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ABSTRACT
Due to differing optics, sensor characteristics, and hardware processing employed by video cameras, the resulting
colors produced by two cameras can be very different, thus complicating the task of computer vision applications.
While various color correction methods exist to deal with this problem, most involve strong assumptions, such as
constant illumination, that are, in general, unsatisfied in complex environments. To address the problem of color
correction in a less restrictive manner, we propose the use of neural networks, which can easily be trained and
which produce excellent results. We compare these results with other methods.
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1 INTRODUCTION

Color provides useful information for many vision ap-
plications. However, the video acquisition process is
dependent on a number of factors including illumina-
tion, optics, sensor characteristics, and hardware pro-
cessing. As a result, different cameras typically pro-
duce different color values for the same objects or
scenes, as illustrated in Fig. 1. These differences com-
plicate the task of computer vision applications involv-
ing the use of more than one camera. An approach is
thus required to correct the images so that colors of
the same object appear to be similar in the output from
each camera.

This correction typically takes one of two forms. In
the first, the mapping is found between the true color
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values (which may be unavailable in many cases) and
the observed colors for each camera, while in the sec-
ond, the transform between each camera and one refer-
ence camera is found. The latter approach is generally
simpler, as it is determined solely by the camera pa-
rameters and the mapping can be characterized by a
relatively small number of data samples. In this pa-
per, we will focus more on the second case, that is, we
concern about improving the color consistency among
cameras. We assume, in either case, that the cam-
eras focus on approximately the same portion of the
scene, and thus receiving very similar visual informa-
tion. However, we do not wish to impose additional
constraints, such as an assumption of uniform illumi-
nation or matte objects.

A closely related but different problem is that of color
constancy [Bar02a, Bar02b], in which a relationship
is sought between surface colors and illumination, in
order to map the observed color to the correct one
under some canonical illumination [For90]. Com-
mon solutions include thegray worldapproach, which
assumes that the average color in an image is gray,
the white patchapproach, derived from retinex the-
ory [Lan77], which assumes that the maximum value
of each channel is white, and neural network meth-
ods [Car00], which estimate the illuminant chromatic-
ity of an image using a neural network, which usu-
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Figure 1: images captured by three different cameras.

ally needs a large database of illuminants and re-
flectances(surfaces) for training. They also assume
each image is taken under one uniform illuminant
which is not valid in our environment. [Fin95] con-
siders varying illumination, but it assumes a difference
in illumination can be identified. Other approaches in-
volving gamut mapping methods [For90, Fin96] and
Bayesian methods [Bra97] require either large datasets
of reflectance spectra from a wide variety of common
objects or knowledge of the camera sensor responses,
both of which are generally difficult to obtain. Some
other related works on color calibration and color re-
production can be found in [Jac97, Kan92, Vrh99,
Tom99]. In this paper, we focus on finding the re-
lationship between cameras, that is, we try to make
color appear consistent between them. Thus, we do
not need to estimate the chromaticity of the actual il-
luminant, nor do we require a large training set as the
problem can be addressed sufficiently with relatively
sparse data and a simple method.

For our specific application, we are interested in color
correction for an immersive environment employing
digital rear projection (see Fig. 4), in which the out-
put of several, possibly heterogeneous cameras, must
be correlated. In such an environment, the color of
any pixel as registered by each camera is affected
by many factors, including non-uniform background
lighting conditions, projector color gamut, uneven in-
tensity distribution over the screen, and differing cam-
era poses and sensitivities. As a result, the appearance
of colors obtained by the cameras can vary widely, as
pictured in Fig. 1. While an inter-projector calibration
that produces a uniform color response across projec-
tors would help reduce these effects, the problem of
different camera responses to these pixels remains. It
is this problem on which we focus here, leaving for
future work the question of projector calibration.

Following an overview of other color constancy meth-
ods, we investigate several options for dealing with
the color correction problem. We first examine linear
methods in Section 2 and then compare these with our

proposed approach of a neural network in Section 3,
concluding the paper with a summary of experimental
results in Section 4.

2 LINEAR COLOR CORRECTION
METHODS

In this section, several methods based on linear mod-
els are discussed. TheRGB color space is used in
the paper because it is the most popular space used
in sensor and display devices. Most methods in the
paper should be applicable to other color spaces, but
a comparison of different color spaces is beyond the
scope of the current paper. The color transfer method
in section 2.4 converts theRGB space to anlαβ space
first, then works on that space, and converts back to
RGB at the final step. The least squares approxima-
tion method (section 2.3) requires the estimation of a
transform matrix, which is similar in approach to the
training of a neural network, as described in section
3. However, the remaining methods are based only on
single camera models, and as such, do not undergo any
training or estimation step.

2.1 Gray world (GW)
The gray world approach assumes the average color
of an image is some predefined value of “gray,” for
example, half the value of the maximum intensity for
each color component, i.e., (128,128,128). Based on
this assumption, image colors are corrected through
the following normalization:

Rn = Ro ∗ 128/R̄

Gn = Go ∗ 128/Ḡ

Bn = Bo ∗ 128/B̄ (1)

where,(Ro, Go, Bo) is the original color,(R̄, Ḡ, B̄) is
the average color, and(Rn, Gn, Bn) is the corrected
color. One might also consider the use of the average
color components(R̄, Ḡ, B̄) from an arbitrary refer-



ence camera, and use these, rather than the fixed value
(e.g. 128) as the normalizing term. However, this may
suffer problems if the reference camera’s color distri-
bution is not well balanced.

2.2 White patch (WP)
Thewhite patchapproach is similar to thegray world
method but assumes that the maximum value of each
channel should correspond to full white, i.e. (255, 255,
255). Image colors are corrected through the following
normalization:

Rn = Ro ∗ 255/Rm

Gn = Go ∗ 255/Gm

Bn = Bo ∗ 255/Bm (2)

where, (Ro, Go, Bo) is the original color,
(Rn, Gn, Bn) is the corrected color, andRm,
Gm, and Bm are the maximum observed color
components in the three channels, respectively.

Again, we may consider using one camera as a refer-
ence, with the same caveats as earlier.

2.3 Least squares (LS) approximation
The gray world and white patch approaches use di-
agonal matrix transforms, assuming that the different
channels are independent. While various research sug-
gests that diagonal transforms should suffice [Fin93],
or suffice with sensor sharpening [Fin94], this is not
the case in general with complex scenes. Worse
still, sensor sharpening techniques may be unstable
[Bar01].

Instead, we consider the use of a full matrix transform,
i.e.,

(C′
1,C′

2, . . . ,C′
n) = T · (C1,C2, . . . ,Cn) (3)

in which C′
i andCi (i = 1, . . . , n) are colors from

two different cameras andT is the transformation ma-
trix between them. From a set of corresponding colors
from two cameras,T can be estimated by least squares
approximation methods. Here, we use the color from
the first row of Fig. 2 to estimateT. The image from
Fig. 2c) is taken as the standard color or reference,
from which we estimate transforms between it and the
images produced by the other two cameras. These
transforms are then used to correct the colors.

2.4 Color transfer between images
Reinhardet al. [Rei01] proposed a color transfer
method that can be applied to color correction. It first

decorrelates theRGB values to anlαβ color space
and then computes the statistics (mean and standard
deviation) of source and target images. The source col-
ors are corrected by scaling and offsetting according to
the mean and standard deviation of the target image, as
follows:

l′s = (ls − ls) ∗
σl

t

σl
s

+ lt

α′
s = (αs − αs) ∗

σα
t

σα
s
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β′
s = (βs − βs) ∗

σβ
t

σβ
s

+ βt (4)

Where,̄ci, σ
c
i , c = l, α, β is the mean and standard de-

viation of an image for each channel, respectively, and
i = s, t refers to the source and target, respectively.
Following this transform, the image is converted back
to RGB space. The conversions betweenlαβ and
RGB spaces can be found in [Rei01].

We also consider the use of color transfer, followed by
the gray world method, in order to normalize the re-
sults of the transfer. The results of this combination,
as illustrated later in Fig 5 and Fig 6 appear to be su-
perior than the color transfer itself.

3 NEURAL NETWORK COLOR COR-
RECTION

The previous methods are all based on linear models1,
which, for complex scenes, sometimes prove inade-
quate to correct colors from different cameras. While
it is often difficult to find a suitable, explicit, nonlinear
representation neural network methods [Car00] have
been shown capable of performing similar tasks, such
as estimating the illumination of an image, given a
large database of known illuminations and surface col-
ors.

3.1 Neural Network Architecture
The network architecture used was a simple two layer
backpropagation network (BPNN) with 10 hidden
layer neurons, as shown in Fig. 3. The inputs are the
sourceRGB values, and the outputs are the corrected
RGB values. The network tries to minimize errors
between the estimated colors and the true colors. The
general theory about BPNN training can be found in
many neural network books, e.g., [Hay99]. Since we
need only find the relation between colors from dif-
ferent cameras, assuming the same lighting is applied
to the views of each camera, a simpler training set
proves to be sufficient. The training data consists of
216 color checkers, uniformly distributed in theRGB

1Color transfer is linear inlαβ space.
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Figure 2: 1st row: training data; 2nd row: validation data.

Figure 3: the BPNN architecture

space while the validation data is provided by the Mac-
beth 24-color checkers,2 as shown in Fig. 2, . The sam-
ples are collected manually by clipping a rectangle in
each color square and then computing its mean value.
The values obtained from one of the cameras (Fig. 2c)
are taken as the reference and the color values from the
remaining cameras are corrected accordingly.

2The industry-standard color checking chart.

3.2 Empirical Results

To evaluate the performance of these methods empir-
ically, we measure the error both as absolute differ-
ences of the individual color components,δr, δg, and
δb, as well as the Euclidean distance between the com-
ponents of the true object color,xt, and the estimated
color,xe, as follows:

Err =

√
(rt − re)2 + (gt − ge)2 + (bt − be)2

255
∗100%

(5)

where 255 is the maximal value for each color compo-
nent.

The error statistics for a corrected camera correspond-
ing to the image of Fig. 1a are provided in Table 1.
Since both corrected camera images exhibited similar
results, we only list one of these here. For compari-
son purposes, we include the results obtained by the
other methods described in section 2. Since the least
squares approximation method involves the estimation
of a transform matrix based on observed data, this is
similar in approach to the training session of the neu-
ral network, so it is also meaningful to compare per-
formance on independent test data. However, the other
methods do not include such training steps, so no com-
parison with test data is relevant.

The results obtained demonstrate, both quantitatively
and qualitatively, the superiority of the backpropaga-
tion neural network. Complex images, such as those
shown in Fig. 5, exhibit significantly better correction
by the BPNN method than with the other approaches.



training set validation set
average error standard deviation average error standard deviation

GW 6.53
(4.43,2.05,3.31)

3.26
(3.17,1.62,2.39) - -

WP 8.89
(6.25,3.16,3.86)

4.65
(4.61,2.30,3.17) - -

COL TRANS 7.33
(4.84,2.62,3.67)

3.39
(3.65,2.28,2.67) - -

COL TRANS+GW 6.14
(3.39,2.43,3.03)

3.30
(3.82,1.72,2.92) - -

LS 7.22
(5.02,1.87,3.76)

3.58
(3.35,1.65,2.87)

15.75
(12.13,5.37,6.43)

5.53
(5.46,3.81,4.28)

BPNN 3.69
(1.89,1.38,2.25)

2.15
(1.63,1.11,1.95)

14.03
(9.94,6.50,5.89)

7.02
(5.30,4.62,4.68)

Table 1: Error statistics for color correction applied to one of the cameras. The top row of each cell corresponds to
the Euclidean error metric, whereas the bottom row corresponds to the individual component differences,δr, δg, δb.

Figure 4: Illustration of the rear projection environ-
ment used for our application.

3.3 Digital Projection Results

We applied the various color correction methods de-
scribed previously to a set of sample images taken by
video cameras in our environment. The results are
shown in Fig. 5 and Fig. 6. Since some of the sim-
ple methods are based on strong assumptions such as
constant illumination, which are not satisfied in our
environment, these often fail to perform adequately.

Again, the neural network method outperforms other
strategies. This is particularly evident in Fig. 6, in
which the presence of a person standing in the scene
changes the illumination level from that used during
training. In this example, all of the methods apart
from the neural network approach exhibit noticeable
degradation. While the transform matrix,T , used for
the least squares and the neural network methods were
estimated or trained using the data of Fig. 2, i.e. inde-
pendent of both test scenarios, only the neural network
method proved to be robust to the change in illumina-
tion.

4 CONCLUSIONS
We have considered the problem of color correction
for a set of heterogeneous cameras in a general en-
vironment, in which constant illumination cannot be
assumed. Various methods, based on solutions to the
color constancy problem, were applied to this task and
their results compared. We found that under non-
idealized conditions, our proposed use of a simple
backpropagation neural network achieves results that
are superior to other methods for correcting images
from different cameras to produce results that appear
similar to each other in color. The neural network
method allows for simple training and proves to be ro-
bust to significant scene variations.

Although we have only evaluated these approaches
within our rear projection environment described pre-
viously, we see no reason why the neural network ap-
proach would not succeed equally well in other envi-
ronments or on natural scenes, provided suitable train-
ing data, such as the Munsell color checkers, can be
used.

An interesting avenue for ongoing research that are
now considering is how to extend these results to the
far more challenging problem of color correction for
heterogeneous projection equipment and cameras that
are no longer viewing the same portion of the scene.
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