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ABSTRACT 

Triangle strips have been widely used for static mesh representation because they are optimal for rendering. This 
primitive reduces the number of vertices sent to the graphics pipeline and the storage costs. We present an 
approach to improve multiresolution models that takes this connectivity property into account. Our model uses 
strips both in the data structure and in the rendering stage. It also offers the following features: it is easily 
implemented, and is efficient and fast. 
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1. INTRODUCTION 
A common approach to solving the problem of 
complexity in large scenes involves level-of-detail 
(LOD) or multiresolution modelling. Multiresolution 
models can be classified into two large groups: 
discrete multiresolution models, i.e. those that contain 
various representations of the same object with 
different levels of detail, and continuous 
multiresolution models, which are those that 
represent a vast range of approximations to a 
continuous object.  

Discrete models typically store between five and ten 
LODs and tend to suffer from popping artifacts when 
a LOD is changed. Some graphics standards, like X3D 
or OpenInventor, use such models. In continuous 
multiresolution models, two consecutive LODs differ 
by only a few triangles. These small changes 
introduce minimal visual artifacts. On the other hand, 
the size of the model becomes smaller than that of a 
discrete model, because no duplicate information is 
stored. Currently, Progressive Meshes by Hugges 
Hoppe [Hop96a] is the best known continuous 
multiresolution model. It is included in the graphics 

library DirectX from Microsoft Corporation. 

Although these models have shown excellent results 
in interactive visualisation, they work with triangles. 
Recently, these models have been improved to 
include connectivity information by storing the 
models as triangle strips or triangle fans that reduce 
the amount of information sent to the graphics 
pipeline and increase the rendering frame rate 
[Rib00a][Ste01a][Sha03a]. 

In short, modelling a mesh as a collection of strips or 
fans of triangles avoids the need to store and send a 
large amount of redundant information to the 
graphics system; it also gives rise to better 
visualisation times and lower storage costs. 

Section 2 begins with a brief introduction to 
multiresolution models and then we review the state-
of-the-art in multiresolution models. In section 3 a 
new model is presented, along with its data structure 
and algorithms. There is also an explanation of its 
main characteristics and a description of how to 
construct it, with internal details. Later, in section 4, 
we present the results of comparing this model with 
PM [Hop96a] and MTS [Bel03a]. Finally, in section 5, 
conclusions and future work are presented. 

2. RELATED WORK 
Multiresolution Models 
Garland [Gar99a] defines a multiresolution model as a 
model representation that captures a wide range of 
approximations of an object and which can be used to 
reconstruct any one of them on demand.  
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The common criteria used to determine the most 
suitable LOD are the distance from the object to the 
viewer, the projected area of the object on the 
display, the eccentricity of this object on the display, 
and the intrinsic importance of the object. 

Ribelles et al. [Rib02a] present a characterisation of 
multiresolution models. This work classifies the 
models taking into account certain other criteria. 
Some other important works on this subject are 
[Pup97a][Gar99a].  

In this section, multiresolution models that take 
advantage of connectivity are reviewed. 

The VDPM model by Hoppe [Hop97a] first 
determines the set of triangles to visualise, and then 
triangle strips are searched on-the-fly over the mesh. 
This is a time-consuming task but the final 
visualisation time is reduced because triangle strips 
are rendered quickly. 
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Figure 1. VDPM, Hoppe 97 

 

The El-Sana et al. model [Els99a] first determines a set 
of triangle strips over the polygonal model. These 
triangle strips are stored in a data structure called a 
Skip List. After determining which triangles to render, 
the skip lists are updated and then rendered. This 
model passes the display triangle strips through 
filters for removing vertex repetitions. 
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Figure 2. Skip-Strips, El -Sana 99 

 

The first multiresolution model to use the triangle fan 
primitive in storage and in the rendering stage, taking 
advantage of the connectivity information between 

the triangles in a mesh, is the model by Ribelles et al. 
called MOM-Fan [Rib00a]. This model uses the 
triangle fan primitive both in the data structure and in 
the rendering stage. The main drawback of this model 
is the high number of degenerate triangles used in 
representation, although they are purged out before 
the rendering stage. Another drawback of the model 
is that the average number of triangles in each 
triangle fan is small. 
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Figure 3. MOM-Fan, Ribelles 2000 

 

As regards strips, the first multiresolution model to 
take advantage of the triangle strip primitive in 
storage and in the rendering stage is that by 
Belmonte et al., called MTS [Bel03a]. This model uses 
the triangle strip primitive both in the data structure 
and in the rendering stage. The model consists of a 
collection of multiresolution strips, each of which 
represents a triangle strip at every LOD, and this is 
coded as a graph. Only the strips that are modified 
between two consecutive LOD extractions are 
updated before visualisation. 
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Figure 4. MTS, Belmonte 2003 

 

Recently, some works have been presented that are 
based on the triangle strip primitive. These focus on 
dynamically simplifying the triangle strips for each 
demanded LOD. The model by Shafae et al, called 
DStrips [Sha03], manages the triangle strips in such a 



way that only the triangle strips that are being 
modified are actually processed, while the rest of the 
triangle strips in the model remain unchanged. This 
update mechanism reduces the extraction time, 
although results published in this work still show a 
high extraction time. 

Another approach to the use of triangle strips in a 
multiresolution model is the work by A. James Stewart 
[Ste01a], extended by Porcu [Por03a]. This work uses 
a tunnelling algorithm in order to connect isolated 
triangle strips, thus obtaining triangle strips with 
large numbers of triangles while reducing the number 
of triangle strips in the model as it is simplified. 
Again, its main drawback is the time consumed by the 
stripification algorithm. 
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Figure 5. Dynamic Stripification Models 

3. OUR APPROACH 
Introduction 
The proposed model here represents a mesh as a set 
of multiresolution triangle strips. The model maintains 
the strips both in the data structure and in the 
rendering stage. 

Our model offers the following features: 

• Easy to implement: the data structures and 
algorithms are simple and clear. 

• Efficiency: with low LOD recovery1 time, we 
obtain better results than MTS [Bel03a], the 
first model wholly based on triangle strips.  

• Speed: using triangle strips, rendering is 
faster than PM [Hop96a], which is based on 
triangles. 

In the following sections we present the data 
structure, algorithms and the construction process of 
the model presented.  

Data Structures 
We store a list of multiresolution strips where each is 
represented by an array of pointers to vertices. This 
structure is defined in such a way as enable those 
vertex sequences to be utilised directly for rendering 
by using the strip graphics primitive. Therefore, we 
have a list of arrays to represent the strips, lStrips, 

                                                                 
1 Rendering time = recovery time + drawing time 

and a vertex array to store the geometric coordinates, 
lVerts. Furthermore, we have another data structure, 
lChanges, which allows the swift recovery of the strip 
vertex positions that change between LODs.  

... 1 ... 11 ... 23 ... 31 ... 37 ... 46 ...

x,y,z 31 x,y,z 23 x,y,z 31 x,y,z 46 x,y,z 46 x,y,z 48
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1 5 2 3...
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Figure 6. Data structure example 

 

3.2.1 lVerts 
This structure stores the 3D coordinates of each 
vertex in the mesh. In addition, each record has a field 
next that stores a pointer to the vertex to be 
collapsed. When a vertex is removed due to the 
change in level of detail, that vertex is substituted by 
the vertex found in its next field. Another important 
feature of this structure is that lVerts stores the vertex 
according to the order of simplification. This enables 
the easy identification the vertices which are not valid 
for one LOD. If we change from LOD 0 to LOD 1, 
vertex 0 will be replaced with the vertex in its next 
field in all occurrences of that vertex in the lStrips 
structure. In Figure 6 we can see an example of these 
data structures. 

In our model, each vertex can only be collapsed with 
its neighbours on the external edge; to eliminate 
internal edges it is necessary to collapse their two 
vertices. For example, in Figure 7 we can see that in 
LOD 0, vertex 31 could only be collapsed with vertex 
46 or vertex 1. 

3.2.2 lStrips 
This structure uses a list to maintain the 
multiresolution strips. Each strip is represented by 
means of an array of pointers to vertices that provide 
the vertex sequence to draw the strip in the drawing 
stage. Therefore, taking strip 2, in Figure 6, as a 
reference, it can be seen that the vertices 
1,23,31,11,46,37 define the strip with the highest LOD.  
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Figure 7. Level-of-Detail Transition 

3.2.3 lChanges 
lChanges is a list that allows us to quickly recover 
the positions of the vertices that are changed, when 
the model switches between LODs. As we can see in 
Figure 6, lChanges is ordered by the number of the 
LOD. As the example shows, when the model 
changes from LOD 1 to LOD 2, it is necessary to 
change position 40 in strip 1, position 0 in strip 2, and 
so on. Only in those positions can we find vertex 1, a 
vertex that will be changed in all of its occurrences in 
lStrips with vertex 31 (the vertex pointed to in their 
next field). This means that vertex 1 will never appear 
in LOD 2 because all the vertices in a LOD must have 
and index lower than or equal to the current LOD 
number. 

3.2.4 Construction 
Construction is a preprocess that fills the data 
structures of the model. These structures store the 
vertices, the strips that represent the mesh and the 
changes that take place on the strips when the LOD 
changes. 

The phases of this preprocess can be summarised in 
the following steps: 

• Stripification. Using the STRIPE algorithm 
[eva96a], we build the vertex array with the 
vertex coordinates data and the strip list with 
the highest level of detail. 

• Simplification. By means of the QSLIM 
algorithm [Gar97a], we select the vertex 
simplification order. 

• Arrangement. Once we have the 
simplification order, we change all the 
structures to store the vertices in that order. 

We need to arrange the vertex array and all 
the occurrences of the vertices in the strips. 

• Collapse. We fill the next field of each vertex 
taking into account the results of the 
simplification process and the restriction 
that all vertices to be collapsed must be 
neighbours on the external edge. 

With this information the model is able to change 
between LODs quickly and efficiently using the 
algorithms described below. 
 
Algorithms 
3.2.5 Level of detail recovery algorithm 
The level of detail recovery algorithm works by 
changing the vertices of all strips by simplifying 
them. As shown in Figure 8, at the beginning it is 
important to detect whether the new level of detail is 
higher than the current one, or vice versa, in order to 
traverse strips in ascending or descending order. The 
vertices involved are then changed in each strip, in a 
sequential and ordered way, until a new level of detail 
is reached. 

 

 DetermineStep(s); 

 FOR currentLOD TO newLOD STEP s 

  WHILE NOT EndChangesLOD 

   SplitOrCollapseVerticesInStrips; 

  END WHILE 

 END FOR 

Figure 8. Level-of-Detail Recovery Algorithm 

 

In Figure 7 we show how this algorithm operates. 
Starting at LOD 1, to move to LOD 2 it is necessary to 
traverse the lChanges data structure for LOD 1, as 
shown in Figure 6, and each change in the strip and 
position indicated is applied. In this case, then, it is 
necessary to change the vertex located in strip 2, 
position 0, that is, vertex 1 is changed by its next: 31, 
and so on. In the following section it will be shown 
how the drawing algorithm detects the repeated 
vertices, which are not sent to the graphics system. 

3.2.6 Drawing algorithm 
The aim of the drawing algorithm is to traverse all 
strips, reducing the vertices sent to the graphics 
system by detecting repetitions. In Figure 7 it can be 
seen how, in the strip of LOD 12, there is a vertex 
repetition: 31 23. The drawing algorithm is able to 
detect these situations and then only sends these 
vertices to the graphics system once. Figure 9 shows 
the pseudocode of this algorithm. 



 FOR EACH Strip; 

  SendVertex; 

  IF FoundRepetitions THEN 

   JumpToNextVertex; 

  ENDIF 

 END WHILE 

Figure 9. Drawing Algorithm 

 

4. RESULTS 
Tests  designed to compare multiresolution models 
follow the ones introduced by [Rib99a]. The tests  
carried out were: 

• Linear Test: consists in extracting the LODs 
of the model in a linear and proportionately 
increasing or decreasing  way. 

• Exponential Test: consists in extracting 
LODs in an exponential way, that is, at the 
beginning very distant levels of detail are 
extracted and then the closer levels. 

The spatial cost of the model is also presented here. 

All these tests were compared with [Hop96a][Bel03a], 
the first of which has been and still is a reference 
model in the multiresolution world, while the second 
one is the most recent multiresolution model to make 
full use of multiresolution strips. 

To pass the tests three well-known meshes were 
taken as a reference, from the Stanford 3D Scanning 
Repository, so as to make it easy to compare this 
model with other well-developed models. 

Tests were carried out on a PC with an Intel Xeon 2.4 
Ghz processor and 512 Mb RAM, and with an ATI 
Fire GL E1 64 Mb graphics card. 

 

Spatial cost 
In Table 1, it can be seen how the model presented 
here, has a similar spatial cost than the other models  
in the comp arison. 

 

Mesh Vertices PM MTS 
Our 

Model 

Cow 2904 0.272 Mb 0.252 Mb 0.388 Mb 

Bunny 34834 3.282 Mb 2.963 Mb 3.556 Mb 

Phone 83044 7.863 Mb 6.765 Mb 8.099 Mb 

 

Table 1. Spatial cost comparison 

Tests  
The following tables show the results of applying 
linear and exponential test to models PM [Hopp96a], 
MTS [Bel03a] and the one presented here: Model. 

As shown in Table 2, which corresponds to the linear 
test, and in Table 3, corresponding to the exponential 
test, the total visualisation time is shown first, while 
the lower part shows the percentage of this time used 
to extract the level of detail and the percentage used 
to draw the resulting mesh. 

It should be pointed out that, comparing this model 
with PM [Hop96a] and MTS [Bel03a], it was 
necessary to add the time spent on discarding 
repeated vertices to the recovery percentage and to 
deduct it from the drawing percentage; the  total time 
for rendering is not affected by this calculation. 

      

 PM MTS Our Model 

 Render (ms) Render (ms) Render (ms) 

 % rec % drw % rec % drw % rec % drw 

0.986715 1.006055 0.573033 Cow 

  7.88% 92.12% 38.00% 62.00% 16.56% 83.44% 

Bunny 11.29813 6.169898 5.684376 

  0.76% 99.24% 22.32% 77.68% 8.93% 91.07% 

Phone 32.983562 14.250778 14.296618 

  0.24% 99.76% 16.83% 83.17% 8.33% 91.67% 

 

Table 2. Linear test 

      

 PM MTS Our Model 

 Render (ms) Render (ms) Render (ms) 

 % rec % drw % rec % drw % rec % drw 

1.1235591 1.113182 0.62946 Cow 

  6.52% 93.48% 27.42% 72.58% 16.24% 83.76% 

Bunny 16.55663 6.901847 7.837922 

  0.50% 99.50% 17.95% 82.05% 8.70% 91.30% 

Phone 48.922801 16.46929 19.722395 

  0.17% 99.83% 12.98% 87.02% 8.24% 91.76% 

  

Table 3. Exponential test 

 

As we can see in both tests, the bigger the mesh is, 
the worse the results of the model presented here will 



be, as compared to MTS [Bel03a]. This is because the 
drawing algorithm must discard repeated vertices, 
which involves an extra cost that is proportional to 
the number of vertices in the mesh to be processed. 
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Table 4. Visualisation time for Standford bunny 
model in a linear test. 

 

5. CONCLUSIONS & FUTURE WORK 
The model presented here offers the following 
features: it is easily implemented, and is efficient and 
fast. 

In summary, it has a similar cost that is lower than the 
models it was compared with. Moreover, its level of 
detail recovery cost is very small compared to strip-
based models like MTS [Bel03a] and it is similar to 
that of triangle-based models such as PM [Hop96a]. 
Finally, rendering times are quite good, considering 
that the time spent discarding repeated vertices 
increased this time. Thus, the bigger the meshes are, 
the more this cost also increases. This is an item to be 
improved in this model which would increase its 
performance to a notable degree. 

Another characteristic to be improved would be 
length of strips, which is now static and ought to be 
dynamic, thus discarding repeated vertices directly in 
the data structure instead of using the drawing 
algorithm would improve drawing, decreasing storage 
cost too.  
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