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ABSTRACT 

We propose an extension to the pixel pipeline of current programmable rasterization hardware to include the 
possibility to freely locate the rasterization position of fragments and pixels.  The corresponding new primitive 
name is Vragment (variable fragment). We show how this new functionality could lead to new and wider classes 
of algorithms in computer graphics, especially in image processing, scientific visualization, geometric modeling, 
and rendering. A GPU-assisted simulator for programs running on the proposed architecture is presented. 
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1. INTRODUCTION 
Tremendous changes and improvements have been 
seen in the field of rasterization hardware since 3D 
accelerators became a standard configuration for 
today's PCs.  In the last three years a transition from 
a fixed-function pipeline to a configurable pipeline, 
and eventually to a programmable pipeline has taken 
place both for rasterization and vertex processing; 
and there is still a race going on between different 
graphics chip manufactures to include additional 
features to make their hardware even more flexible.  
When looking at the DirectX9 specification for pixel 
shader version 3.0 [MS02] and vertex shader version 
3.0 [MS02], or the OpenGL 2.0 shading language 
proposals [Kes03], it is possible to get a glimpse on 
what lies ahead for the upcoming or maybe even for 
the next two upcoming generations of graphics chips. 

Although past desktop computer graphics 
innovations were mostly driven by the computer 
games industry and their special demands [Kirk98], 
it is likely that this will, in parts, change in the future 
as manufactures are looking into different markets to 
sell their hardware. These markets might have 
different demands compared to the ones of the 
gaming industry. Therefore, we propose a simple but 
effective extension to current programmable 
rasterization hardware to broaden the spectrum of 
supported algorithms. Programmable relocation of a 
fragment in the fragment processor makes possible 
the implementation of a completely new class of 
algorithms, or alternative implementations of 
currently used algorithms.  Furthermore, we provide 
a simulator to the research community and graphics 
chip manufactures to explore today the potential that 
might be available tomorrow. Experiences of the 
recent past show that increasing functionality of 
graphics hardware stimulates researchers in the 
visualization and computer graphics community to 
exploit hardware in ways that were never considered 
by the manufactures in the first place.  An early 
example is the work by Heidrich et al. [Hei99]; 
recent examples are works by Carr et al. [Carr02], 
Purcell et al. [Pur02], Krüger and Westerman 
[Krü03], and Hillesland et al. [Hil03].  Although we 
present a number of useful algorithms in this paper 
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that become feasible with the proposed extension, we 
believe that our simulator is even more important 
because it could inspire other researchers to develop 
more  sophisticated hardware-based techniques. 
The remainder of this paper is organized as follows: 
In the next section a short overview of related work 
is presented. Section 3 describes our extension in 
more detail, Section 4 introduces the simulator, the 
framework, and the extension to hardware shaders 
we used to simulate the algorithms presented in 
Section 5, specifically for binning, displacement 
mapping, particle systems, flow visualization, fur 
rendering, rendering of arbitrary curves, and special 
effects. Finally, the paper closes with some results 
and a discussion of open issues. 

 

2. PREVIOUS WORK 
Numerous proposals for extending graphics 
hardware were made in the past, and some of these 
eventually made it to products on the market. As a 
good example, the proposal for the F-buffer by Mark 
and Proudfoot [Mar01] has been implemented on the 
R350 graphics processor by ATI.  Another good 
example of proposed extensions which made it 
actually to product level are texture compression 
algorithms, e.g. vector quantization in the PowerVR 
architecture and the S3 texture compression [S398].  
Although these two examples focus on the fragment 
processing part of the graphics pipeline, other papers 
describe extensions to different parts of the pipeline, 
for example the vertex processing [Lin01] or 
tessellation unit [Bóo01]. 

Another related field are shading languages. Our 
framework relies on existing programming languages 
to include only minor extensions for relocating 
fragment positions. At the moment, the development 
of shading languages is mainly divided between the 
two most important rendering APIs: Direct3D with 
its High-Level Shading Language (HLSL) [MS02] 
for both fragment and vertex processing, the 
assembler languages pixel shader version 2.0, 2.0+ 
(or extended), and 3.0 for fragment processing, and 
the assembler-like vertex shader 2.0 and 3.0 for 
vertex processing; OpenGL with 
ARB_Fragmentprogram and ARB_Vertexprogram 
extensions for assembler languages and the OpenGL 
2.0 shading language proposal on a more abstract 
level.  Other work in this area targets API-
independence, such as Cg [Mar03] and the work by 
McCool et al. [Cool02].  

3. ARCHITECTURE 
The vragment extension fits very well into the 
structure of the rendering pipeline on current 
graphics hardware. Figure 1 schematically shows our 

proposal for a modified pipeline. Green and blue 
boxes show elements that are already present on 
today's GPUs and that are (almost) not changed by 
our extension.  The green boxes indicate parts that 
are related to vertex and primitive processing; the 
blue boxes concern operations on fragment and pixel 
level. The additional parts for the vragment extension 
are marked red. The “vragment relocation” module is 
an add-on to the existing fragment processing unit. It 
only slightly modifies this unit: A readable and 
writable register that describes the x and y 
coordinates of the current fragment in window 
coordinates is added, along with all the functionality 
that is available for other registers. Since GPUs 
already  provide numerical operations with floating-
point accuracy for a large number of registers, this 
modification nicely fits into the existing architecture 
The second change concerns the “vragment write” 
module. This module actually writes the vragment 
information from the fragment processing at the 
position previously computed through the  vragment 
relocation module. Before writing, another viewport 
clipping has to be executed as vragments can be 
freely moved by a fragment program and  maybe 
even outside the viewport, otherwise memory page 
faults would occur. 
Writing pixels in a random order will definitely not 
come without a penalty because writing vragments to 
the framebuffer would require a random write access 
to memory.  An exact calculation of the costs for a 
random write access would require a complete 
emulation of today's memory technology and caching 
strategies.  Unfortunately most of them are unknown 
to outsiders due to intellectual property of different 
companies. But estimates can be extracted from 
texture-indirection or dependent texture reads, which 
are already possible with today’s graphics hardware. 
They provide a random read access to memory and 
several sources show that dependent texture fetches 
lead to a significant performance decrease 
[Rig03,Spi01]. On the other hand new memory 
technology like DDRII, Rambus and an increasing 
popularity of dependent texture reads for example in 
shading calculations will hopefully help to decrease 
this bottleneck in the future. The vragments 
extension might also benefit from this as the same 
strategies to speed up random memory reads could 
also be used for writing. A special treatment could be 
beneficial when fragment positions are not changed 
at all (i.e., standard render code) because the same 
access mechanisms as used in today's graphics 
boards can be applied.  If fragments positions are 
changed in a coherent manner (e.g. moving in similar 
directions), write-caching strategies will greatly 
reduce memory accessing penalties. 
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Figure 1. Structure of the rendering pipeline. Green boxes indicate parts that are related to vertex and 
primitive processing, blue boxes to fragment operations. The additional parts for the vragment 
extension are marked red. 

4. A SIMULATOR FOR VRAGMENTS  
Our simulator for the programmable relocation of 
fragments utilizes both hardware and software 
support. It is based on DirectX 9. This API was 
chosen in contrast to OpenGL or a completely self-
written software rasterization, because: 

• Our extension has only little impact on the 
rest of the graphics pipeline, and therefore 
only slight changes to existing GPU support 
should be introduced, ruling out a self-
written software rasterization. 

• Only minimal changes to standard pixel 
shader code is required; thus, our extension 
does not require modifications of existing      
fragment programs. 

• All features of current graphics chips can be 
used in the simulator. 

• High resolution and / or floating-point 
framebuffers formats and textures can be 
accessed without using any special 
extensions. 

• It is easy to switch between a completely 
software-based and a hybrid software / 
hardware-based simulation.  

• Features of upcoming graphics chips can be 
simulated through the provided software 
rasterizer in DirectX 9. This makes it 
possible to test our extension even with 
functionality from pixel shader version 3.0 

and vertex shader version 3.0, which is not 
yet available in hardware. 

The simulator affects the use of the Direct3D API in 
two ways: First, a parser translates pixel shader code 
with our extensions to standard DirectX 9 in order to 
generate a hardware-supported pixel shader program.  
Second, the actual rendering of primitives has to be 
called through special routines of the simulator. 

4.1. Extension to pixel shaders 
A few extensions are added to pixel shader versions 
2.0 (ps2.0) and 3.0 (ps3.0) to provide control over 
rasterization positions to a shader programmer. Ps3.0 
already provides read access to a fragment's raster 
position through the register vPos. For consistency, 
this register name is used in our extensions as well. 
Note that vPos only stores the x and y coordinates, 
the z coordinate is stored in oDepth. New version 
commands – vss.2.0 and vss.3.0 – are introduced to 
distinguish our shaders from the standard pixel 
shader versions.  
The final position of a fragment is set by a mov 
instruction applied to the vPos register. Also, the  
vPos register has to be explicitly declared at the 
beginning of the shader.  A valid vragment shader 
only allows one mov to vPos, which is consistent 
with the usage of all other output registers oCn (n 
describes the output target) and oDepth in ps2.0 and 
ps3.0. The write operation acting on vPos can be 
freely placed within the shader code, with one 
exception: It has to be located before the output to 
the color buffer, i.e., before mov oCn. 



A tiny vragment shader code in assembler language 
looks like this: 
// shader begin 

vss.2.0          // shader version 2.0 

dcl v0           // declare input color 

def c0, 10.0, 0.0, 0.0, 0.0  

// constant describing a shift 

dcl vPos.xy   //declare fragment position 

  //register 

add r0, vPos, c0 // add 10 pixels to the  

  // x-pos 

mov vPos, r0   // set new fragment  

  // position 

mov oC0, v0   //set fragment output  

         // color 

// shader end 

The changes to a conventional DirectX 9 pixel 
shader program are minimal; a programmer can built 
on her or his knowledge of GPU programming. 

4.2. Constraints 
The current simulator is subject to some restrictions 
and constraints concerning shaders.  First, the 
number of available instruction slots is decreased by 
two for both pixel shader versions because additional 
operations are required to communicate fragment 
positions to the simulator. One instruction slot is 
used for a mov instruction that writes the fragment 
position to a render target.  We use 16 bit integer 
targets to temporarily store these positions. Since the 
supported range of values is restricted to the interval 
[0,1], the coordinates are mapped to this range 
before they are written to the render target. This 
operation uses the second additional instruction slot. 
Moreover, the number of available constant registers 
is decreased for both pixel shader versions because 
one constant register is needed to store the user-
specified multiplication factor for the above 
mapping.  Finally, one additional texture register is 
lost for vss.2.0 because ps.2.0 does not provide a 
readable rasterization position. Therefore, this 
position register is emulated by a vertex shader 
program that transfers the window coordinate 
position of each vertex to texture coordinates. 
Corresponding positions are obtained for each 
fragment by linear interpolation during scan 
conversion.  So far, the implementation of the 
simulator supports only a limited number of possible 
render target formats, and no multiple render targets 
at all. 

5. BENEFITS OF VRAGMENTS 
An extension to graphics hardware definitely stands 
or falls with its usefulness for programs running on 
this hardware.  A change of the structure of the 

underlying hardware is only justified if the benefits 
of the additionally possible applications excel the 
cost of chip design. Therefore, the simulator 
presented in this paper is an important contribution 
that helps to judge the usefulness of our extension 
before any  effort is spent on chip design. 
This section describes and discusses different 
scenarios and algorithms in which this extension is 
valuable. This collection of algorithms is by no 
means exhaustive, but rather presents a small glimpse 
the possibilities offered by our extension. 

5.1. Binning algorithms 
Collecting and counting algorithms, or binning 
algorithms, are a completely new class of algorithms 
that become possible.  This class plays a fundamental 
role for many tasks in image analysis, image 
manipulation, and computer vision [Seul00]. 
Basically, all these algorithms take information given 
on an input texture and reorder this data into bins. 
Since the number of bins usually is smaller than the 
number of input texels, a compactification is 
achieved.  
As an example, a histogram of gray values in an 
image can be computed by a vragment shader 
program.  The image is represented by an input 
texture. A quadrilateral is rendered with the same 
size as the input texture, establishing a one-to-one 
mapping between generated fragments and input 
texture. Without the vragment extension, these 
fragments would be rendered at the same position as 
the input texels.  A vragment program, however, 
allows us to move the fragment to another location 
that corresponds to the gray value of the image texel. 
For example, the n bins can be organized linearly in 
the first column of the output image. Here, the 
mapping takes the gray value v ∈ [0,1] and yields the 
output position (x,y) = (0, v• n). The output color is 
set to a constant value that represents the integer 
value one for the output render target.  A histogram 
counts the number of elements belonging to a bin. 
This counting operation is implemented by additive 
blending. The vragment shader for this task looks 
like this: 
// shader begin 

vss.2.0      // shader version 2.0 

dcl_2d s0    // define sampler 

dcl t0       // define texture coordinate 

dcl vPos.xy  // declare fragment position  

     // register 

def c2, 0.0, 0.0, 0.0, 0.0 // set some  

                           // constants 

texld r0,t0,s0          // load texel 

mul r1, r0.x, c0.x      // compute luminance 

mad r1, r0.y, c0.y, r1  // of texel 

mad r1, r0.z, c0.z, r1     



mul r1, r1, c1.x  // map to corresponding 

   // bin 

mov r1.yzw, c2.x  // zero y position 

mov vPos, r1   // set new fragment position 

mov r2, c1.y   // set counter increase 

mov oC0, r2    // write counter increase 

// shader end 

A more sophisticated counting algorithm allows for 
the computation of the entropy of an image. The 
image entropy can be deduced from the entropy of a 
discrete random variable, which is defined as 
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where P(X) can be derived from a previously 
computed histogram. Again, the summation over 
several inputs is supported by the vragment 
extension. 

5.2. Displacements 
Other techniques that become possible with freely 
relocatable fragments are displacement mapping 
[Cook84] and procedural texture synthesis for 
hypertexture [Per89]. 
For doing displacements a vragment shader simply 
maps each input fragment to a new output coordinate 
by adding a directional offset to its 3D world 
coordinate. Afterwards this new world coordinate is 
transformed back to the window coordinate system. 
The 3D coordinates of a fragment can be accessed 
for example by storing the 3D world coordinates at 
each vertex as texture coordinates. 
The advantage compared to normal triangle-based 
displacement mapping approaches is: No time-
consuming retesselation is required. The necessary 
triangle setup stays the same as no new triangles 
have to be sent down the pipeline. This also means 
that the necessary workload does no longer depend 
on the complexity of the displacement input map but 
rather on the projection of the displaced object. 
But not only full 3D displacements are possible; also 
2D displacements in window coordinates can be 
implemented or even a combination of both. For 
example, we used a combination of 2D and 3D 
displacements to simulate stains on paper. Figure 
3(a) and 3(b) show the displacement of the 2D stain 
geometry which is rendered to a texture and then 
used again as input for a 3D displacement map on the 
paper surface. 
Unfortunately besides these advantages there are also 
some drawbacks. The vragment approach works only 
well with 3D displacements that have a rather small 
magnitude otherwise the newly calculated distance 
between pixels will be too large and holes are 

starting to pop up. When trying to close these holes a 
certain overdraw has to be ensured on the input 
fragment side. At some point the expected cost of 
tessellation and vertex processing will be lower than 
the cost of overdrawing.  But for displacements with 
small magnitudes, for example crumpled paper or 
objects covered by a thin snow layer, our approach 
works well. 

5.3. Particle systems 
Vragments could also be exploited for simulating and 
rendering a system of particles [Ree83].  Today, 
particles are managed and simulated by the CPU and 
transferred through the entire rendering pipeline. A 
vragment program offers the advantage of computing 
the motion of particles and the final rendering only 
within the fragment processing stage. Therefore, data 
transfer between CPU and GPU is obsolete, and the 
vertex processing is unburdened. 
In a vragment approach, the particle system is 
represented by textures that store the current position 
and any other property of each particle required for 
simulation and rendering (e.g., color, age, mass, 
momentum). One part of the vragment program 
computes the animation by solving the equations of 
motion on a per-texel basis. This task does not 
require the vragment extension because each texel is 
mapped to the very same element of the texture 
representing the subsequent time step. In the second 
part, particles are rendered to screen.  Rendering 
requires the extension to move the fragment to the 
current position of the particle, as previously 
computed by the simulation step.  

5.4. Flow visualization 
The study of flow fields plays a decisive role in 
many scientific disciplines, such as computational 
fluid dynamics (CFD) or meteorological and 
oceanographic simulation. An important class of 
visualization techniques computes the motion of 
massless particles transported along the velocity field 
to obtain characteristic structures like streamlines, 
pathlines, or streaklines. Often a dense representation 
by these lines is chosen. These dense representations 
are typically implemented by textures [San00]. 
Texture advection is a most popular way of 
implementing this approach on today's graphics 
hardware: Dense texture representations are moved 
along the velocity field of the flow. Due to the very 
nature of graphics hardware, the texture 
representation for a new time step is based on 
lookups in the texture of the previous time step. 
Stated differently, a backward mapping along the 
velocity field has to be applied. In some 
implementations, such as Lagrangian-Eulerian 
advection [Job00], this causes problems because 
input noise might be duplicated into several texels of 



subsequent time steps, leading to a degradation of 
image quality. 
A vragment approach makes possible a forward 
mapping: Texels of the dense representation can 
actively move to their position at the following time 
step. This process can be regarded as a special case 
of a particle system in which the motion of massless 
particles is governed by the velocity of the flow. 
Forward mapping avoids texel duplication because a 
single texel is only mapped to another single texel. 
Typically, not all texels are touched by forward 
mapping; however, these gaps can be filled with new 
input noise by a second rendering pass. 

5.5. Automatic LOD for fur and fur-like 
materials 
Rendering fur can be very time-consuming, as a lot 
of individual primitives have to be sent down the 
pipeline and transformed and finally rendered. 
Therefore Level of Detail (LOD) algorithms for fur 
and other fur-like materials can release some of the 
strains lying on the graphics pipeline. One approach 
would be to use volume textures  [Len01].  Although 
this approach can solve some of the problems, it 
unfortunately introduces new ones. It is well known 
that rendering volume textures forces a very high 
memory demand and a high rasterization workload 
on the graphics board. Using vragments could solve 
both problems and even provide an automatic LOD 
mechanism for free. The idea is closely related to the 
previously mentioned particle systems. As with 
particles the geometry of one single hair, brin, blade 
of grass, etc. is stored in a texture. The size of this 
texture defines the maximal detail of a single 
element. 
While rendering, a furry surface contains a repeated 
pattern of this texture together with a second offset 
texture which displaces each individual element to its 
final position in 3D world coordinates. Whenever the 
viewer gets closer to the furry surface more 
vragments will automatically be spent for each 
individual hair because more texels from the hair 
primitive are read. In contrast, when the viewer 
moves away from the surface only a few vragments 
will be spent for each individual hair because less 
texels are read. 

5.6. Arbitrary curves 
Rendering curves, for example Bézier, Hermite, and 
arbitrary spline curves, is still an essential task in 
Computer Aided Design.  In today’s commercial 
CAD packages curves are either rendered in software 
or split into line segments and then rendered as 
individual lines. With the help of vragments the 
rendering of simple line primitives can be 
individually changed to rendering directly any 
arbitrary curve. 

5.7. Special effects 
An interesting class of applications for vragments 
could be special effects, in particular for games. 
Game applications do not have time to spend a lot of 
computation power on special effects.  The goal is 
visual plausibility, not physical accuracy. In this case 
vragments are especially well suited for effects 
where the connectivity of surface is extremely 
complicated and time-varying. Examples for these 
class are explosions, implosion, arbitrary object 
deformations, cracks, object melting and flowing, 
etc. With vragments no connectivity is necessary as 
each vragment can be treated as an particle and can 
therefore individually be moved without influencing 
any neighboring points or primitive groups.  If 
necessary, new neighboring information besides the 
automatically defined connectivity through the object 
definition can be built by grouping fragments with 
special textures. These are simply mapped onto the 
object surface.  Additionally, it is still possible to use 
connected and fast renderable primitive groupings 
like triangle strips or triangle fans. 

6. RESULTS AND OPEN ISSUES 
Figures 2(a)-(c) and 3(a)-(c) show result pictures 
created for some algorithms mentioned in Section 5. 
Figure 3(a)-(c) are a combination of 2D and 3D 
displacements to simulate coffee or similar stains on 
a paper sheet. A circular 2D stain geometry is first 
rendered by using a 2D displacement shader to 
receive a more irregular shape.  The resulting image 
is afterwards stored as a 3D heightfield texture and 
then used as input texture for displacing a 3D plane. 
Figure 2(a) shows a 3D displacement of a crumpled 
paper sheet. The height information in the heightfield 
is also taken for darkening the areas of the paper 
texture.  Notice that the 3D plane consists of only 
one single quadrilateral. Figure 2(b) and (c) show an 
example of the automatic LOD rendering of a furry 
surface by using vragments. Figure 2(b) is a close top 
view on the surface while (c) is a more distant view. 
All the images where rendered using the hybrid 
mode of the simulator together with an ATI Radeon 
9700 graphics board.  

Although most of the algorithms we mentioned 
earlier are working nicely, there are still some more 
general open issues of the vragments extensions.  
One problem is the order of writing into the 
framebuffer because the blend/test unit supports both 
read and write from/to the framebuffer, if the order is 
changed the final result might also change as well.  
This problem does not show up in the simulator 
because the blending has to be done in software, but 
that might become a problem in pure hardware 
rendering.  Another issue is the support for different 
point sizes.  Should the vragment write module also 



handle different point sizes?  Or should it only allow 
single pixels? Different point sizes might be very 
useful to solve some of the overdraw issues but 
would also increase the complexity of the unit, as 
now complete memory blocks might have to be 
accessed. This question is very closely related to the 
next problem of how to treat holes that can occur in 
some of the previously mentioned algorithms. Right 
now most of them are solved by overdrawing. A 
better idea would be an optional final linear-
interpolation unit between different vragments to 
close holes between two individual vragments. The 
final question is how should multiple render targets 
be treated? Should every target have its own 
fragment relocation or should every target map to the 
same location?  All these open questions should be 
subject of further research. 
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