAD packages curves are either rendered in software
or split into line segments and then rendered as
individual lines. With the help of vragments the
rendering of simple line primitives can be
individually changed to rendering directly any
arbitrary curve.

5.7. Special effects
An interesting class of applications for vragments
could be special effects, in particular for games.
Game applications do not have time to spend a lot of
computation power on special effects. The goal is
visual plausibility, not physical accuracy. In this case
vragments are especially well suited for effects
where the connectivity of surface is extremely
complicated and time-varying. Examples for these
class are explosions, implosion, arbitrary object
deformations, cracks, object melting and flowing,
etc. With vragments no connectivity is necessary as
each vragment can be treated as an particle and can
therefore individually be moved without influencing
any neighboring points or primitive groups. If
necessary, new neighboring information besides the
automatically defined connectivity through the object
definition can be built by grouping fragments with
special textures. These are simply mapped onto the
object surface. Additionally, it is still possible to use
connected and fast renderable primitive groupings
like triangle strips or triangle fans.

6. RESULTS AND OPEN ISSUES
Figures 2(a)-(c) and 3(a)-(c) show result pictures
created for some algorithms mentioned in Section 5.
Figure 3(a)-(c) are a combination of 2D and 3D
displacements to simulate coffee or similar stains on
a paper sheet. A circular 2D stain geometry is first
rendered by using a 2D displacement shader to
receive a more irregular shape. The resulting image
is afterwards stored as a 3D heightfield texture and
then used as input texture for displacing a 3D plane.
Figure 2(a) shows a 3D displacement of a crumpled
paper sheet. The height information in the heightfield
is also taken for darkening the areas of the paper
texture. Notice that the 3D plane consists of only
one single quadrilateral. Figure 2(b) and (c) show an
example of the automatic LOD rendering of a furry
surface by using vragments. Figure 2(b) is a close top
view on the surface while (c) is a more distant view.
All the images where rendered using the hybrid
mode of the simulator together with an ATI Radeon
9700 graphics board.

Although most of the algorithms we mentioned
earlier are working nicely, there are still some more
general open issues of the vragments extensions.
One problem is the order of writing into the
framebuffer because the blend/test unit supports both
read and write from/to the framebuffer, if the order is
changed the final result might also change as well.
This problem does not show up in the simulator
because the blending has to be done in software, but
that might become a problem in pure hardware
rendering. Another issue is the support for different
point sizes. Should the vragment write module also

handle different point sizes? Or should it only allow
single pixels? Different point sizes might be very
useful to solve some of the overdraw issues but
would also increase the complexity of the unit, as
now complete memory blocks might have to be
accessed. This question is very closely related to the
next problem of how to treat holes that can occur in
some of the previously mentioned algorithms. Right
now most of them are solved by overdrawing. A
better idea would be an optional final linear-
interpolation unit between different vragments to
close holes between two individual vragments. The
final question is how should multiple render targets
be treated? Should every target have its own
fragment relocation or should every target map to the
same location? All these open questions should be
subject of further research.

ACKNOWLEDGMENTS
In parts, this project has been supported by the
“Landesstiftung Baden-Württemberg”.

7. REFERENCES
[Bóo01] Bóo, M. , Amor, M. , Doggett, M. , Hirche,

J. , and Strasser, W. , Hardware support for
adaptive subdivison surface rendering. In
Proceedings of EUROGRAPHICS/SIGGRAPH
Workshop on Graphics Hardware, pp. 33-40,
2001.

[Carr02] Carr, N. A. , Hall, J. D. , and Hart J.C. ,
The ray engine. In Proceedings of
EUROGRAPHICS/SIGGRAPH Conference on
Graphics Hardware. pp. 37-46, 2002.

[Cook84] Cook R. L. , Shade trees. In Proceedings of
ACM SIGGRAPH. pp. 223-231, 1984.

[Cool02] McCool, M. D. , Qin, Z. , and Popa, T. S. ,
Shader metaprogramming. In Proceedings of
EUROGRAPHICS/SIGGRAPH Workshop on
Graphics Hardware, pp. 57-68, 2002.

[Hei99] Heidrich, W. and Seidel, H.-P. , Realistic,
hardware-accelerated shading and lighting. In

Proceedings of ACM SIGGRAPH, pp. 171-178,
1999.

[Hil03] Hillesland, K. E. , Molinov, S. , and
Grzeszczuk R. , Nonlinear optimization
framework for image-based modeling on
programmable graphics hardware. ACM
Transaction on Graphics Vol. 22 (3), pp. 925-
934, 2003.

[Job00] Jobard, B. , Erlebacher G. , and Hussaini, M.
Y. , Hardware-accelerated texture advection for
unsteady flow visualization. In Proc. IEEE
Visualization’ 00, pp. 155-162, 2000.

[Kes03] Kessenich, J. , Baldwin, D. , and Rost, R. ,
The OpenGL shading language version 1.05,
2003.

[Kirk98] Kirk, D. B. , Unsolved problems and
opportunities for high-quality, high-performance
3D graphics on a PC platform. In Proceedings of
the EUGROGRAPHICS/SIGGRAPH Workshop
on Graphics Hardware, pp. 11-13, 1998.

[Krü03] Krüger, J. and Westermann, R. , A
framework for numerical simulation techniques
on graphics hardware. ACM Transaction on
Graphics Vol. 22 (3), pp. 908-916, 2003.

[Len01] Lengyel, J. , Praun, E. , Finkelstein, A. , and
Hoppe H. , Real-time fur over arbitary surfaces.
In Proceedings of the 2001 Symposium on
Interactive 3D Graphics, pp. 227-232, 2001.

[Lin01] Lindholm, E. , Kligard, M. J. , and Moreton
H. , A user-programmable vertex engine. In
Proceedings of ACM SIGGRAPH, pp. 149-158,
2001.

[Mar03] Mark, W. R. , Glanville, S. , and Akeley, K.,
Cg: A system for programming graphics
hardware in a C-like language. ACM Transaction
on Graphics Vol. 22 (3), pp. 896-907, 2003.

[Mar01] Mark, W. R. and Proudfoot K. , The F-
buffer: A rasterization-order fifo buffer for
multipass rendering. In Proceedings of
EUROGRAPHICS/SIGGRAPH Workshop on
Graphics Hardware, pp. 57-64, 2001.

 (a) (b) (c)
Figure 2. Example pictures for vragment shader usage: (a) A crumpled sheet of paper, (b) grassy surface in
close-up view, (c) same grassy surface from far away.

 (a) (b) (c)
Figure 3. Stains on paper as an example of a combined 2D and 3D displacement: (a) The undisplaced 2D stain
geometry, (b) the 2D displaced 2D stain geometry, and (c) the final result.

 [MS02] Microsoft Corporation, DirectX 9 SDK
documentation, 2002.

[Per89] Perlin, K. and Hoffert, E. M. , Hypertexture.
In Proceedings of ACM SIGGRAPH, pp. 253-
262, 1989.

[Pur02] Purcell, T. J. , Buck, I. , Mark, W. R. , and
Hanrahan, P. , Ray tracing on programmable
graphics hardware. In Proceedings of ACM
SIGGRAPH, pp. 703-712, 2002.

[Ree83] Reeves, W. T. , Particle systems – A
technique for modeling a class of fuzzy objects.
Computer Graphics (Proc. ACM SIGGRAPH
83), 17(3), pp. 359-376, 1983.

[Rig03] Riguer, G. , Performance optimization
techniques for ATI graphics hardware with
DirectX 9.0. White paper, ATI, 2003.

[S398] S3 Incorporated, S3TC DirectX 6.0 standard
texture compression, 1998.

[San00] Sanna, A. , Montrucchio, B. , and
Montuschi, P. , A survey on visualization of
vector fields by texture-based methods. Recent
Res. Devel. Pattern Rec., 1, pp. 13-27, 2000.

[Seul00] Seul, M. , O’Gordman, L. , and Sammon,
M. J. , Practical Algorithms for Image Analysis:
Descriptions, Examples and Code. Cambridge
Unversity Press. Cambridge. 1st edition, 2000.

[Spi01] Spitz, J. , GeForce 3 OpenGL performance.
White paper, Nvidia, 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

