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ABSTRACT 

The paper specifies modular software for synchronous and asynchronous computer-mediated communication 
and visualization in network-distributed environments. It is new because the distribution of the visualization 
pipeline is not prescribed, compared to other systems, and supports time-deferred collaboration and presentation 
by means of recordable sessions of use. Data source is a remote program that sends and receives data via a small 
linked library. The system supports real-time and time-deferred collaborative visualization over distance for e-
Science.  
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1. INTRODUCTION 
A supply chain is a network of distributed facilities 
for the procurement of material, transformation to 
products, and delivery to customers [Gan03a]. The 
visualization GRID is an example that has lagged 
behind the development of the parts. We report a 
more tightly-structured combination of tools that (i) 
helps scientists and engineers to experiment with 
computer-simulated phenomena in distributed virtual 
environments (DVE), (ii) amplifies students’ skills to 
work together via computer-mediated 
communication (CMC), and (iii) helps evaluators to 
study decentralized work that involves Virtual 
Reality (VR) [Lei97a]. The technical foundation is 
visualization software, databases, multimedia 
devices, and groupware. To structure and control the 
components in a centralized way, we use the supply-
chain management (SCM) design pattern to combine 
application steering and visualization, synchronize 

the interplay between components, add verbal- and 
non-verbal communication, and transcribe logs and 
media streams for the recapitulation of sessions. The 
system is a modular implementation of the 
visualization pipeline (server), and a front-end for 
computer-supported collaborative visualization 
(CSCV client) in DVEs and browsers. The server 
receives visualized program results and the clients 
receive visualizations and multimedia data from 
videoconferencing units to augment a DVE. Sections 
2, 3 and 4 specify related work, design (Fig. 1), and 
conclusion, respectively. 

2. OPTIONS FOR CSCV 
The lowest layer comprises [Kau90a, p. 5] data 
generator, filter, map, render, and display. One 
partitions the pipeline to use large datasets [Lei97a] 
and help users to work together [Sin99a]. 
Partitioning techniques can be combined.  
The first way is to separate data generation from 
filtering. The advantage is data are visualized 
remotely at the same time by use of different 
techniques. The disadvantage is network saturation.  
The second way is to split filtering and mapping. The 
advantage is a reduction of replicated data because 
filtering selects subsets. The problem is that 
techniques to map data to visualization objects (VOs) 
use different filter results. We split them in those that 
depend on data, and those that depend on VOs.  

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute 
to lists, requires prior specific permission and/or a fee.  
 
WSCG POSTERS proceedings 
WSCG’2004, February 2-6, 2004, Plzen, Czech Republic. 
Copyright UNION Agency – Science Press 



Way three is to use “fat clients” which separate 
mapping and rendering. The advantage is that most 
visualization parameters are unbound until the client 
renders data. Fat clients must be fast enough to 
render complex scenes, and the data format for data 
transfer is complex, see [Hos02a, Jen02a]. 
Way four are “thin clients” that separate display from 
rendering for lightweight processors and periphery 
with limited ways of output and use. The scheme 
saves processor time because the front-end replicates 
images. But it is restricted to one viewpoint.  
The middle layer manages persistent sessions. The 
synchronization of media helps one to reconstruct the 
interplay between users, data, and software. But 
synchronization for persistence is hard, which is 
reflected by the complexity of MPEG-4 and SMIL 
that specify the interplay and accurate timing of 
media streams in different ways [Hos02a, W3C01a]. 
But tools to create and author SMIL presentations do 
not integrate all formats, for example 3D graphics.  
The highest layer splits the visualization pipeline in 
one stream per client. Modular, extensible GUIs 
combine heterogeneous content (live 3D animations 
and video) through DVEs, visualization GUIs, and 
VRML-browsers. [Jen02a; Jen03a] survey software.  
In the paper, we decide to improve our system, 
DSVR [Jen02a], because it has a library for data 
generators to filter and map data to VOs. The server 
replicates and forwards VOs to fat clients which 
support CSCV and capture content. But limitations 
are (i) no methods for generator control, (ii) hard-
coded coupling between generation, filtering and 
mapping, (iii) lack of extensible user interfaces, (iv) 
no persistent events, and (v) no support for thin 
clients. We specify the removal of the limitations.  

3. DESIGNING THE SUPPLY-CHAIN 
Filter Developers of data generators enhance the 
source code to derive visualizations and to control 
software remotely. Systems that visualize data from 
applications without changing source code [Ger01a] 

exist, but the flow of data between generator and 
pipeline is too coarse for parallel execution because 
command line parameters, text files, and Unix pipes 
are used. The alternative is to select memory to share 
data with a linked library that mediates the flow of 
visualization and steering data. We minimize manual 
changes by way of linking to a library that does not 
introduce new data types but that gives developers 
control over which data are shared. The library must 
read a specification of the source type from the 
generator, and read the destination type of data 
during run-time. To reduce programming effort, the 
developer specifies information by the use of meta-
tags that are preprocessed to insert library calls in the 
source code in an automatic way. It is important to 
keep in mind that, for a flexible approach, tags must 
not prescribe which visualizations are available to 
users. The developer must specify visualization-
dependent filters and mappings in files outside the 
source code. The library reads them during runtime.  
We give an example in C. Comments with the prefix 
“///” are directives for our preprocessor. The example 
specifies a compound data structure that contains text 
and variables to represent simulated measurements. 
Tags describe how shared language-specific data 
types map to library-specific types (SCALAR…):  
struct ecomposite { /// DEF ecomposite 
   float size;    /// SCALARF size 
   char *s;      /// SCALARB s SIZE 
   int   slen;     /// SIZE s 
   char name[30]; /// SCALARB name 
SIZE 30 
} aComposite[2]; /// ENDDEF ecomposite 
/// STRUCT ecomposite aComposite SIZE 2 
double magnitude[2];  
/// SCALAR magnitude SIZE 2 
double temperature[2];  
/// SCALAR temperature SIZE 2 
vector3D * coord[2];  
/// STRUCT VECTOR3D SIZE coord SIZE 2 
double volume[32][32][16];  
/// SCALAR magnitude SIZE 32 SIZE 32 
SIZE 16 ... /// VISUALIZE 
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Figure 1. CSCV architecture. 



Our preprocessor replaces tagged parts with data 
structures in C and with library calls to map data to 
VOs. The code is ready to compile and link (part): 
main() { 
initializeVisualizationLibrary(); 
useRoute(“default.rou”); 
share(aComposite, ID_aComposite, 
TYPE_STRUCT_ECOMPOSITE, 2); 
share(magnitude, ID_magnitude, 
TYPE_SCALAR, 2); 
share(temperature, ID_temperature, 
TYPE_SCALAR, 2); 
share(coord, ID_coord, 
TYPE_STRUCT_VECTOR3D, 2, 1); 
share(volume, ID_volume, TYPE_SCALAR, 
32 * 32 * 16); 
/* VISUALIZE */ commitState(); 
The example initializes the library, sets up default 
routings for data replication, and specifies which data 
are read during calls to “commitState()” to generate 
VOs from application data. VOs are runs of VRML-
1 objects in binary form that constitute a frame in a 
3D stream [Jen02a]. The frame is committed and sent 
to remote servers and clients in “commitState()”:  
on each processor: 
forward content of shared memory 
for each object set ‘s’ { 
  for each object ‘o’ in ‘s’ { 
    for each attribute ‘a’ of ‘o’ { 
      read shared memory location       
      and choose all valid indices  
      ‘i,j,k,...’ that satisfy the  
      filter expression             
      cast and write data to ‘a’  
}}} submit and forward objects 
Map Objects and attributes are specified in a file that 
contains names and links to data. Formal expressions 
select data (Tab. 1). We restrict expressions to 
properties of integers to denote array slots to support 
common selection criteria. A second file defines 
networked data flow. We try to balance between 
decoupling and performance.  

Element Meaning 
* Put the array in one VO 

m..n  Put m-n+1 data in one VO each 

Le Is less than 

Ge Is greater than 

Eq Is equal to 

Leq Is less than or equal to 

Geq Is greater than or equal to 

And Logical and 

Or Logical or 

Not Logical not 

Div Divisible with remainder 0 

Table 1. Data selection keywords to generate VOs. 
 

The file for filtering and mapping has the following 
structure (we have chosen XML). Single letters 
denote indices. Object sets are selected by name, the 
special keyword “rawData” (tagged memory 
content), or a compound formal expression that uses 
“and” and “not”. The example creates a 3D 
annotation at a default position, two streamlines, and 
an iso-surface. The volume for the surface is sub-
sampled at level 2. 
<!—visualization rules default.fil --> 
<text> 
<fontName> aComposite.name <filter/> i 
eq 0 and j eq * </fontName> 
<size> aComposite.size <filter/> 0 
</size> 
<string> aComposite.s <filter/> i eq 0 
and j eq * </string> 
<stringLength> aComposite.slen 
<filter/> 0 </stringLength> 
</text> <streamline> 
<headSize> magnitude <filter/> 0..* 
</headSize> 
<color> temperature <filter/> 0..* 
</color> 
<tailPathX> coord <filter/> i eq 0..*  
  and j eq 0 </tailPathX>  
<tailPathY> coord <filter/> i eq 0..*  
  and j eq 1 </tailPathY>  
<tailPathZ> coord <filter/> i eq 0..*   
  and j eq 2 </tailPathZ>  
</streamline> <isosurface> 
<regularField> volume <filter/> i div 2 
and j div 2 and k div 2 </regularField> 
</isosurface> 
The routing file specifies “commitState()”sends 
geometries to host “3dserver”, sends the iso-surface 
to “hapticserver”, and saves data on “simarchive”. 
<!-- routing default.rou --> 
<forward><from/> not rawData <to/> 
3dserver.example.edu</forward> 
<forward><from/> isosurface <to/> 
hapticserver.example.edu </forward> 
<forward><from/> rawData <to/> 
simarchive.example.edu </forward> 
Render The plugin renders 3D graphics in browsers 
and DVEs [Jen02a; Jen03a]. The latter uses an 
adapter to mediate between the DVE and the plugin’s 
NAPI interface. Screen grabbing and logging are 
available, and we use RealVNC (www.realvnc.com) 
to share displays on other computers, e. g. handhelds.  
Record and Archive VACE is a modular, 
extensible, and distributed toolkit to record media. 
Users record sessions through media formats. To 
record and play-out sessions in DSVR we combine it 
with VACE. We generate VACE-compatible 
metadata and synchronize it with recorded media 
data. We build an adapter to combine VACE and 
DSVR, or make DSVR read metadata, which 
requires changes to DSVR.  
To find the required granularity of metadata we 
consult the VACE data model [Ein03a] that 
comprises hierarchical layer presentation, stream and 



event. A stream is a medium that is shown during 
session replay. Streams are “temporal discrete” (e. g. 
text) or “temporal continuous” media (e. g. 
audio/video (AV) and graphics). A stream carries 
events to denote changes of the media stream, e. g. a 
new Web page or the start of a 3D stream. The 
question is if users’ action in DSVR is “temporal 
discrete” (every mouse movement represents a 
VACE event) or “temporal continuous” (action must 
be stored in a separate way), so that only 
synchronization points are events (Fig. 2). We use 
the latter because the first way would generate many 
events. Hence, DSVR manages events and 
synchronizes other media during play-out via 
timestamps. Temporal positions of the SMIL player 
and DSVR must be coherent during playback, 
especially at start. In contrast to conventional 
multimedia applications, the same system is used for 
recording and play-out, and there is one recorded 
media type for DSVR. We manage interaction data 
as a container format for event and media data, like 
an HTML image reference.  
Replay VACE uses tools for the play-out of content. 
A container format for multimedia presentations is 
SMIL [W3C01a]. Available applications for SMIL 
playback (e. g. RealPlayer) support some media 
types natively, and others are integrated by use of 
HTML files controlled by the player. The challenge 
is to synchronize between DSVR and media types 
that are integrated in the SMIL player. RealOne 
integrates plugins for supporting proprietary media 
formats, so we could add RealOne’s plugin API to 
the DSVR front-end plugin. But the SMIL player 
may not use OpenGL-compatible drawing contexts 
and requires changes to DSVR. We prefer to control 
DSVR by use of synchronization points. When the 
user skips through the timeline using the SMIL 
player, the player sends timestamps to DSVR to 
reconstruct system states.  
The SMIL player and DSVR exchange messages via 
the JavaScript engine of the Web browser. 
Measurements show synchronization granularity rate 
is ca. 0.1 seconds. The mechanism is sufficient for 
applications with “soft” real-time requirements. The 
next step to improve granularity of the 

synchronization is to implement a SMIL player 
plugin that mediates between the player and DSVR. 

4. CONCLUSION 
We have specified a modular visualization pipeline 
with full support for CSCV. See 
www.learninglab.de/vase3 for a case study.  
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