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ABSTRACT

Practically every ray-casting based image synthesis algorithm relies heavily on the tracing of
shadow rays to determine visibility between a sample point on a light source and a surface point.
If the light source is relatively large, or indirect illumination is sampled, the necessary amount of
such visibility tests may be several magnitudes more then the number of primary rays. In this
paper, we discuss an approach using simple spherical occluders to approximate the shadowing
effect of scene objects. We elaborate on how spheres allow for an extremely fast evaluation of
visibility, and offer a complex automatic method for generating good sphere sets. The virtual
light sources or indirect photon mapping technique, and the handling of large light sources are
improved using the new method. Results featuring fast global illumination are presented.
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1 INTRODUCTION

Taking global illumination algorithms to interac-
tive speeds is a prevailing objective of recent re-
search. Solutions either require immense comput-
ing power, or limit themselves to simple geomet-
ric scenes and light transport phenomena. Finite
element approaches feature tessellation artifacts
that are not easily removed and, with exceptions,
are limited to diffuse materials. Performance of
ray-casting based algorithms is restrained by the
number of rays we are able to trace for an image.
This number is too small even for the purposes of
real-time ray-tracing, and very far from the needs
of proper global illumination.
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In this paper, we will deal with global illumi-
nation problems focusing on large light sources
and indirect illumination. Radiation of both light
sources and reflective surfaces will be represented
by point samples. These point samples for indi-
rect illumination are generated using the indirect
photon mapping method[WKB+02].

In photon mapping techniques, light transfer in-
formation is stored for paths originating from
light sources in the form of photon hits. These
photon hits compose a random approximation
of the radiance within the scene. Direct tech-
niques try to estimate the radiance at a point
using nearby photon hits. Indirect photon map-
ping, on the other hand, completes the photon
paths to reach the point of interest in order to
tell the radiance there. This means, that photon
hits work as point-like light sources, also referred
to as virtual light sources. The method needs rel-
atively few photons, but it is necessary to check
if our point of interest and the photon hits can
be connected. In indirect photon mapping, prac-
tically, all surfaces within the scene act as area
light sources, sampled at the photon hit points.



The problem is very much similar to that of the
large area light source, where a large number of
samples is necessary to obtain a pleasing image.
In both cases, in order to determine the illumina-
tion of a single surface point, numerous visibility
tests between the point and the light samples have
to be evaluated. In ray-casting based algorithms
this is done by tracing a shadow ray from the
point to the light source to tell if there is an oc-
cluding object in between. However, this means
that the most time will be spent on shadow rays.
On the other hand, both for large light sources or
indirect photon hits, the resulting shadows will be
smeared. Furthermore, accurate shadow contours
corresponding to one light sample should never
appear in the final image, as they would be per-
ceived as disturbing artifacts. Fine details of the
occluding objects will not influence the resulting
image. Therefore, accurate shadow calculation is
too much time wasted for superfluous informa-
tion. Visually pleasing results can be achieved
faster if shadows are approximated.

In this paper, we cut down the cost of visibil-
ity tests using a simplified representation of pos-
sible shadowing objects. Although this basic
idea of using less detailed models for less im-
portant computations is commonplace in com-
puter graphics, the question what model would
suit the given task at best and how to find such
a representation for the original model are al-
ways intriguing. We describe a strikingly fast al-
gorithm to evaluate visibility based on a sphere
set model, and a rather complicated technique
involving optimisation heuristics and mesh gen-
eration to generate such sphere sets. Research
done by Chrysanthou, Cohen-Or and Lischinski
had a similar motivation[CCOL98]. Their con-
cept is based on the adaptive discretisation of the
6 dimensional space of rays. That approach may
be more general, as it is applicable for linear or
flat objects not easily modelled by spheres. How-
ever, it requires the storage and traversal of a
huge data structure. Furthermore, it appears to
be difficult to extend the method to support dy-
namic scenes and animation.

2 SPHERICAL OCCLUDERS

In our choice of occluders, the most important
factor is how fast the visibility test can be carried
out for them. One of the natural choices is us-
ing spheres. They are not unrivalled in this field,
using boxes or ellipsoids would also be possible.
However, spheres have a feature no other geomet-
ric object has: when looked upon for any direc-

tion, they appear to be disks facing the viewer.
Telling if a point light source is behind such a disk
can be very easy.

Whenever the illumination of a surface point is to
be found, visibility between that single point and
every sample point on the light sources has to be
checked. It is beneficial to calculate some kind of
useful values for every occluder in advance. These
values should allow for faster execution of those
calculations that need to be carried out for every
light sample. Using spheres as occluders allows
for effective pre-processing. For every sphere, we
may calculate the direction vector pointing to the
centre, and the cosine of the angle γ (Figure 1):
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Figure 1: Nomenclature for pre-processing
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Figure 2: Occlusion test for occluder disk

For every virtual light source, occlusion testing
will be fast (Figure 2). We need to calculate
the direction towards the light source and its
distance, also needed in illumination calculations
and ray-casting. We take the dot product of the
direction to the centre of the sphere and the di-
rection to the light source:

cos δ =
( �O − �x) · (�y − �x)

zt
.

If cos δ is less than cos γ, the virtual light source
is within the cone containing the sphere. As no
accurate results are needed, the distance of the
light source z may simply be compared to the dis-
tance t of the centre of the sphere. This actually
means, that we use slightly bent, view-dependent



occluder disks instead of spheres. That way, we
are able to carry out visibility tests at the cost of
one dot product per occluder, instead of the cost
of tracing a complete ray.

3 SPHERE GENERATION

It is not always a simple task to find a given num-
ber of spheres that represent the shadowing char-
acteristics of a complex object. Even in case of a
single sphere, it may not be trivial to find the per-
fectly matching radius. In order to develop an au-
tomated process, we first need to define what we
mean by similar shadowing. Generally, we sup-
pose that light rays may arrive from any point
of space and any direction with equal probabil-
ity. We try to find such a set of occluders that is
hit by light rays with the same probability as the
original object. In the convex case, this is pro-
portional to the surface area of the object[Sto75].
However, neither the set of spheres, nor the orig-
inal object is guaranteed to be convex.

Our approach is to create a very accurate spheri-
cal representation, and simplify it gradually until
a desired number of occluders has been reached.
The initial set has practically the same shadow-
ing characteristics as the original object. Simpli-
fication is carried out in such a manner that the
probability of the set being hit by a general light
ray is preserved.

How to create a spherical representation for an
arbitrary object using surface points is described
by Hubbard[Hub96]. An ideal continuous set of
infinite number of spheres could match the vol-
ume of any object perfectly. The set of their cen-
tres defines the mid-surface of an object. Cen-
tres of approximating spheres should be placed
on this surface to obtain a well-fitting represen-
tation. However, finding the mid-surface is also
not easy. Three-dimensional Delaunay meshing
provides the solution. A Delaunay mesh is a
decomposition of space into tetrahedra, the cir-
cumspheres of which cannot contain any node of
the mesh. Using the Bowyer-Watson incremen-
tal algorithm[Fil96], we can build a mesh whose
nodes are surface points of the object. This is an
incremental algorithm, starting off form an initial
enclosing tessellation, adding points sequentially.
As a result, we should obtain a set of tetrahe-
dra. Some of these are within the boundaries of
the object, and some are just part of the initial
tessellation we used for the algorithm, or corre-
spond to concavities of the object surface. The
inner ones are making up the object. How to

select them is discussed in Section 3.1. Circum-
spheres of these tetrahedra do not include any
of the specified surface points, but touch at least
four of them. If surface points used for mesh-
ing were dense enough, these circumspheres are
a very tight enclosing set of spheres, suitable to
serve as an initial representation for our object.

3.1 Identifying inner tetrahedra

Unfortunately, the result of the mesh generation
process will include tetrahedra external to the
object. The circumspheres of external elements
are usually large and their volumes do not co-
incide with the object. These spheres should be
excluded from the representative set. Figure 3 ex-
plains the criterion used to select them. We cal-

inner sphere

outer sphere

object boundary

surface normal

sphere normal

Figure 3: The obtuse angle between the sur-
face and sphere normals identifies an outer
sphere

culate the surface normal for every point inserted
into the mesh. We use the relation of these nor-
mals and the normal of the circumsphere at the
same point to tell for every sphere if it is plausibly
within the bounds of the surface. Whenever the
angle between the sphere normal and the surface
normal is not more than π/2 for all four nodes
of the tetrahedron, it can safely be regarded to
be interior. However, this approach supposes a
consistent, gradually changing set of surface nor-
mals. In case of non-manifold surfaces where the
normals may be poorly defined or have disconti-
nuities, further or different filtering may be nec-
essary.

3.2 Sphere merging

The article by Hubbard[Hub96] proposes a grad-
ual refinement approach for the simplification of
a sphere set, but for the purpose of collision de-
tection. QSplat[RL00] also uses a hierarchy of



bounding spheres. Both methods generate an en-
closing set of spheres that tends to grow large as
spheres decrease in number. For our needs, such
a representation is not suitable, as it would cast
larger shadows than the original object. However,
our strategy is similar: identify an ideal pair of
spheres, and merge them into one. There are two
problems to be solved. First, a criterion for choos-
ing pairs must be found. Second, a formula for
the size and position of the substitute sphere of
equal shadowing capacity must be provided.

An ideal merger should cause minimal change to
the geometry. The two spheres should be close to
each other in some sense, so that a single sphere is
able to substitute them. There are two practical
definitions for this distance of two spheres:

D1 = d,D2 = d + r − R,

where d is the distance of the centres, R and r
are the radii, and R > r. D2 can be given an
intuitive interpretation. The radius of the larger
sphere should be extended by D2 to make the
sphere include the smaller one. It is also equal to
the Hausdorff distance between the larger sphere
and the enclosing sphere of both spheres. While
D2 seems to be better established, it can be ar-
gued that D1 promotes merger of small spheres
better, and thus avoids that a single continuously
growing sphere absorbs the smaller ones. Prac-
tically, there is little difference. Both heuristics
choose suitable pairs. In both cases, a best pair
for every sphere can be efficiently located using a
spatial proximity search structure like a k-d tree.

Knowing the best pair for every sphere, the
pair with minimum distance can be chosen, and
merged into one sphere. Repeating this process
will eventually take us to the desired number of
occluders. However, executing a proximity search
for every sphere, after every merger would make
the algorithm very slow. Therefore, the best pair
for every sphere is remembered, and updated only
if it is necessary. This means, that the best
pairs have to be found only for the newly cre-
ated sphere, and those spheres whose best pairs
were just merged. The spatial search acceleration
structure should also be updated.

3.3 Radius of the new sphere

The new sphere substituting for the pair should
have the same shadowing capability. Spheres are
usually overlapping with other occluders, or they
are surrounded by them. However, we may as-
sume that other spheres influence the shadowing

effect of the new sphere to the same extent as
they did with its predecessors. Numerous con-
figurations can be listed when this is not exactly
true, but for practical cases it proves to work sat-
isfactory. That way, the problem is simplified to
the following: the new sphere should be hit by
rays with the same probability as the union of its
two predecessors. Still, the union of spheres is
usually not a convex object, for which the surface
area[Sto75] would be proportional to the proba-
bility. As a closed form integral geometry formula
is ponderous to derive, it has to be approximated
in some way.

3.3.1 Shadowing capability

Let A(R, r, d) be the generalised shadowing sur-
face area of the union of two spheres of radius R
and r, with their centres located at a distance of
d from each other. Generalised shadowing sur-
face area, or GSSA, is defined as the surface area
of any enclosing convex object multiplied by the
conditional probability of a ray hitting the shad-
owing object, provided it hits the enclosing one.
For convex objects, it is the same as the surface
area. When merging two spheres, the new sphere
should have the same shadowing capability as the
union of its predecessors. Therefore it has to have
the same GSSA:

4πR2
new = A(R, r, d), Rnew =

√
A(R, r, d)

4π
.

In the following sections, we will present several
methods to approximate A(R, r, d).

3.3.2 Sum of surfaces

A straightforward idea is to add the surface areas
of the spheres. This is always an overestimation,
because it considers rays that hit both spheres
twice. It may be applied if the two spheres are
far from each other.

A∑ (R, r, d) = 4πR2 + 4πr2.

3.3.3 Surface area of the union

For non-intersecting spheres it is identical to the
previous estimate. For intersecting spheres:

a =
R2 − r2 + d2

2d
, b =

r2 − R2 + d2

2d
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Figure 4: Calculation of the surface area of
the union
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Figure 5: Calculation of the surface area of
the union

There are two possible cases. If a < d, spheres
are located like in Figure 4, and surface areas are
as follows:

AR = 2πR(R + a), Ar = 2πr(r + b).

If a > d, spheres are located as in Figure 5, and
surface areas are:

AR = 2πR(R + a), Ar = 2πr(r − b).

The surface area of the union is the sum of the
individual sphere segment areas.

A∪(R, r, d) = AR + Ar.

This is also an overestimation. It may be ob-
tained by subtracting the surface area of the com-
mon volume from the summed surface area of the
spheres. However, rays crossing both spheres but
not the intersection are still accounted for twice.

3.3.4 Surface area of convex hull

When spheres are near, their convex hull fits the
union tightly. This is also an overestimation, as
rays crossing the hull but not the union are con-
sidered to be hitting. See Figure 6 for nomencla-
ture:

Sr = 2πr2(1 − cos α), SR = 2πR2(1 + cos α),
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Figure 6: Calculation of the surface area of
the convex hull

l =
√

d2 − (R − r)2.

The surface area of the conical segment is:

SC = πl(r + R) sinα,

Aconvex(R, r, d) = SR + SC + Sr.

For intersecting or almost touching spheres, this
estimator fits more tightly than either above. To
handle every case, the minimum of the three
should be taken. Note that the first two will be
identical for non-intersecting spheres.

3.3.5 Measurement using Monte-Carlo
integration

The algorithm may tolerate overestimation well,
but the result could be slightly larger occluders
than needed. This could force us to correct the
radii by some arbitrary factor. Therefore, we
opted to construct an approximate function for
A(R, r, d). The surface area of an object scaled
by s changes by the factor of s2. To see if this is
true for GSSA, let us consider its definition in Sec-
tion 3.3.1. If an object is scaled by s, its enclosing
convex object may also be scaled by the same fac-
tor, retaining the enclosing property. The surface
area of the enclosing object will be scaled by s2,
just like the GSSA of the original object. There-
fore, it is true that:

A(R · s, r · s, d · s) = s2 · A(R, r, d).

Using this we may state:

A(R, r, d) = R2 · P (1, r/R, d/R),

where P denotes the probability of the spheres
being hit by a ray. Conclusively, it would be
enough to know values of P (1, r/R, d/R), where
r/R ∈ (0, 1] and d/R ∈ [0,∞). Furthermore,
cases where d/R + r/R < 1 are trivial, because
the large sphere contains the small one.



We carried out measurements for P (1, r/R, d/R),
for a large number of different values of r/R and
d/R. Random rays were generated by selecting
two random points on the surface of the enclosing
sphere of the two spheres, and connecting them.
The number of rays that had hit either of the
spheres was recorded, and the probability was ap-
proximated as the ratio of the number of hits and
the number of rays shot. The GSSA of the two
spheres is:

Aapprox =
nHits

nRays
·surface area of enclosing sphere.

100000 rays for every pair of parameters were
shot. We used a curve fitting utility, to find a
closed form approximating function:

Aapprox(1, r/R, d/R) =

1.1824 · 0.42615R/d · r/R
1.972 + 0.991

This makes the general estimator:

Aapprox(R, r, d) = R2Aapprox(1, r/R, d/R).

3.4 Centre of the new sphere

The substitute should be placed so that it is
near the union of the spheres, or between the
two if they are at a distance. The new centre
is a weighted average of the two previous centres,
where the weighting corresponds to shadowing ca-
pability of the respective spheres. The quantities
SR and Sr defined in Section 3.3.4 are meaningful
measures of this, and can be used as weights.

3.5 Occluder generation results

Using the algorithms described above, we were
able to generate visually plausible sphere repre-
sentations. In Figure 7 and Figure 8, different
detail level occluder representations of two mod-
els are shown. As it would be less challenging
to find a sphere set for a stocky convex object,
both the dragon and the torus knot are concave
and exhibit a complicated shadow pattern. In
the figures, shadows cast by small light sources
may be compared to see differences between full
ray-casting and the occluder solution. While ac-
tual contours are irrelevant, the area of the shad-
ows is preserved as much as possible. The im-
ages were rendered at 600x600 pixels resolution,
with the indirect photon mapping method, but
using shadow rays for visibility tests. 500 photons
and 100 direct light samples per pixel were used.

For the dragon scene (108588 triangles), the ref-
erence image was rendered in 26.95 seconds, and
sphere generation took 2.28 seconds irrespective
of the number of occluders. For the torus knot
scene (2880 triangles), the reference image was
rendered in 43.7 seconds, and sphere generation
took 3.92 seconds irrespective of the number of
occluders. Ray-casting was accelerated using a k-
d tree. An AMD Athlon XP 2600+ running at
2.08 GHz with 1 Gbyte RAM was used.

Figure 7: Original dragon model, and oc-
cluder representations using 1000, 250, 100,
25 and 10 spheres

Figure 8: Original torus knot model, and
occluder representations using 1000, 250,
100, 25 and 10 spheres

4 RENDERING

4.1 Occluder search structures

The basic mechanism of using occluders in visibil-
ity tests was introduced in Section 2. Following
the idea of spatial subdivision schemes for ray-
casting, the number of tests may be reduced by
checking possible candidates only. However, as a
test itself is nothing more than calculating a dot
product and a comparison, the support methods
should also be very lightweight to pay off.



There are two classes of occluders that can be
trivially neglected: those behind the plane of the
surface element on which our point of interest is
and those further than the light. The rest may
be processed linearly. Although linear complexity
is obviously not the best that is algorithmically
possible, it may be suitable for a low number of
occluders. It is very much likely that typical ap-
plications will trade accuracy for speed and use
few occluders.

If occluders are arranged into a spatial subdivi-
sion hierarchy like a k-d tree, the complexity of
traversal is tuned down to a logarithmic level.
However, the overhead cost of searching the struc-
ture may be comparable with the time gain. Our
measurements, using a generic k-d tree implemen-
tation versus a fine-tuned occluder code, showed
that it needs about 800 spheres for the logarith-
mic method to be on par with the simple lin-
ear one. The results are depicted in Figure 9.
The same test scene as in Figure 8 was used, the
600 × 600 pixels image was rendered using 500
photons in the indirect photon mapping method,
without direct illumination. The test machine in
this case was an AMD Athlon 950 MHz with 128
Mbyte memory.
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Figure 9: The performance of the simple
linear and the k-d tree based methods

4.2 Self shadowing

Although the use of occluders may stay unnotice-
able in most cases, it can cause very disturbing ar-
tifacts when it comes to self-shadowing. Because
spheres may intersect the surface of the original
object, sharp edges may appear even on com-
pletely smooth surfaces. There are several op-
tions to handle the problem. First, self-shadowing
may simply be neglected. In order to achieve this,
the occluders of the object on which our point of
interest is should be excluded from the visibility

tests. This may be a legal decision if the object is
convex, or we know that self-shadowing is negli-
gible. Even for a complex object, especially when
only indirect illumination is concerned, the intro-
duced error may remain unnoticeable.

The second, absolutely conservative approach is
to carry out the intersection test for the object
and the shadow ray. In case of a complex model,
this may still be very expensive. If the object
were the only complex object within the scene,
we would practically return to the classic shadow
ray solution.

The method offering both proper self-shadows
and retaining the speed of the occluder approach
has to select which spheres actually represent a
part of the object that would cast a shadow, and
which spheres are blocking the light just because
they do not follow the object surface. The choice
can be based on the distance of the sphere. It
proved to be a proper heuristic to exclude spheres
the centre of which was at a smaller distance
from the surface point than the double of their
radius. At such a distance the shadowing effect
of the sphere should be meagre enough to allow
for seamless clipping, but real occluding parts of
the object are probably further away. Naturally,
the accuracy of self-shadowing depends on the
accuracy of the sphere representation, and, con-
sequently, on the number of spheres. Figure 10
compares the shadows produced by the conser-
vative approach, and the heuristic one at differ-
ent numbers of occluders. Self shadowing errors
are most obvious within the mouth of the dragon.
The images were rendered at 600x600 pixels reso-
lution, with the indirect photon mapping method.
500 photons and 100 direct light samples per pixel
were used. The model consisted of 108588 trian-
gles. The image in the upper left was rendered in
52.25 seconds, using classical ray-casting for di-
rect, and occluders for indirect illumination. The
rest of the images were rendered using occluders
for both direct and indirect illumination, applying
the double radius heuristics. They feature 200,
150 and 50 occluders, and were rendered in 46.32,
23.00 and 16.20 seconds, respectively. An AMD
Athlon XP 2600+ running at 2.08 GHz with 1
Gbyte RAM was used.

4.3 Rendering results

Using occluders, rendering of scenes with the indi-
rect photon mapping method could be accelerated
by an order of magnitude. Furthermore, signifi-
cant change of image quality was only observable



Figure 10: Dragon with approximated di-
rect illumination and self shadowing.

when it came to precise self-shadowing or casting
shadows on close surfaces. Figure 11 compares
result images. The image in the upper left was
rendered using shadow rays, and the rest were
rendered using 150, 50 and 10 occluders. The
model consisted of 33094 triangles. Only the in-
direct visibility tests were accelerated. The four
images were rendered in 52.08, 21.6, 10.34 and
5.48 seconds, respectively. Other circumstances
were identical to those listed above. As the num-
ber of virtual light sources, and, consequently, the
ratio of shadows rays was selected to be extremely
high, the time cost of tracing primary rays is neg-
ligible. Therefore, results of measurements con-
sidering the shadow computation only would be
very similar.

5 FUTURE POSSIBILITIES

Our current implementation uses the virtual light
sources method in itself. However, in case of spec-
ular or refractive surfaces continuing the gather-
ing random walk could be more appropriate. Fur-
thermore, caustic effects should be handled by di-
rect photon mapping. The composition of differ-
ent techniques could lead to a fast, but general
rendering solution.

The enormous power of recent graphics hard-
ware is not easily used to support ray-casting al-
gorithms. However, visibility tests for occluder
disks are simple enough for the algorithm to be
compiled onto a graphics accelerator.

Figure 11: Indirect photon mapping with-
out and with occluders, and inverted differ-
ence images
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