
An approach to improve strip-based multiresolution
schemes

J. F. Ramos, M. Chover, O. Belmonte, C. Rebollo
Departamento de Lenguajes y Sistemas Informáticos

Universitat Jaume I, Campus de Riu Sec

12071, Castellón, Spain

{jromero, chover, belfern, rebollo} @uji.es

ABSTRACT

Triangle strips have been widely used for static mesh representation because they are optimal for rendering. This
primitive reduces the number of vertices sent to the graphics pipeline and the storage costs. We present an
approach to improve multiresolution models that takes this connectivity property into account. Our model uses
strips both in the data structure and in the rendering stage. It also offers the following features: it is easily
implemented, and is efficient and fast.

Keywords
Keywords: multiresolution model, level of detail, triangle meshes, triangle strips.

1. INTRODUCTION
A common approach to solving the problem of
complexity in large scenes involves level-of-detail
(LOD) or multiresolution modelling. Multiresolution
models can be classified into two large groups:
discrete multiresolution models, i.e. those that contain
various representations of the same object with
different levels of detail, and continuous
multiresolution models, which are those that
represent a vast range of approximations to a
continuous object.

Discrete models typically store between five and ten
LODs and tend to suffer from popping artifacts when
a LOD is changed. Some graphics standards, like X3D
or OpenInventor, use such models. In continuous
multiresolution models, two consecutive LODs differ
by only a few triangles. These small changes
introduce minimal visual artifacts. On the other hand,
the size of the model becomes smaller than that of a
discrete model, because no duplicate information is
stored. Currently, Progressive Meshes by Hugges
Hoppe [Hop96a] is the best known continuous
multiresolution model. It is included in the graphics

library DirectX from Microsoft Corporation.

Although these models have shown excellent results
in interactive visualisation, they work with triangles.
Recently, these models have been improved to
include connectivity information by storing the
models as triangle strips or triangle fans that reduce
the amount of information sent to the graphics
pipeline and increase the rendering frame rate
[Rib00a][Ste01a][Sha03a].

In short, modelling a mesh as a collection of strips or
fans of triangles avoids the need to store and send a
large amount of redundant information to the
graphics system; it also gives rise to better
visualisation times and lower storage costs.

Section 2 begins with a brief introduction to
multiresolution models and then we review the state-
of-the-art in multiresolution models. In section 3 a
new model is presented, along with its data structure
and algorithms. There is also an explanation of its
main characteristics and a description of how to
construct it, with internal details. Later, in section 4,
we present the results of comparing this model with
PM [Hop96a] and MTS [Bel03a]. Finally, in section 5,
conclusions and future work are presented.

2. RELATED WORK
Multiresolution Models
Garland [Gar99a] defines a multiresolution model as a
model representation that captures a wide range of
approximations of an object and which can be used to
reconstruct any one of them on demand.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Journal of WSCG, Vol.12, No.1-3, ISSN 1213-6972
WSCG’2004, February 2-6, 2003, Plzen, Czech Republic.

The common criteria used to determine the most
suitable LOD are the distance from the object to the
viewer, the projected area of the object on the
display, the eccentricity of this object on the display,
and the intrinsic importance of the object.

Ribelles et al. [Rib02a] present a characterisation of
multiresolution models. This work classifies the
models taking into account certain other criteria.
Some other important works on this subject are
[Pup97a][Gar99a].

In this section, multiresolution models that take
advantage of connectivity are reviewed.

The VDPM model by Hoppe [Hop97a] first
determines the set of triangles to visualise, and then
triangle strips are searched on-the-fly over the mesh.
This is a time-consuming task but the final
visualisation time is reduced because triangle strips
are rendered quickly.

Geometric Model

VDPM Model Update Triangle
Mesh

Stripification

Rendering

Figure 1. VDPM, Hoppe 97

The El-Sana et al. model [Els99a] first determines a set
of triangle strips over the polygonal model. These
triangle strips are stored in a data structure called a
Skip List. After determining which triangles to render,
the skip lists are updated and then rendered. This
model passes the display triangle strips through
filters for removing vertex repetitions.

Geometric
Object

Skip-Strips
Model

Stripification

Skip-Strips
Updating Rendering

Figure 2. Skip-Strips, El -Sana 99

The first multiresolution model to use the triangle fan
primitive in storage and in the rendering stage, taking
advantage of the connectivity information between

the triangles in a mesh, is the model by Ribelles et al.
called MOM-Fan [Rib00a]. This model uses the
triangle fan primitive both in the data structure and in
the rendering stage. The main drawback of this model
is the high number of degenerate triangles used in
representation, although they are purged out before
the rendering stage. Another drawback of the model
is that the average number of triangles in each
triangle fan is small.

Geometric
Object

MOM-FAN
Model Update FANs Rendering

FANs
Search

Figure 3. MOM-Fan, Ribelles 2000

As regards strips, the first multiresolution model to
take advantage of the triangle strip primitive in
storage and in the rendering stage is that by
Belmonte et al., called MTS [Bel03a]. This model uses
the triangle strip primitive both in the data structure
and in the rendering stage. The model consists of a
collection of multiresolution strips, each of which
represents a triangle strip at every LOD, and this is
coded as a graph. Only the strips that are modified
between two consecutive LOD extractions are
updated before visualisation.

Geometric
Object

MTS
Model

Stripification

Update
Strips Rendering

Figure 4. MTS, Belmonte 2003

Recently, some works have been presented that are
based on the triangle strip primitive. These focus on
dynamically simplifying the triangle strips for each
demanded LOD. The model by Shafae et al, called
DStrips [Sha03], manages the triangle strips in such a

way that only the triangle strips that are being
modified are actually processed, while the rest of the
triangle strips in the model remain unchanged. This
update mechanism reduces the extraction time,
although results published in this work still show a
high extraction time.

Another approach to the use of triangle strips in a
multiresolution model is the work by A. James Stewart
[Ste01a], extended by Porcu [Por03a]. This work uses
a tunnelling algorithm in order to connect isolated
triangle strips, thus obtaining triangle strips with
large numbers of triangles while reducing the number
of triangle strips in the model as it is simplified.
Again, its main drawback is the time consumed by the
stripification algorithm.

Geometric
Object

DStrips or
Tunnelig
Model

Partial
Stripification Rendering

Figure 5. Dynamic Stripification Models

3. OUR APPROACH
Introduction
The proposed model here represents a mesh as a set
of multiresolution triangle strips. The model maintains
the strips both in the data structure and in the
rendering stage.

Our model offers the following features:

• Easy to implement: the data structures and
algorithms are simple and clear.

• Efficiency: with low LOD recovery1 time, we
obtain better results than MTS [Bel03a], the
first model wholly based on triangle strips.

• Speed: using triangle strips, rendering is
faster than PM [Hop96a], which is based on
triangles.

In the following sections we present the data
structure, algorithms and the construction process of
the model presented.

Data Structures
We store a list of multiresolution strips where each is
represented by an array of pointers to vertices. This
structure is defined in such a way as enable those
vertex sequences to be utilised directly for rendering
by using the strip graphics primitive. Therefore, we
have a list of arrays to represent the strips, lStrips,

1 Rendering time = recovery time + drawing time

and a vertex array to store the geometric coordinates,
lVerts. Furthermore, we have another data structure,
lChanges, which allows the swift recovery of the strip
vertex positions that change between LODs.

... 1 ... 11 ... 23 ... 31 ... 37 ... 46 ...

x,y,z 31 x,y,z 23 x,y,z 31 x,y,z 46 x,y,z 46 x,y,z 48

lVerts

lStrips

0

1

2

3

6 34 ... 38 28

5 29 ... 27 40

1 23 31 11 46 37

36 7 ... 12 43

lChanges
0

1

...

11

...

23

...

1 40

...

2 0...

1 5 2 3...

1 7 2 1... 2 3

Figure 6. Data structure example

3.2.1 lVerts
This structure stores the 3D coordinates of each
vertex in the mesh. In addition, each record has a field
next that stores a pointer to the vertex to be
collapsed. When a vertex is removed due to the
change in level of detail, that vertex is substituted by
the vertex found in its next field. Another important
feature of this structure is that lVerts stores the vertex
according to the order of simplification. This enables
the easy identification the vertices which are not valid
for one LOD. If we change from LOD 0 to LOD 1,
vertex 0 will be replaced with the vertex in its next
field in all occurrences of that vertex in the lStrips
structure. In Figure 6 we can see an example of these
data structures.

In our model, each vertex can only be collapsed with
its neighbours on the external edge; to eliminate
internal edges it is necessary to collapse their two
vertices. For example, in Figure 7 we can see that in
LOD 0, vertex 31 could only be collapsed with vertex
46 or vertex 1.

3.2.2 lStrips
This structure uses a list to maintain the
multiresolution strips. Each strip is represented by
means of an array of pointers to vertices that provide
the vertex sequence to draw the strip in the drawing
stage. Therefore, taking strip 2, in Figure 6, as a
reference, it can be seen that the vertices
1,23,31,11,46,37 define the strip with the highest LOD.

1

23

31

11

46

37

LOD 1

31

23 11

46

37

LOD 2

31

23

46

37

LOD 12

31 46

37

LOD 24

Vertex Next

1 31

Vertex Next

11 23

Vertex Next

23 31

1 23 31 11 46 37

31 23 31 11 46 37

31 23 31 23 46 37

31 31 31 31 46 37

Figure 7. Level-of-Detail Transition

3.2.3 lChanges
lChanges is a list that allows us to quickly recover
the positions of the vertices that are changed, when
the model switches between LODs. As we can see in
Figure 6, lChanges is ordered by the number of the
LOD. As the example shows, when the model
changes from LOD 1 to LOD 2, it is necessary to
change position 40 in strip 1, position 0 in strip 2, and
so on. Only in those positions can we find vertex 1, a
vertex that will be changed in all of its occurrences in
lStrips with vertex 31 (the vertex pointed to in their
next field). This means that vertex 1 will never appear
in LOD 2 because all the vertices in a LOD must have
and index lower than or equal to the current LOD
number.

3.2.4 Construction
Construction is a preprocess that fills the data
structures of the model. These structures store the
vertices, the strips that represent the mesh and the
changes that take place on the strips when the LOD
changes.

The phases of this preprocess can be summarised in
the following steps:

• Stripification. Using the STRIPE algorithm
[eva96a], we build the vertex array with the
vertex coordinates data and the strip list with
the highest level of detail.

• Simplification. By means of the QSLIM
algorithm [Gar97a], we select the vertex
simplification order.

• Arrangement. Once we have the
simplification order, we change all the
structures to store the vertices in that order.

We need to arrange the vertex array and all
the occurrences of the vertices in the strips.

• Collapse. We fill the next field of each vertex
taking into account the results of the
simplification process and the restriction
that all vertices to be collapsed must be
neighbours on the external edge.

With this information the model is able to change
between LODs quickly and efficiently using the
algorithms described below.

Algorithms
3.2.5 Level of detail recovery algorithm
The level of detail recovery algorithm works by
changing the vertices of all strips by simplifying
them. As shown in Figure 8, at the beginning it is
important to detect whether the new level of detail is
higher than the current one, or vice versa, in order to
traverse strips in ascending or descending order. The
vertices involved are then changed in each strip, in a
sequential and ordered way, until a new level of detail
is reached.

 DetermineStep(s);

 FOR currentLOD TO newLOD STEP s

 WHILE NOT EndChangesLOD

 SplitOrCollapseVerticesInStrips;

 END WHILE

 END FOR

Figure 8. Level-of-Detail Recovery Algorithm

In Figure 7 we show how this algorithm operates.
Starting at LOD 1, to move to LOD 2 it is necessary to
traverse the lChanges data structure for LOD 1, as
shown in Figure 6, and each change in the strip and
position indicated is applied. In this case, then, it is
necessary to change the vertex located in strip 2,
position 0, that is, vertex 1 is changed by its next: 31,
and so on. In the following section it will be shown
how the drawing algorithm detects the repeated
vertices, which are not sent to the graphics system.

3.2.6 Drawing algorithm
The aim of the drawing algorithm is to traverse all
strips, reducing the vertices sent to the graphics
system by detecting repetitions. In Figure 7 it can be
seen how, in the strip of LOD 12, there is a vertex
repetition: 31 23. The drawing algorithm is able to
detect these situations and then only sends these
vertices to the graphics system once. Figure 9 shows
the pseudocode of this algorithm.

 FOR EACH Strip;

 SendVertex;

 IF FoundRepetitions THEN

 JumpToNextVertex;

 ENDIF

 END WHILE

Figure 9. Drawing Algorithm

4. RESULTS
Tests designed to compare multiresolution models
follow the ones introduced by [Rib99a]. The tests
carried out were:

• Linear Test: consists in extracting the LODs
of the model in a linear and proportionately
increasing or decreasing way.

• Exponential Test: consists in extracting
LODs in an exponential way, that is, at the
beginning very distant levels of detail are
extracted and then the closer levels.

The spatial cost of the model is also presented here.

All these tests were compared with [Hop96a][Bel03a],
the first of which has been and still is a reference
model in the multiresolution world, while the second
one is the most recent multiresolution model to make
full use of multiresolution strips.

To pass the tests three well-known meshes were
taken as a reference, from the Stanford 3D Scanning
Repository, so as to make it easy to compare this
model with other well-developed models.

Tests were carried out on a PC with an Intel Xeon 2.4
Ghz processor and 512 Mb RAM, and with an ATI
Fire GL E1 64 Mb graphics card.

Spatial cost
In Table 1, it can be seen how the model presented
here, has a similar spatial cost than the other models
in the comp arison.

Mesh Vertices PM MTS
Our

Model

Cow 2904 0.272 Mb 0.252 Mb 0.388 Mb

Bunny 34834 3.282 Mb 2.963 Mb 3.556 Mb

Phone 83044 7.863 Mb 6.765 Mb 8.099 Mb

Table 1. Spatial cost comparison

Tests
The following tables show the results of applying
linear and exponential test to models PM [Hopp96a],
MTS [Bel03a] and the one presented here: Model.

As shown in Table 2, which corresponds to the linear
test, and in Table 3, corresponding to the exponential
test, the total visualisation time is shown first, while
the lower part shows the percentage of this time used
to extract the level of detail and the percentage used
to draw the resulting mesh.

It should be pointed out that, comparing this model
with PM [Hop96a] and MTS [Bel03a], it was
necessary to add the time spent on discarding
repeated vertices to the recovery percentage and to
deduct it from the drawing percentage; the total time
for rendering is not affected by this calculation.

 PM MTS Our Model

 Render (ms) Render (ms) Render (ms)

 % rec % drw % rec % drw % rec % drw

0.986715 1.006055 0.573033 Cow

 7.88% 92.12% 38.00% 62.00% 16.56% 83.44%

Bunny 11.29813 6.169898 5.684376

 0.76% 99.24% 22.32% 77.68% 8.93% 91.07%

Phone 32.983562 14.250778 14.296618

 0.24% 99.76% 16.83% 83.17% 8.33% 91.67%

Table 2. Linear test

 PM MTS Our Model

 Render (ms) Render (ms) Render (ms)

 % rec % drw % rec % drw % rec % drw

1.1235591 1.113182 0.62946 Cow

 6.52% 93.48% 27.42% 72.58% 16.24% 83.76%

Bunny 16.55663 6.901847 7.837922

 0.50% 99.50% 17.95% 82.05% 8.70% 91.30%

Phone 48.922801 16.46929 19.722395

 0.17% 99.83% 12.98% 87.02% 8.24% 91.76%

Table 3. Exponential test

As we can see in both tests, the bigger the mesh is,
the worse the results of the model presented here will

be, as compared to MTS [Bel03a]. This is because the
drawing algorithm must discard repeated vertices,
which involves an extra cost that is proportional to
the number of vertices in the mesh to be processed.

Rendering Time

0

2

4

6

8

10

12

14

0 1

LOD

 T
im

e
in

 m
ill

is
ec

on
ds

Table 4. Visualisation time for Standford bunny
model in a linear test.

5. CONCLUSIONS & FUTURE WORK
The model presented here offers the following
features: it is easily implemented, and is efficient and
fast.

In summary, it has a similar cost that is lower than the
models it was compared with. Moreover, its level of
detail recovery cost is very small compared to strip-
based models like MTS [Bel03a] and it is similar to
that of triangle-based models such as PM [Hop96a].
Finally, rendering times are quite good, considering
that the time spent discarding repeated vertices
increased this time. Thus, the bigger the meshes are,
the more this cost also increases. This is an item to be
improved in this model which would increase its
performance to a notable degree.

Another characteristic to be improved would be
length of strips, which is now static and ought to be
dynamic, thus discarding repeated vertices directly in
the data structure instead of using the drawing
algorithm would improve drawing, decreasing storage
cost too.

6. ACKNOWLEDGMENTS
This work was supported by the Spanish Ministry of
Science and Technology grants TIC2001-2416-C03-02
and TIC2002-04166-C03-02, and FEDER funds.

7. REFERENCES
[Bel03a] O. Belmonte, I. Remolar, J. Ribelles, M.

Chover, M. Fernández. Efficient Use Connectivity
Information between Triangles in a Mesh for Real-

Time Rendering, Future Generation Computer
Systems, Special issue on Computer Graphics and
Geometric Modeling, 2003. ISSN 0167-739X.

[Els97a] El-Sana J, Azanli E, Varshney A. Skip strips:
maintaining triangle strips for view-dependent
rendering. In: Proceedings of Visualization 99,
1999. p.131-7.

[Eva96a] F. Evans, S. Skiena and A. Varshney,
Optimising Triangle Strips for Fast Rendering,
IEEE Visualization ’96, 319-326, 1996.
http://www.cs.sunysb.edu/~stripe

[Gar97a] M. Garland, and P. Heckbert, Surface
Simplification Using Quadratic Error Metrics,
Proceeding of SIGGRAPH’97, 209-216, 1997.

[Gar99a] : M. Garland, Multiresolution Modelling:
Survey & Future Opportunities. State of the Art
Reports of EUROGRAPHICS’99, 111-131, 1999.

[Hop96a] : H. Hoppe. Progressive Meshes. Computer
Graphics (SIGGRAPH), 30:99-108, 1996.

[Hop97a] Hoppe H. View-dependent refinement of
progressive meshes. In: Procedeeding of
SIGGRAPH 97, 1997. P.189-98.

[Por03a] Massimiliano B. Porcu, Riccardo Scateni. An
Iterative Stripification Algorithm Based on Dual
Graph Operations. EUROGRAPHICS 03.

[Pup97a] Puppo E, Scopigno R. Simplification, LOD
and multiresolution-principles and applications.
Tutorial notes of EUROGRAPHICS 99, vol. 16, no.
3, 1997.

[Rib99a] J. Ribelles , M. Chover, A. Lopez and J.
Huerta. A First Step to Evaluate and Compare
Multirresolution Models, Short Papers and Demos
EUROGRAPHICS’99, 230-232, 1999.

[Rib00a] J. Ribelles, A. López, I. Remolar, O. Belmonte,
M. Chover. Multiresolution Modelling of
Polygonal Surface Meshes Using Triangle Fans.
Proc.of 9th DGCI 2000, 431-442, 2000. ISBN 3-540-
41396-0.

[Rib02a] J. Ribelles, A. López, Ó. Belmonte, I. Remolar,
M. Chover, Multiresolution
modeling of arbitrary polygonal surfaces: a
characterization, Computers & Graphics,
ISBN/ISSN 0097-8493, vol. 26, num. 3, pp. 449-462,
2002.

[Sha03a] Michael Shafae, Renato Pajarola. DStrips:
Dynamic Triangle Strips for Real-Time Mesh
Simplification and Rendering. Proceedings Pacific
Graphics Conference, pp. -, 2003

[Sha03b] Pajarola publications web
http://www.ics.uci.edu/~pajarola/posters/DStrips.
pdf. (PDF Format).

[Ste01a] A. James Stewart: Tunneling for Triangle
Strips in Continuous Level--of--Detail Meshes.
Graphics Interface 2001: 91-100.

