
Non-Photorealistic Walkthroughs Using Flash

Roman Ženka
zenkar1@fel.cvut.cz

 Pavel Slavík
slavik@cslab.felk.cvut.cz

Department of Computer Science and Engineering
Faculty of Electrical Engineering, Czech Technical University

Karlovo nám. 13, 121 35 Prague, Czech Republic

ABSTRACT

We describe a method allowing users to walk through 3D scenes using Macromedia Flash player. The method is
optimised for low data transfer rates and low demands on the displaying device, which makes it suited especially
for mobile devices. The walkthroughs are partially pre-computed on a server and partially calculated directly on
the PDA. Non-photorealistic rendering is used for more eye-pleasing results and for achieving higher data
compression.

Keywords
Flash, 3D walkthroughs, non-photorealistic rendering, mobile computing, user interfaces

1. INTRODUCTION
3D graphics on the World Wide Web has relatively
long history and several solutions are available
nowadays. Let us mention VRML/X3D; relatively
recent ViewPoint technology [Vie03a]; QuickTime
VR [Che95a] as a few examples.

These technologies were designed with desktop
computers in mind. Our goal was to find a method to
be used on PDA devices, which are known to have
limited resources compared to desktop computers.
From a variety of options we had, we decided to
choose Macromedia Flash – a tool for rendering
interactive 2D data, supported by browsers on a wide
variety of platforms. We hoped that a simple 2D
viewer could be faster on a slow device than a fully
3D application.

This article describes our experiences with interactive
3D graphics in Flash as well as methods to make this
combination possible and useful.

2. PREVIOUS WORK
Since the demand for interactive 3D graphics in Flash
was large, several solutions were already proposed
and many commercial tools exist. These include
various libraries for creating interactive animations,
as well as plugins for calculating Flash animations
from classical 3D. As relatively big and new
solutions for producing 3D presentation in Flash we
should mention Swift3D [Swf03a] by Electric Rain
and Plasma [Pla03a] by Discreet. Our work differs
from the commercial tools by utilization of non-
photorealistic rendering. Instead of producing pre-
computed movie clips, as those we can often see on
the internet, we generate the animations dynamically.

3. 3D IN FLASH
The Flash player allows rendering of 2D vector
graphics stored in binary SWF format. Flash also
supports animations and interaction. The player also
contains an ActionScript interpreter for simple
scripting.
These features allow several approaches for
displaying 3D data in Flash:

Fully Pre-rendered Movie Clips
It is possible to render a 3D scene into vector images
and transfer these data as a movie. Each frame of the
movie is transferred separately.

Key Frames and Shape Blending
Shape blending between key frames allows reducing
the animation size. Flash unfortunately allows only
linear interpolation of shapes. Complex

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WSCG POSTERS proceedings
WSCG’2004, February 2-6, 2004, Plzen, Czech Republic.
Copyright UNION Agency – Science Press

transformations have to be approximated by
piecewise linear ones.

Client-side Calculations
Flash’s scripting language allows writing a simple 3D
rendering engine, which runs on the client side. This
rendering is unfortunately extremely slow, so it is
useful only for very simple 3D scenes containing very
few polygons (below 20 in our experience).

Which Technology to Choose?
The fastest solution is to transfer already calculated
frames. The speed gain however causes the amount of
transferred data grow rapidly.
Since client-side calculations can be used for
extremely simple scenes only (which might be often
the case, as we show further). Wise utilization of the
morphing algorithm generally leads to best results.

4. NAVIGATION
The 3D scene often has to allow interactive
navigation. For PDAs, we developed two ways:

Tap and Go
The users tap the screen at a place they desire to walk
towards. The server responds by sending an
animation of the user walking towards the desired
place, using optimal path connecting the two places.
The path does not have to be shortest, it should rather
be most visually pleasing and informative.

Cursor Keys Navigation
PDA devices usually possess four cursor keys. If
these keys have to be used for navigation, all
calculations have to be performed directly on the
PDA, which is often not feasible.

Combined navigation
The best solution is to combine both approaches into
one hybrid method of navigation. There are two ways
how to mix pre-computed data and data calculated
interactively during the interaction with the user:

4.1.1 Constraining user movement
If we limit the movement of the user, we can transfer
only pre-calculated data for such motion. Navigating
then reduces to controlled playing of a simple
animation. This can be used e.g. for navigating
through narrow corridors, where only moving
forward and backward is possible.

4.1.2 Free movement
Free movement is possible within a simple scene
only. Complicated scenes can be explored in lower
level of detail, becoming more detailed when the user
stops moving.

5. RENDERING
When rendering, it is necessary to sacrifice certain
amount of scene detail that is difficult to describe as
vectors. To simplify the scene, we use methods of
non-photorealistic rendering, namely toon shading
and hatching.

Toon Shading
A toon shader is basically a common shader with
extra quantization step. Since the shading uses just
discrete levels, the shaded image can be turned into
polygons easily (see Fig. 1)
A sweep-line algorithm similar to polygon filling can
do the necessary calculation without needing to create
a bitmap that is subsequently vectorized.

Figure 1: Toon shading and hatching

Hatching
Instead of filling the regions, the silhouette and a few
hatching strokes can be used. The paper [Sou03a] by
Mario Sousa describes a method for reducing the
lines needed for conveying the shape and shading.

Panoramic images
Flash does not natively support any method allowing
display of spherical or cylindrical panoramas. It is
however possible to transfer pseodo-3D data and
calculate the deformations on the client side. Rotating
a panoramic image requires fewer calculations, than
if full 3D data were used for same rotation.
A method described in [Woo97a] allows calculation
of panoramic images for complex camera trajectories.
These panoramas are perfect for Flash, since they
offer sufficient quality and very high data
compression.

6. THE SWF FORMAT
In order to write an effective application, we have to
know in detail how the SWF format works. A full
description can be found at [Mac02a], here we
mention just the parts which are of a special interest
for us.

The SWF format consists of tags – small blocks of
data of given type. There are two main types of tags:

• Definition tags
• Display tags

The definition tags define new objects and store them
into a dictionary.
The display tags reference the objects already
defined by definition tags and instruct the player to
display them at given position and depth.
Separation of definition and display tags allows
object reuse as well as streaming.

Shape definition tag
Flash supports filled and stroked shapes consisting of
straight-line segments and quadratic Bezier curves.
Even a circle has to be approximated using Beziers.
The coordinates are stored as deltas from last
position. Coordinate units are twips (1/20th of a
pixel). Care is taken to store only as many bits of the
coordinate as necessary.
Since 1/20th of a pixel is too high precision for rough
renderings, the shapes should be rendered at cca
1/32nd of their size and displayed using a scale matrix
(see below). 5 bits can be saved per each coordinate.
To store the additional matrix we need 26 extra bits.
It is easy to see that this approach will pay off for
more than 5 deltas stored, which equals to three line
segments.

Morph definition tag
Two shape definition tags together form a morph
definition. Memory consumption is nearly identical to
two separate shapes; the only extra memory needed is
a specification of the ratio field in the object placing
tag, which takes 2 bytes. Morph definition pays off
when at least three frames are defined using it.

Display tags
The objects can be placed on the screen using an
affine transform specified by a matrix. A typical
display tag with transformation matrix fits into 12
bytes, without a transformation just 6 bytes suffice.

Compression
The data within the SWF file can be compressed
using zlib to achieve even smaller file sizes.

7. REDUCING DATA SIZE
Except low-level methods for compression, offered
by the format, there are many other ways of lowering
the amount of data transferred:

Object reuse
Once an object is transferred to the Flash player, it
can be subsequently referenced many times from

within the file. If we manage to find a similarity in
objects we transfer, we can save a lot of bandwidth.
Symmetry of the scene, objects placed several times
within it, repetitive animation – all these factors can
be utilized.
Reuse of an object does not pay off only for separate
line segments.

Lowering data precision
Flash stores data of lower precision using lower
amount of bits. Rounding of object coordinates can
save bandwidth, but it degrades the image quality.
Non-photorealistic rendering can be used to simulate
the imprecision of human-drawn images. Users tend
to forgive not only rounding errors, but often also
missing lines or other artefacts, in case this kind of
rendering is used.

Approximating the animation
Perspective transformation of moving objects has to
be approximated using several affine transformations.
We chose the precision of approximation according
to moving object’s importance (function of object’s
size and color). Non-photorealistic rendering allows
small artefacts caused by approximation without
disturbing the user.

8. STREAMING
Streaming is used to provide immediate response to
user actions. We mix animation data and high-quality
picture of the final animation frame as shown at Fig.
2. Although same data are transferred, the user does
not experience so long delays.

frame 1 frame 2 frame 3 high-quality picture

frame 1 frame 2 frame 3high quality picture

long delay

Figure 2: Reducing the delay by streaming

9. RESULTS
We did several experiments to determine the
usefulness of our proposed method. The tests were
performed on HP iPaq 2215 equipped with 400MHz
ARMv4 processor.

Speed
We did several tests for determining the speed of
rendering on the PDA.
Our tests clearly indicate that we have to limit the
scene complexity severely in order to achieve decent
framerates. The speed of Flash on a PDA was
somewhat disappointing to us, we can however
compare it to the speed of Flash on a desktop
computer in full screen mode.

 Quality

Test Low Medium High
16 x 4-vertex poly.

38fps 33fps 29fps

100 lines

26 fps 13fps 7fps

3191 triangles

9.5fps 6.6fps 3.4fps

Table 1: Speed of Flash on a PDA

Data Size
We tested the size of resulting Flash movie without
compression. Zlib format, as described in RFC 1950
can be optionally used for encoding the entire SWF
file contents. The compression usually ranges from
10% - 70%. The mentioned 100 lines test was
compressed only by 10%, the polygons by 30%.

Figure 3: Testing walkthroughs
For testing we used two walkthroughs (see Fig. 3).
Both walkthroughs had 100 frames. We were able to
reduce the size of the data file about 100 times (from
4MB to 40KB) in the first scene (the reduction was
caused mainly by object reuse, toon shading and
shape blending). The simpler scene did not allow so
many opportunities the data were reduced only 4
times (46KB to 11KB).

10. USE CASES
Our technology can be used anywhere the user has to
interact with large 3D environment which cannot be
downloaded all at once – city or building tours, cheap
augmented reality, simple virtual worlds. Interaction
and collaboration is also possible in Flash.

11. CONCLUSIONS AND FUTURE
WORK
By simplifying the animation we achieved small file
sizes and fast rendering, making our method suitable
for being used on a PDA.
In the future we would like to implement smarter
shading and shadow calculation for more eye
pleasing results.
Since the scenes are transmitted in non-photorealistic
way, it would be very interesting to create a non-
photorealistic authoring tool for them. Using a tool
for modelling the scene by sketching is being
considered.

12. ACKNOWLEDGMENTS
This project has been partly supported by the
Ministry of Education, Youth and Sports of the
Czech Republic under research program No. Y04/98:
212300014 (Research in the area of information
technologies and communications) and under FRVŠ
grant No. 2477 TO G1.

We used a model created using Teddy [Ted99a] in
our testing scenes.

13. REFERENCES
[Sou03a] Mario Costa Sousa and Przemyslaw

Prusinkiewicz. A Few Good Lines: Suggestive
Drawing of 3D Models, Eurographics 2003
Conference Proceedings, pp. 381-390, 2003

[Vie03a] Viewpoint Media Player, Viewpoint
Corporation, http://www.viewpoint.com

[Swf03a] Swift3D Modeller, Electric Rain,
http://www.swift3d.com

[Pla03a] Plasma, Discreet http://www.discreet.com/
/products/plasma/

 [Mac02a] Macromedia Flash (SWF) File Format
Specification, http://www.macromedia.com

[Ted99a] Takeo Igarashi, Satoshi Matsuoka, and
Hidehiko Tanaka. Teddy: A sketching interface
for 3D freeform design. SIGGRAPH 99
Conference Proceedings, pp. 409-416, 1999

[Woo97a] Daniel Wood, Adam Finkelstein, John
Hughes, Craig Thayer, and David Salesin.
Multiperspective panoramas for cel animation.
SIGGRAPH 97 Conference Proceedings, pp. 243-
250, 1997

[Che95a] Shenchang Eric Chen. Quicktime VR – an
image-based approach to virtual environment
navigation. In Siggraph 95 Conference
Proceedings, pp. 29-38, 1995

http://www.viewpoint.com/
http://www.swift3d.com/
http://www.discreet.com/ /products/plasma/
http://www.discreet.com/ /products/plasma/
http://www.macromedia.com/

	INTRODUCTION
	PREVIOUS WORK
	3D IN FLASH
	Fully Pre-rendered Movie Clips
	Key Frames and Shape Blending
	Client-side Calculations
	Which Technology to Choose?

	NAVIGATION
	Tap and Go
	Cursor Keys Navigation
	Combined navigation
	Constraining user movement
	Free movement

	RENDERING
	Toon Shading
	Hatching
	Panoramic images

	THE SWF FORMAT
	Shape definition tag
	Morph definition tag
	Display tags
	Compression

	REDUCING DATA SIZE
	Object reuse
	Lowering data precision
	Approximating the animation

	STREAMING
	RESULTS
	Speed
	Data Size

	USE CASES
	CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

