
Real-time Hardware Accelerated Rendering
 of Forests at Human Scale

Gábor Szijártó

Budapest University of Technology and
Economics

Magyar Tudósok Krt. 2
H-1117, Budapest, Hungary

szijarto.gabor@freemail.hu

József Koloszár
Budapest University of Technology and

Economics
Magyar Tudósok Krt. 2

H-1117, Budapest, Hungary

kolijoco@yahoo.com

ABSTRACT
One of the major challenges in developing techniques for realistic and high performance visualization of outdoor
environments is rendering of vegetation. The issue of rendering dense foliage or forests is especially pressing in
simulators and other virtual reality based game applications, such as first person shooters. The greatest problem
is that convincing modeling of trees, bushes and undergrowth would require great numbers of polygons beyond
what graphics hardware can cope with today or in the next few years to come. This paper presents recent
extensions and improvements to the authors’ previous work on foliage rendering. It reviews some of the
landmark techniques used in real-time PC applications, including the authors’ novel solution of using 2.5
dimensional impostors for tree rendering, followed by the in-depth discussion of extending the later algorithm to
rendering dense forest for human-scale simulation. The method presented takes full advantage of the
programmable rendering pipelines available on most of the recent video cards. Numeric results and pictures are
presented to illustrate rendering efficiency and visual quality.

Keywords
Tree Rendering, Forest Rendering, Outdoor Simulation, View Dependent Visualization.

1. INTRODUCTION
Rendering some form of vegetation is a must,

when it comes to most outdoor scenes in virtual
reality environments. The omission of trees and
bushes from the virtual tropic or temperate climate
zones drastically reduces the feeling of realism,
which is one of the key factors in immersing the user
in the virtual experience, a key factor in training
simulations and games.

The computer and video game industry has become
the driving force behind the most recent advances in
rendering real-time virtual environments. User
demand for more visually intensive, better looking,
more immersing software products, and PC systems
required to run these applications, has resulted in the
availability of very powerful graphics hardware for

the mass market. This trend resulted in mainstream
video cards today outperforming graphics
workstations, even special architectures, considered
high-end just a few years ago.

With the launch of NVIDIA’s GeForce series of
cards, the concept of programmable rendering
pipelines has been introduced. Though there are still
limitations, the most recent boards from NVIDIA
(nv3x chips) and ATI (R3x0 chips) [Ati02] finally
offer enough flexibility to make even demanding
visualization problems feasible. Rendering problems
ranging from volume visualization to mass rendering
have been adopted for the new generation of
hardware accelerators.

The innovations presented in this paper are intended
to help take real-time vegetation rendering to the next
level by taking advantage of recent graphics
hardware. These algorithms have not been developed
for high-fidelity vegetation rendering, but for
rendering realistic-looking scenes at frame rates
appropriate for real time applications, with special
focus and consideration for gaming and simulation
engine developments.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Journal of WSCG, Vol.12, No.1-3, ISSN 1213-6972
WSCG’2004, February 2-6, 2003, Plzen, Czech Republic.
Copyright UNION Agency – Science Press

2. VEGETATION RENDERING
First Person Simulators
It is often useful to define specific scales of
simulation at which a vegetation-rendering algorithm
should provide the required level of realism. Most
applications can be assigned to one or more of the
following categories: insect-, human-, and vehicle
scale [Szi03]. This paper focuses on improving forest
rendering at human scale for first person simulations.

Image 1: Textured tree models in EPIC’s

 Unreal Tournament 2003 first person shooter.

The first moderate successes in realistic outdoor
simulation at human scale emerged only a few years
ago. The golden age of the first-person shooter –
probably the most popular style of computer game
today – still hasn’t come to an end. Throughout the
ten years of the genre’s evolution, outdoor
environments with lush vegetations have either been
lacking, or have made a rather poor impression.
Almost all the popular titles had indoor and urban or
industrial settings. Arguably some of the best results
where the earliest: Novalogic’s voxel based engine,
which has since been abandoned in favor of
accelerated iterative rendering, being one of the
select few examples worth mentioning.
Most graphics engines use static, multi-layered
aligned billboards. Though in some rare cases these
algorithms yield satisfactory illusions, they are far
from what can be potentially achieved with recent
hardware.
At the time of this writing the most pleasing visual
quality in commercial entertainment software is
achieved through the use of basic free-form textured
tree models (Image 1) with some Level of Detail
(LoD) applied. Though the idea is quite
straightforward, only in the last few years has
hardware become powerful enough to handle the task.
Resulting visuals are satisfactory when the trees are
further away from the camera. However, due to the
simple geometric model used, close-up views look
artificial. Also, variations are usually introduced
through new models (or through combining model-
parts). Thus, increasing the number of trees in a scene
quickly bogs performance. The aim of this research
has been to develop a core tree rendering algorithm
for human and vehicle scale simulation, with possible

application in low-altitude (helicopter and glider)
flight, land vehicle simulators, and first person
games. This paper focuses on techniques that can be
used to adopt the algorithm for the latter, human scale
simulation of forest environments.

Scientific Applications
Vegetation rendering has long enjoyed its share of
scientific interest. The two broad fields associated
with the topic are the generation of plants, and their
visualization. The former – vegetation modeling –
lies outside the scope of this study. Extensive
research in the field has yielded a number of
publications, and commercial tools for modeling are
also available [Pru90].
Visualization seems to be a nut harder to crack. There
are two general approaches: geometry-, and image-
based methods. As its name suggests, techniques of
the former group use geometric representations of the
foliage. As it takes roughly hundred thousand
triangles to build a convincing model of a single tree,
some form of LoD rendering technique must be
applied to reduce the polygon count for a given frame
to a reasonable level [Pup97][Rem03]. Visually
pleasing results can usually only be achieved with
rather complex algorithms, or significant memory
overheads. The authors suggest that for purposes of
games and simulation, geometry based methods are
not yet efficient enough.

3. IMAGE-BASED TECHNIQUES
Image-based methods, which mask oversimplified
and primitive geometry with various canvases in
image space, represent a trade-off of consistency and
physical precision in favor of more photo realistic
visuals. Because of the inconsistency in literature
regarding the exact definitions and usage of the
image-based rendering related terms sprite, billboard
and impostor, a clarification in the context of this
paper follows.
Sprite: a flat face with some static surface properties
(usually a simple texture image) always facing the
camera from a fixed position in space (Figure 1a)
Billboard: a face that rotates around one fixed axis in
space, trying to face that camera as much as possible
(Figure 1b).

Figure 1a: Sprite Rendering. The textured polygon is

always facing the camera. 1b: Billboard with arbitrary
position and orientation.

View
point

Projection
Plain

View
point

Projection
Plain

Impostor: a billboard or sprite, whose surface
properties are not static. The texture applied is also
rendered to at some earlier stage.
In the context of tree-rendering, sprites are analogous
to using cardboard cutouts with a tree-like image
painted on them, which are always facing the camera.
Though resulting visuals are far from satisfactory,
this obsolete technique is used to this day to depict
smaller plants or plant parts.
Billboards can be regarded as the same cardboard
cutouts rotating to face the avatar around an axis dug
into the ground. Billboards are the most frequented
method for rendering vegetation in many land-based
vehicle simulations.
Sets of view-dependent sprites, and complex cutouts
are obvious improvements to basic sprites and
billboards. The former method simply pre-renders a
finite set (usually 4 or 8) of views of the same tree,
and presents the one closest in alignment with the
actual viewing direction. A popping artifact is visible
when there is an alignment change. The latter
algorithm uses texture transparency and blending to
render more than one view at the same time onto
properly aligned surfaces. Both methods fail to
deliver quality in close-up views.
Though more advanced techniques using billboarding
[Max96], layered depth-images [Sch98], and multi z-
buffers [Max96] have been presented through various
scientific forums, most are computationally too
expensive for implementation in games or simulators.
It is important to stress that even though the quality of
tree- and foliage rendering makes a huge impact on
overall visuals, in an actual product it is but a small
part of a complex rendering engine, and must share
the available hardware resources with other
computation-intensive tasks.

Advantages
The abovementioned techniques all take advantage of
the fact that is much faster to render a recorded image
of a tree, than to actually process the geometry
information describing a tree model. There are a
number of reasons for this, the two most important
ones being:
• A leaf on a tree only a short distance from the
camera is mapped to barely more than one pixel. On
today’s hardware, rendering a single pixel is much
faster than transforming even a single triangle.

• The number of obscured leaves is very large, thus
a significant number of transformations would be
performed in vain.

Disadvantages
Image based methods suffer from two significant
drawbacks: fixed perspective and invariance to
motion and rotation.
Luckily, in tree rendering, the fixed perspective is not
so disturbing. The tree canopy is a fairly irregular
structure, and the human eye is far less sensitive to
perspective distortions of irregular shapes than
regular ones.
Invariance to motion and rotation is far more
disturbing. Leaves are static as the camera moves,
while it would be expected for some leaves to appear
and others to become obscured by the displacement.
This issue has to be addressed in some way to raise
rendering quality to an acceptable level. In
applications where the camera is usually level with
the trees, the trivial idea to store multiple textures
corresponding to rotations around the vertical axis
come to mind. However, to achieve desired quality
and eliminate popping artifacts when changing
textures, an unacceptably large number of textures
would have to be stored. Popping artifacts are about
as disturbing to the human eye as static textures in
motion.
From the above it is concluded that to achieve
convincing visuals, the geometry of leaves has to be
processed to some extent.

4. USING 2.5 DIMENSIONAL
IMPOSTORS
In their previous works the authors presented their
own image based algorithm for tree rendering. The
technique of 2.D dimensional impostors composes
the tree canopy of several smaller leaf clouds. A leaf
cloud only consists of a fraction of total leaves
needed to model the entire tree. The amount of
geometry describing a cloud is small enough to
handle on a per frame basis. The concept is to
process a leaf cloud, render it to a texture, and apply
that texture multiple times to render the tree.
Impostor rendering has two stages. The first stage is a
view-dependent render-to-texture operation (drawing
the impostor), the result of which is used in the
second stage usually as sprite or billboard texture.
An arbitrary group of leaves arranged randomly in
space and assumed to be positioned in the center of
mass of the canopy is rendered to a texture with
correct alignment (Figure 2). The texture is then used
as an impostor and applied to more sprites to build
the canopy. Image quality and feeling of realism
increase dramatically, even if the same impostor is
used for the entire tree (Image 2).
Depth is introduced to the render-to-texture
procedure. In the stage of impostor rendering, depth

information is stored in the target textures alpha
channel. The result is a 2.5 dimensional impostor. In
the implementation the group of leaves rendered is
assumed to be at some center point of the canopy,
just as before, but the z-near and z-far planes are
adjusted to approximate a reasonable bounding box
for the rendered group of leaves, as shown on Figure
2. In the final phase of rendering the stored depth
values are appropriately scaled and clipped to the
final depth buffer before depth testing is performed,
yielding a volumetric feel to the textured sprites,
which can now inter-lap in a spatially coherent
manner.

Figure 2: Rendering the impostor texture from a

 group of leaves assumed to be positioned at
 the center point of the tree.

 The method successfully introduces motion
dependence, and by adding depth information (the
0.5 dimension) to the impostors, adds volumetric
effect to overlapping textures eliminating virtually all
motion artifacts. Depth-consistent impostor rendering
results in images where leaf-clouds can correctly
overlap with each other, branch geometry, other trees,
or any other object in the scene.
Also note that the artificial look resulting from
repetition of the same image over many sprites is
almost completely eliminated, as volumetric
overlapping obscures arrangement to the point where
it is almost impossible to discern any single impostor.

Single Tree Implementation
The algorithm proposed above produces very
convincing visuals, and can be efficiently
implemented using only the GPU on recent video
cards (Figure 3).

Figure 3: Block diagram for implementation using two
vertex, and two vertex programs. Depth information is

stored in the alpha channel of Leaves Texture.
The vertex program used in the first stage does
nothing beyond the ordinary except for the

adjustments to the projection matrix. Thus the center
of the tree will become the center of the image, with
the aspect ratio matching that of the desired final
image. The depth information is stored in the alpha
channel of the impostor texture, enabling easy access
to it by the second stage.
The vertex shader program in the second stage is
used to calculate the correct projected size, position
and depth offset of the impostor sprite. The pixel
program is responsible for rendering the impostor
texture in a depth consistent manner by adding the
value from the impostor texture’s alpha channel to the
depth offset passed by the vertex shader.

Image 2: Branches and leaves with appropriate

depth values.
Note that the pixel program to render the blocks
requires the very latest hardware to date, as only pixel
shaders of version 2.0 and above support direct write
access to the depth buffer. Current graphics chipsets
supporting this functionality include NVIDIA’s
GeForceFX 5x00, and ATI’s Radeon 9x00 series.

Forest Rendering
This section focuses on forest rendering at the human
scale first person simulation (FPS), when the avatar is
walking in the forest. As opposed to low altitude
flight simulation or some other vehicle scale
configurations, where there are many trees visible all
being roughly same (small) size, in FPS a few trees
close to the camera must be rendered in very high
detail while those further away become smaller in
projected size but grow in their numbers. Traditional
techniques fail to deliver the performance for close-
ups, but the 2.5D impostor is perfectly applicable.
Because the numerous trees in the distance must be
rendered at great speeds, simpler techniques have to
be considered. Mixing rendering techniques for any
given task introduces the inherent danger of popping
artifacts.
The 2.5D impostor is well suited for the task of
visualizing distant trees as well as close-ups. As
rendering the canopy is a question of filling pixels,
performance is inversely proportional to the projected
size of textures. This is confirmed to some degree by

Leaves
Vertices

Leaves
Vertex
Shader

Leaves
Pixel

Shader

Leaves
Texture

Blocks
Vertex
Shader

Blocks
Vertices

Leaves
Texture

Blocks
Pixel

Shader

Target
Depth
Buffer

Leaves
Depth
Buffer

Target
Frame
Buffer

View
point

Projection
Plain

View
point

Projection
Plain

Center point
of tree

R
en

de
re

d
Z

ra
ng

e

Rendered
FOV

measurements presented in the next section. Because
of this, LoD for the canopy is not a pressing issue.
This is fortunate, as geometric LoD techniques
usually introduce noticeable morphing or popping on
level switches. The 2.D impostor algorithm does not
have this drawback. Tree trunks and branches,
however, are still rendered from richly detailed
polygonal models, so some form of LoD should be
applied to them in order to increase performance.

Image 3: Forest.

The brute-force approach is to render individual trees
in a loop. However, tests indicate that doing so
quickly overtaxes even the most recent graphics
hardware. Some form of visibility testing to screen
the occluded trees and those outside the view frustum
prior to rendering can dramatically increase
performance. Inclosing spheres have been
implemented for safe frustum culling.
One way to save calculations is not render an
impostor foe every individual tree, but to apply the
same impostor texture for all trees with similar
parameters and orientation. However doing so
reduces variations, degrading visual quality. Tests
were performed, with results indicating that
performance gain is minimal as performance is
limited by the stage tiling the impostor textures over
the trees in the scene. As a result this technique has
been abandoned.
While rendering a single tree is extremely fast on
recent graphics hardware, it is still short of what
could be achieved with some technological
modifications [Szi03]. Writing the depth buffer
explicitly from the pixel shader is relatively slow (and
even discouraged by developer documentation from
hardware manufacturers). Also for pixel programs
doing so, the depth check is performed after
execution of the code. This means that only shader
has accessed all associated textures and performed its
sometimes expensive set of calculations does the

architecture decide whether or not the pixel is
displayed at all. While this is logical, some support
for “early elimination” based on minimum z-offset, or
more generally, any parameter passed directly from
the vertex processing stage would be welcome, as
complex shaders would not have to be executed for
occluded pixels. In case of the 2.5D impostors the z-
offset (the nearest possible projected position the
pixel could occupy before the depth value from the
impostor texture’s alpha channel is added) could be
used to discard a significant portion of calculations
for a scene. In dense forests, where sometimes entire
trees have to be rendered even though only a few of
their leaves are visible through occluding canopies,
early elimination would have an even greater positive
impact. Estimates based on test measurements
indicate a five- to tenfold potential increase in
rendering speeds for an average forest scene. Other
tests showed that similarly the stencil test is also
performed after shader program execution.
As already mentioned, test results indicate the
performance bottleneck to be rendering the impostor
textures to the frame buffer (Blocks Pixel Shader,
refer to Figure 3). The idea is to simplify this stage
for distant, obscured, and almost occluded canopies.
We implemented a pixel program that did not write
the depth buffer, but rather used simple alpha
blending in rendering the impostors, thus giving up
depth consistency for overlapping leaf clouds. Doing
so introduces a popping artifact, when one texture
“jumps” ahead of another as a canopy is rotated.
However, qualitative tests indicate that the artifact is
indistinguishable for trees sufficiently far away from
the viewer. On current hardware such trees can be
rendered up to five times faster using alpha blending
instead of 2.5D impostors, with almost no impact on
overall visual quality (See Results).
In order to achieve top visual quality for close-ups,
highly detailed geometry was used to model tree
trunks, branches and even leaves. For distant trees
maintaining the same detail is more than a luxury. In
typical FPS scenes most probably only the trunks of
distant trees are visible. For this reason it is
reasonable not to use optimization based LoD
techniques, but rather simply to decimate smaller
branches for lower detail levels (cut them off as the
camera withdraws). Doing so elements of geometry
are discarded that are not visible anyway, and no
popping or morphing artifacts are introduced. For
distant trees, it is sufficient to use a single triangle to
model a leaf, as projected leaf size nears sub-pixel
proportions.

Forest Implementation
Instead of simply extending the algorithm used for
single tree rendering, all stages of processing and

rendering were revised with special consideration to
hardware capabilities.
The first phase is sorting. This is necessary, because
using alpha blending for textures on distant trees
requires a back-to-front rendering order. The vertex
and pixel shaders for the first stage of tree rendering
(Leaves Vertex Shader and Leaves Pixel Shader,
refer to Figure 3) are almost identical for the alpha,
and 2.5D techniques. The only difference being that
while the 2.5D version writes a depth value to the
alpha channel, the alpha version simply passes a
constant 1.0 for target pixels with leaves projected
onto them. Because of the negligible difference,
execution speed for the two versions of the first stage
shaders is almost identical.
The second phase is impostor generation. Switching
between render targets is a costly operation in terms
of performance. Thus, instead of rendering on a per
tree basis with one switch for every tree in the visible
scene, all impostors are rendered to a single large
render target capable of holding 16x16 different
impostor images, which, as qualitative testing has
shown is enough for practical purposes.
All “other” objects, such as trunks and branches are
rendered in the third phase.
Finally, in the fourth phase, the impostor blocks are
rendered. First high detail 2.5D impostors for trees
close to the camera in a front-to-back order. Next the
remaining low detail alpha blended impostors are
rendered back-to-front.
Note that in a pure 2.5D impostor implementation,
the last two phases would also be interchangeable.

5. RESULTS
The two leading hardware manufacturers, ATI and
NVIDIA both offer fairly solid support for OpenGL
and DirectX. For the research involved in this paper,
Microsoft DirectX 9.0 [Mic02] has been the platform
of choice. DirectX supports accelerated hardware
through various versions of pixel and vertex program
profiles. Programs or shaders are written in an
assembly-like language. NVIDIA introduced its C for
Graphics (Cg) [Nvi02] programming language to
provide developers with easy to use C-like syntax to
develop advanced shaders. The Cg toolkit available
free of charge from NVIDIA’s homepage provides
tools to compile Cg code to the DirectX shader
language, or the NVIDIA specific register-combiner
extensions for OpenGL. For this research vertex and
pixel programs were developed in Cg, compiled to
DirectX shaders, which were fine-tuned by hand
when modifications were deemed necessary.
Tests were run on an AMD Athlon XP 2600+ based
system with an ATI Radeon 9700Pro (R300) video
card. The application’s sensitivity to processor speed

was not significant, as all geometry and object data
were static and uploaded to the video card, and the
video accelerator was able to perform all calculations
on-board, reducing system processor load to a
minimum.
A highly detailed tree model was used. Leaves were
modeled using 46 polygons each, the branches and
the tree trunk were built from 19834 faces. 70
impostor textures were rendering to every tree, and
there were 512 leaves in every impostor. The
corresponding polygon count for one tree thus
multiplies up to over 1.5 million polygons (35,000
leaves). Using the 2.5D impostor technique however,
barely 40,000 polygons were actually processed
during rendering. The low detail tree model uses 390
polygons to model the trunk and branches, while 4
polygons were used to model a single leaf. The
corresponding polygon count thus equals about
143,750 polygons. The default resolution of the test
application (Image 4.) was 512x512, and impostors
were rendered to 128x128 textures. Test results were
obtained by omitting branch and trunk rendering, as
those are handled independently from the algorithm.
Qualitative testing was not overly rigorous: a few
people, some of whom were computer graphics
specialists, were asked their opinion on visual quality
and comparisons.

Single Tree Results
The first tests were run to show the performance
relative to pure geometry based rendering. Of course,
the results are hardware dependent, as pure geometry
based rendering tends to be vertex shader limited,
while the impostor-based algorithm is limited by the
pixel shader. The ATI R3X0 chipset used, has four
vertex shading units, which also boosted the highest
performance on the market at the time of writing, thus
the pure geometry results may safely be regarded as
„best-case” values among video cards.

2.5D impostor 391 455 501 525

pure geometry 26 51 100 194

1024 512 256 128

Table 1: Pure geometry vs. 2.5D impostor rendering
without branches. 512x512 render target resolution.

Withdrawal from a tree results in decreasing the
number of the pixels rendered to. This has no impact
on the sensitivity of the pure geometry algorithm.
Comparing tables 1 and 2 we find that rendering the
same number triangles to four times the number of
pixels barely impacts the performance of the 2.5D
impostor algorithm. It was also found that the
rendering speed of the impostor algorithm is about
linearly sensitive to the image size rendered to. This
characteristic has already been mentioned in Section
3.5. It can be concluded that that rendering the leaves

to the impostor texture is not contributing
significantly to rendering in case of the model used.

1024 leaves 391 519 656 813

512 leaves 455 644 750 1170

128 leaves 525 785 1150 1736

1 leaf 554 850 1261 1999

100% 75% 50% 25%

Table 2: “Withdrawal” test rendering to 512x512 render

target.

Forest Results

Image 4: 100 Trees in the scene.

Tree parameters were configured based on results
from the previous subsection: 512 leaves per
impostor, 70 impostors per tree. A forest of 1024
trees was generated. As mentioned in the Forest
Implementation Subsection, the number of different
impostors (and thus the number of trees) for a scene
is limited to 256. As illustrated by Image 4, this
number large enough to ensure that the forest does
not “end” after about 100 meters, but seems
convincingly deep. In fact, qualitative testing
indicates that even a limit of 100 impostors would
yield acceptable visuals. Tests were run using the 256
limit nonetheless.
The next issue explored was the compromise between
quality and performance by limiting the number of
trees closest to the camera to be rendered using high
resolution models and 2.5D impostors, while low
resolution models and alpha blended impostors were
to be used for remaining ones. Again, qualitative
testing indicated that rendering low detail trees, after
the first 15-20 high detail ones does not impact visual
quality when compared to a pure high detail image
(Refer to Image 5).

Image 5: Comparison. All the trees in the left picture,
but only the twenty closest trees in the right one are

rendered in high quality.
We explored the impact of the number high quality
trees in a scenes consisting of 100 and 200 trees

respectively. As show on Table 2, rendering only the
first 25 trees in high quality doubles performance
compared to the pure high quality scene barely
impacting visual quality. Also note that rendering all
low quality trees only boosts an additional 50%
relative to the 25 mark while degrading visuals to an
unacceptable level. The chart also illustrates that
performance is not inversely proportional to the total
number of trees, because omitted distant trees are
represented by much smaller textures than those
drawn in close-up in either case.

0 5

10 15 20 25 50

10
0

15
0

20
0

0
10
20
30
40
50

60

70

200 trees 38,8 33,5 30,2 28,4 26,7 25,4 21,7 17,4 14,7 12,8

100 trees 65 52,6 45,3 41,1 37,4 35,6 28,2 24,5

0 5 10 15 20 25 50 100 150 200

Table 2: Frame rates for rendering a total of 100 or 200
trees respectively, with the first 0, 5, 10, etc. drawn in

high detail.
Finally the contribution of the individual rendering
phases to overall performance was evaluated.
Computational times for the relevant phases were
measured on the scene of 200 visible trees. Note that
precise timing is near impossible as the graphics
hardware operates independently from the processor,
and the processor is only responsible for running
driver components during rendering, which optimally
do little more than manage data traffic between
processor and GPU. In case of the tested algorithms,
the processor is only subjected to the bare minimum
of computations. The program was tweaked to wait
for the GPU, thus enabling some time measurements
without introducing a significant performance lag.

0
25

50
100 200

0
50
100
150
200
250
300
350
400

High quality trees

Textures 114 104 101 101 124

Impostors 39 130 158 220 400

Objects 97 142 186 233 233

0 25 50 100 200

Table 3: Computation times in ms for rendering phases

2 to 4. Refer to Forest Implementation Subsection.

As expected, the second phase (impostor generation,
Textures), is not sensitive to the number of high
resolution trees, as shaders in that stage are almost
identical for both detail modes (see Forest
Implementation Subsection).
In the pure high quality case, impostor rendering is
limiting performance, while in the pure low quality
case, object rendering and impostor generation are
the bottlenecks.
It is deducted the object geometry detail could be
reduced further to improve performance, but this
might result in degrading visuals, so the authors
advise against it. Note that current game applications
use much less detailed models for foliage. Another
viable option is reducing the number of trees. Doing
so results in a linear increase in object rendering and
impostor generation, however impostor rendering
speeds are improved only slightly.
Measurements confirm that modifications to
hardware as suggested in the Forest Rendering
Subsection would have a dramatic impact on
performance. A tenfold boost on rendering speed is
estimated. With the added feature the high quality
2.5D impostor could be implemented even more
efficiently than the low detail alpha blending method.
The same frame rates achieved in all low quality
cases could be achieved, possibly even surpassed
using all high quality canopies.

6. CONCLUSIONS
This paper presented the application of 2.5D
impostor rendering to forest rendering. The technique
renders high detail foliage without popping/morphing
artifacts associated with geometry based LoD
methods, and without artifacts upsetting the motion
parallax, inherent in basic image based methods. A
first person simulation of a convincing forest can be
rendered at 25 frames per second, with further room
for hardware and application specific optimization
and fine-tuning.

Image 6: Low altitude flight.

 As proposed acceleration techniques only exploit the
fact, that trees are densely packed and obscure each
other to some degree, the technique presented also
performs formidably for low altitude simulations.
If the technique is to be extended to high altitude
simulation as well, another approach must be
considered as projected size of impostors may
become as low as single pixels, resulting in noisy
canopies when the camera moves. Also impostor
generation is expected to become the performance
bottleneck. A smooth transition from low to high
altitude must also be implemented.
Future work will focus on introducing more variation
to vegetation, conifer rendering, and engine
integration.

7. ACKNOWLEDGEMENT
This work has been supported by the National
Scientific Research Fund (OTKA ref. No.: T042735),
IKTA ref. No.: 00159/2002, the Bolyai Scholarship
and the Slovene-Hungarian Fund.

8. REFERENCES
[ATI02] ATI Technologies Inc., RADEON™ 9700

Pipeline Overview, 2002, www.ati.com
[Lin99] Lintermann, B., Deussen, O.. Interactive

modeling of plants. IEEE Computer Graphics
and Applications, 19(1), 1999.

[Max96] Max, N., Ohsaki, K.. Rendering trees from
precomputed Z-buffer views, Eurographics
Workshop on Rendering 1996, pp. 165-174,
1996.

[Mic02] Microsoft Corporation, DirectX 9.0, 2002
[Nvi02] NVIDIA Corporation, Cg Language Toolkit,

2002
[Pru90] Prusinkiewicz, P., Lindenmayer, A., The

algorithmic beauty of plants, New York, Ed.
Springer-Verlag, 1990.

[Pup97] Puppo, E., Scopigno, R., Simplification,
LOD and Multiresolution – Principles and
Applications, Eurographics’97, Tutorial Notes,
1997.

[Rem03] Remolar, I., Chover, M., Ribelles, J.,
Belmonte, Ó., View-Dependent Multiresolution
Model For Foliage, WSCG 2003, pp.370-378,
2003.

[Sch98] Schaufler, G., Per-object image warping with
layered impostors. Eurographics Rendering
Workshop 1998, pp. 145-156, 1998

[Szk95] Szirmay-Kalos, L. Theory of Three-
Dimensional Computer Graphics, Publishing
House of the Hungarian Academy of Sciences,
1995.

[Szi03] Szijártó, G., József, K., High Resolution
Folaige Rendering for Real-time Applications,
SCCG 2003, Budmerice, Slovak Republic

