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ABSTRACT 

In this paper we describe the data structure and some implementation details of the tunneling algorithm for generating 
a set of triangle strips from a mesh of triangles. The algorithm uses a simple topological operation on the dual graph 
of the mesh, to generate an initial stripification and iteratively rearrange and decrease the number of strips. Our 
method is a major improvement of a proposed one originally devised for both static and continuous level-of-detail 
(CLOD) meshes and retains this feature. The usage of a dynamical identification strategy for the strips allows us to 
drastically reduce the length of the searching paths in the graph needed for the rearrangement and produce loop-free 
triangle strips without any further controls and post-processing, while requiring a more sophisticated implementation 
to manage the search and undo operations. 
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1. Introduction 
A triangle strip is a set of connected triangles 

where a new vertex implicitly defines a new triangle. 
Triangle strips are used to accelerate the rendering of 
objects represented as triangle meshes, in a pre-
processing stage the mesh is partitioned in a set of 
triangle strips (possibly composed of one isolated 
triangle) and then each strip is passed to the Graphics 
Processing Unit (GPU) for rendering. The advantage of 
the strip representation over rendering each triangle 
separately, is that it makes it possible to reduce the 
number of vertices sent to the GPU from 3n (where n is 
the number of triangles in the mesh) to n+2 in the best 
case. 

Since the CPU-GPU communication tend to be the 
most common bottleneck of the whole visualization 
process, it is evident that a good stripification strategy 
could virtually improve by a factor of three the CPU-
GPU bandwidth (at the best case, when a single strip, 
representing the whole mesh, is produced) and, 
consequently, the whole visualization.  
Unfortunately it has been proven [Gar76, Ark96] that a 

problem equivalent to searching the optimal single strip 
(finding a Hamiltonian path on the dual graph) is an 
NP-complete problem, thus the stripification process 
should be based on local heuristics. 
In a previous paper [Por03] we presented a solution to 
the generation of a stripification based on the tunneling 
operator. This is a single topology operator that we 
apply to the dual graph of the triangulation and allows 
us to either optimize an existing stripification or to 
generate a new stripification from scratch. The 
implementation of the algorithm relies on a single 
relevant parameter, the tunnel length, which influences 
both the time spent to stripify the mesh and the final set 
of strips obtained (number and mean length). Thus is 
very easy to use even for non expert users. 
In this work we present in finer detail the algorithm and 
the data structures we used to implement it. 
The rest of this work is organized as follows: in section 
2 we briefly go over the previous work done in 
stripification; we then show, in section 3, the relations 
existing between the triangle mesh and its dual graph, 
introduce the tunneling operator and our solution to the 
problem; section 4, the most relevant in this context, is 
dedicated to describe in detail the implementation of the 
algorithm and the data structure and techniques used for 
doing it; finally, in section 5 we draw our conclusions 
and describe the future evolutions of this work. 

2. Previous Work 
The so-called stripification techniques are a subset 

of all the techniques devised in recent years to face the 
problem of compressing the geometry, that is finding 
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good strategies and algorithms from them to reduce the 
space needed to describe a mesh (tipically a mesh of 
triangles) in terms of vertices position and connectivity. 

Synthetically, to generate a strip from a mesh means to 
rearrange the order in which the vertices are stored. The 
strips obtained are smaller than the original mesh when 
coming to the final rendering since, while the single 
triangle needs 3 vertices for its visualization to be sent 
to the GPU, the triangle strip needs n+2 vertices to be 
sent to the GPU to render n triangles. The optimal 
single strip encoding the whole mesh would reduce the 
number of vertices sent to the GPU by a factor of three. 
The great advantage of using triangle strips consists of 
the availability of such a primitive in the OpenGL 
graphics library. Generating a stripification of a mesh 
means to be able to feed the GPU with the obtained 
structure without any further effort. It is actually to 
point out that OpenGL supports, without any vertex 
replication, only the sequential triangle strips. 
Generalized strips could thus get us to send more than 
once some vertices to the GPU. It is beyond the scope 
of our current implementation to tackle this problem, 
but we plan to investigate this. 
This explains why a lot of effort has been spent in 
elaborating good heuristics to stripify a mesh [Eva96, 
Cho97, Spe97, Xia99, ElS99, ElS00, Ise01, Est02]. 
It is worthwhile to explicitly mention a technique 
[Hop99] that uses a greedy algorithm to take advantage 
of the caching strategy of the graphics boards, thus 
differentiating in a way from the others cited, and the 
work [Ste01] that first proposed to use the tunnelling 
operator on the dual graph, which is described in detail 
in the next section. 

3. The Triangle Mesh and its Dual Graph 
Each triangle mesh can be alternatively represented 

by its dual graph. It is a graph in which each node is 
associated to a triangle of the original mesh and an edge 
represents an adjacency relation. One trivial property of 
such a graph is that each node has, at most, three 
incident arcs. In case the original mesh is 
homeomorphic to a sphere and has genus 1, each node 
has exactly three incident arcs (see Figure 1). 

For the details regarding the tunneling operator and our 
approach to the solution we suggest to read the works 
of Stewart [Ste01], refined by ourselves [Por03]; we 
give here just a description of the data structure. 

The Data Structure 
We now focus our attention on the description of 

the data structure used as a support to the 
implementation of the tunneling algorithm, and on 
some of the most interesting details of the 
implementation itself. 

You will not find, instead, any detail of the 
functionalities related to visualize the three-dimensional 
scene since it is not interesting for the purposes of this 
work. 

 
Figure 1: A triangle mesh and its dual graph. 

Our implementation of the tunnelling algorithm is not 
trivial, since it requires that the supporting data 
structure should be able to keep track of the dynamical 
identifier update. Moreover, since the data structure 
should support an undo operation, we should, in fact, 
be able to discard any change, if the tunnel search does 
not end successfully. 
First of all, it is worthwhile to tell that we chose the OO 
paradigm to be the development framework to be used. 
Alongside with obvious readability, manageability and 
reusability issues we thought that the encapsulation 
given by OOP was very useful to abstract the behaviour 
of the data structures we used. 
As we described before, the tunnelling algorithm works 
on the mesh’s dual graph. Its implementation requires 
first to find a terminal node for a path in the graph and 
then to traverse the graph (i.e., the structure 
representing it) to find a complementable path (a path 
alternating solid and dashed links, beginning and 
ending with a solid one). We thus need a robust support 
for the traversal allowing us to get a snapshot of the 
situation, step by step during the algorithm execution. 
We can see a sketch of the structure in Figure 2. The 
graph nodes (corresponding one to one to the triangle in 
the mesh) are each represented by an object instance of 
the class Triangle, encapsulating the geometrical 
(vertices position) and topological (connectivity, i.e. the 
links between adjacent triangles) information. 

Node 1
Node 2
Node 3

Node N
…

Triangle Array

Class Triangle

Node Link
Node A
Node B
Node C

 
Figure 2: A simple sketch of the supporting data 

structure: the Triangle Array is an array of object 



instance of the class Triangle that encapsulates the 
behavior of a triangle in the mesh (a node in the 

dual graph). 
The whole graph is stored in a mono-dimensional array, 
each entry representing a node. The links are indices in 
the array. This allows us to randomly access a single 
node in a more proficient way compared to an 
implementation using pointers. 
Since the core of the algorithm implementation can be 
found inside the class Triangle, we can actually tell that 
the class methods are the operations on which the 
algorithm relies on. What is really interesting to analyse 
is the search method that performs a recursive visit of 
the graph. 
The internal structure of the Triangle class is depicted 
in Figure 3. The main information on connectivity is 
stored in the integer triplet (Vert1, Vert2, Vert3) that is 
used to find the positions of the triangle vertices in the 
coordinate vector. To easily access the neighbour 
triangles we keep a pointer to the three adjacent 
triangles (in this case we mean edge adjacency). 
Following these links we can pass in one step from one 
triangle to the adjacent one, or, thinking about the 
graph, from one node to another which is linked to it. 
Recall that, at most, each node in the graph has three 
neighbour nodes, that is three departing/arriving links 
(our graph is not oriented). We can thus randomly 
access the triangle list and traverse the graph using the 
same data structure that is, at the same time, a linear 
array with the properties of a double linked list. 
Since we need to mark each link in the graph as solid or 
dashed, we associate a Boolean flag to each link: 1 for 
solid and 0 for dashed. Each Triangle object has also 
the integer identifier of the stripe it belongs to. The 
identifiers are unique for each strip. 

4. Implementation details 
Our tunneling algorithm uses a strategy that we called 
dynamic update of the identifiers. It does not actually 
dynamically change the stripe identifiers associated to 
each node, but also the flags for each link traversed by 
the searching procedure. Since the traversal does not 
always get us to find a complementable path, the 
dynamic update should consider the possibility of 
undoing the whole traversal (both on the identifiers and 
the colours of the links). We should commit the 
modification only when we are sure to have found a 
correct path. To support this, in the Triangle class, we 
duplicate the flags associated to the links (three for each 
node). These temporary flags are used only during the 
complement attempt, when the path is found, the 
changes are committed and the flag reset. Since each 
node of the graph can be visited as primary only once, 
also each link state can be changed once, and thus we 
need no more than one temporary flag per link. 
What about the identifiers? Since each node can be 
visited as secondary as many times as possible, the 
identifier can change the same number of times. If we 
want to be able to undo the whole operation we need to 

use a stack of identifiers. We push a new identifier 
when we pass trough the node and we pop the top 
identifier during the undo process. Note that we are not 
obliged to abort the whole traversal, we can backtrack it 
to a consistent state and follow a different path. 
Let us now see a description of the most relevant 
methods of the class Triangle. 
The method IsTerminalNode(…) returns a 
boolean: 1 if the triangle is strip terminal and 0 if it is 
not. Its implementation is based on an analysis of the 
colours of the links to the node: less than two solid 
links means that the node is terminal, two solid links 
means that the node is non-terminal, three solid links 
are not possible by construction. This allows the 
method to work correctly whatever changes to the 
graph we made. 

Data
Vert1,Vert2,Vert3
StripeID

TmpStripeID
Methods
IsTerminalNode(…)
GetNextNodeInStripe(…)
SetTmpID(…)
RestorePrevTmpID(…)
ChangeID(…)
SearchTunnel(…)

Class Triangle

01Node C
10Node B
01Node A

Tmp
FlagFlagNode Link

 
Figure 3: A more detailed example of the class 

Triangle. 
The method GetNextNodeInStripe(…) returns 
the next triangle in the strip. If the node is non-terminal 
we can go up and down the strip and thus there are two 
next triangles, the direction os a parameter of the 
method. 
We use the methods GetTmpID(…), SetTmpID(…), 
RestorePrevTmpID(…) and ChangeID(…) to 
manage the temporary identifiers during the tunnel 
search. The second one sets the identifier to a 
temporary value and the third set it back to the previous 
one. Note that setting the identifier means to set also the 
identifiers of the nodes linked to the changed node by a 
chain of solid links. Both methods follow this identifier 
propagation strategy. The last method is the one used to 
commit the changes when we find a good path. 
The SearchTunnel(int p) method is the actual 
activation of the searching mechanism. The parameter 
p is the maximal tunnel length we want to have. It is a 
recursive method and the recursive step is performed 
decrementing p. The search strategy so defined is 



actually a breadth-first search in the graph and takes 
into account only the path satisfying the imposed 
bounds. It can change and, in case no path is found, 
restore the state and restart using the structure and 
methods described before. 
5. Conclusions and Future Work 

We described a stripification algorithm based on a 
simple topological operation on the dual graph of the 
triangle mesh that is robust and easy to use. We focused 
our attention here on the data structures used and on the 
implementation details. The results obtained, which we 
still consider preliminary, make us confident that we 
shall be able to implement a version of the algorithm 
capable of operating also on CLOD meshes. It could be 
used to repair the inconsistencies in the stripification of 
an LOD when inserting new triangles. The choice of 
the search seeds is still an open issue. We plan to 
elaborate on strategies different from the current ones 
that choose randomly the starting node and move at 
random in the graph. One goal of such a strategy should 
also be the generation of strips being as sequential as 
possible, to accommodate the current requirements of 
the graphics libraries. 

We also plan to investigate the limits of the 
stripification algorithm when applied to huge meshes, 
eventually adopting an out-of-core scheme allowing the 
stripification of meshes of any size. This will obviously 
result in a major reconsideration of both supporting 
data structures and implementation strategy, to be able 
to adapt the algorithm to work on the partition of data 
present in core memory at a given moment in time. 
Currently the algorithm is, in principle, global over the 
dataset (the graph), splitting it in parts could bring one 
of two branches: a localization of the search strategy 
that, nowadays, is totally unclear whether it could be 
feasible or not, or a pagination strategy for the dataset. 
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