
JaGrLib: library for computer graphics education

Josef Pelikán
Charles University in Prague

Malostranské nám. 25
 CZ-11801, Praha 1,

Czech republic

Josef.Pelikan@mff.cuni.cz

Jan Kostlivý
Charles University student

Malostranské nám. 25
CZ-11801, Praha 1,

Czech republic

kostlivy@centrum.cz

ABSTRACT
This article describes JaGrLib – environment for experimenting with algorithms, data structures, general
approaches and implementation patterns. This framework was primarily developed to help teaching of computer
graphics at Charles University in Prague. But it can be used as a handy tool for experimenting in any branch of
applied computer science where modularity, versatility and reusability are key features. The system is imple-
mented in Java language and takes advantage of its object-oriented design, good portability, exibility, etc. At the
end of 2003 a new graphical environment was developed and the whole library is publicly available with dozen
of modules – mainly from eld of computer graphics.

Keywords
JaGrLib, modular framework, computer graphics, education, Java.

1. INTRODUCTION
Back in 2000 we started to look for a new system of
student assignments in computer graphics curicullum
at Charles University. After short period of studying
existing systems a decision was made to build a new
framework in-house. The most important require-
ments and propositions were:
• ne-grain modularity of the system is crucial.
• code readability and clarity is more important

than effectivity (with minor exceptions).
• versatility and exibility of modules (leads to best

reusability).
• even person with little knowledge of library inter-

nals must be able to contribute to it (write/adapt
modules).

• module programmers should concentrate to the
computer graphics problem (i.e. essence of it), not
to technical details and tricks.

• portability to various computer platforms.

Finally we have decided to bind this new solution to
Java language to achieve high level of exibility and

comprehensibility. Main building blocks (modules,
pieces) have form of Java classes, connections be-
tween modules are controlled by protocols (called
“interfaces” in Java). These ideas match well to prin-
cipal rules of object-oriented design and program-
ming.
The JaGrLib framework was developed during last
three years. Thanks to students of computer graphics
at our university, many modules for 2D and 3D
graphics are available today. Some of them are not
coming with public source code yet, simply because
they are going to be used as student assignments once
more.
Jan Kostlivý is nishing its Bc. thesis by implement-
ing graphical user interface for the library [GUI03].
His GUI system was designed to facilitate routine
work with JaGrLib system.
Next sections describe basic JaGrLib concepts, show
some details about GUI environment and give exam-
ples of more complicated compositions.

2. JAGRLIB CONCEPTS
“Modules” (descendants of the class “Piece”) are
basic building blocks of the framework. Each module
has one or more “plugs” – exclusive interfaces from
inside of a module to the rest of the world. Each Plug
is tagged by an “interface” (see [JDK]), so this
module can call another one via this interface or vice
versa.
So called “input plugs” represent interfaces (proto-
cols) which are implemented by this module – they
can be used (called) from other modules. On the

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
prot or commercial advantage and that copies bear this
notice and the full citation on the rst page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specic permission and/or a fee.

Journal of WSCG, Vol.12, No.1-3, ISSN 1213-6972
WSCG’2004, February 2-6, 2003, Plzen, Czech Republic.
Copyright UNION Agency – Science Press

other side, a plug marked as “output” represents
need of some external functionality: another module
with desired function should be connected here as a
“black box”.
Note that “input” and “output” attributes are not ex-
pressing any form of causality or direction of “data
ow” – they only represent direction of method-
calling in Java language (“clients” are calling meth-
ods of “servers”).
Two plugs are declared as “compatible” if they are
tagged with compatible interfaces and have opposite
direction. Two interfaces are compatible if the output
one is sub-interface of the input one (functions need-
ed by a client have to form a sub-set of functions im-
plemented by a server).
Compatible plugs can be connected together using
“channels”. Channels are actual connections between
modules, they are established in running stage of a
program. Channel is able to connect one input plug
(on the side of implementor, server) with many com-
patible output plugs (callers, clients).
Special channel named “multi-channel” can act as
“call-multiplier”, one output channel is connected to
several input plugs; each instance of function call
have to be cloned for individual implementors. Of
course this mechanism does not make much sense in
context where return values of methods are impor-
tant.

The whole assembly of modules connected together
using channels is called “composition”.
See Fig.2 for example of working composition (pro-
gram for testing of one line-drawing algorithm).

3. GRAPHICAL USER INTERFACE
It is clear that much routine work must be made to
prepare working composition well. In a process of
experimenting with algorithms and data structures
there is need for procedures for rapid manipulating
with modules and compositions. Some examples are:
choice of suitable module for required task
(interface), replacing functional module with another
– but compatible – one (due to comparison), group-
ing/ungrouping of modules to autonomous sub-com-
positions, etc.
GUI environment was developed by Bc. student Jan
Kostlivý (see [GUI03]). It serves not only as user-
friendly interface to JaGrLib core but also introduces
some new and improved mechanisms for module
management. GUI environment is implemented in
Java language with use of universal graphical inter-
face Swing. All data les are stored in XML format
and are ready for future extensions.

Module registration
Every active module has to be registered in JaGrLib
database. Module attributes are: name (name of Java
class), package, implemented (exported) and needed
(imported) interfaces in form of input and output
plugs, text identication in three elds: “name”,
“category” and “description” and module type –
“template” (see below).
GUI system includes effective mechanism for choos-
ing modules from the registration database – user can
restrict set of listed modules applying various lters
(mostly used ltering attributes are: module name and
category, set of interfaces/plugs, module template).

Figure 1. Key terms: module (Piece), plug, channel

Figure 2. Demonstration of line-drawing algorithm

Module templates
Each module is labeled by one or more templates:
they are used to determine overall compatibility be-
tween modules. Template can be dened as subset of
module plugs which forms meaningful interface be-
tween module and its neighborhood.
Modules with the same template can be interchanged
– this property is very useful both in experimenting
and testing phases of algorithm development and in
education or demonstration.
Example: “LineRenderToBitMask” is common tem-
plate for modules which implement line drawing al-
gorithms. Both plugs of “LineBresenham” module
(from Fig.1) make the template.

Module parameters
Each module can have one or more public parameters
– arbitrary values which can be set from outside of a
module. Parameters use to have numerical values
(both integral and oating-point), string values, etc.
Relevant interface from core of JaGrLib is named
“Property” – individual parameters are tagged by
string identiers, values can have virtually any data
type available in Java.
GUI environment is able to display parameter values
in natural format, giving the user possibility of al-
tering them directly on the screen.

Group of modules
Another important functionality was introduced – set
of interconnected modules can be simplied to a
group. Every group is able to hide its internal imple-
mentation to clarify design of the whole composition.

Internals of a group can be revealed and edited by an
advanced user.
Groups act as regular modules – they have to dene
plugs, public parameters, they must be registered in
the module database, etc.

GUI application appearance

The application has a look of classical MDI frame
with number of sub-frames. Many compositions can
be opened at the same time – together with some
other help frames which can improve arrangement
and design transparency.

Examples of GUI congurations are showed in Fig.3
and Fig.4.
Dialog window for selecting of compatible module
can be found in Fig.5.

Figure 4. Sample composition - Ray-tracing

Figure 3. Sample composition - Bresenham

4. IMPORTANT PROTOCOLS
To list all JaGrLib interfaces and modules is beyond
scope of this article. We will highlight only a few of
them:

• BitMask: set of pixels in 2D raster.
• AlphaMask: “fuzzy” set of pixels in 2D raster.
• Pen, Brush: algorithms for “interior lling“ of

graphical primitives in 2D.
• RasterGraphics: storage for single raster image.

Pixel formats: gray, color mapped, true-color
(RGB), true-color with alpha (RGBA).

• VectorGraphics: vector representation of draw-
ing in 2D plane.

• Brep: boundary representation for 2D/3D scenes.
Can hold polygonal mesh with optional topolog-
ical information. Any user-congurable attributes
can be added to any database entity (vertex, edge,
face, solid, division).

• GeometrySearch: framework for various geo-
metric-searching algorithms. Denes typical tasks
and access methods.

• Solid: denition of a solid in 3D (exact represen-
tation, used mainly in ray-based rendering meth-
ods).

• LightModel: set of formulas dening interaction
between ray of light and point at solid's surface.

• ImageSynthesizer: general conception of raster
image synthesis from set of individual point sam-
ples.

• Intersectable: ability to compute intersection
with simple 3D ray.

• Texture: any procedure able to modify attributes
of single sample point on a solid surface.

• EntropyCodec: back-end of most data compres-
sion pipelines. Input: nite alphabet, output:

stream of bits. Codec is able to switch between
different contexts (data models).

• Order2D: ordering sequence of 2D lattice.

5. AVAILABILITY
JaGrLib is published under GNU license and can be
downloaded from [JaGrLib]. Actual complete source
tree is available via SVN system [SVN] at URL:
svn://cgg.ms.mff.cuni.cz/JaGrLib/trunk/
Actual source code is intended to work with Java ver-
sion 2 (JDK  1.4.0). JaGrLib does not depend on
any third party tool, it can be used alone with Sun's
JDK (free download can be found at [JDK]).

6. FUTURE WORK
Many ideas are waiting for implementation, among
them we can pinpoint:
• interface to 3D accelerated graphics.
• set of data inspectors and tracers – they will be

able to inspect data asynchronously, zoom the
graphical representation or trace state changes of
a data structure step by step.

• complete implementation of vector graphics
pipeline including arbitrary clipping, 2D transfor-
mations and font rasterizing.

7. REFERENCES
[JaGrLib] Josef Pelikán, JaGrLib library, WWW

pages at http://cgg.ms.mff.cuni.cz/JaGrLib/
[GUI03] Jan Kostlivý, GUI for the JaGrLib library,

Bc. thesis, Charles university, 2003
[JDK] JavaSoft WWW pages: JDK documentation

and download at http://java.sun.com/
[SVN] Subversion Tigris Source Control System,

http://subversion.tigris.org/,
http://tortoisesvn.tigris.org/

Figure 5. Selection of compatible module

