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ABSTRACT

This paper compares various techniques for compressing floating point distance fields. Both lossless and lossy
techniques are compared against a new lossless technique. The new Vector Transform technique creates a pre-
dictor based upon a Vector Distance Transform and its suitability for distance field data sets is reported. The new
technique produces a lossless encoding at a third of the file size of entropy encoders, and equivalent to lossy wavelet
transforms, where around 75% of the coefficients have been set to zero. The algorithm predicts each voxel value
linearly based upon two previous voxels chosen from one of 13 directions which have been previously computed.
Those that cannot be predicted are explicitly stored.
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1 INTRODUCTION
Although there has been much work on the topic
of compressing volume data [Mur93, FY94, IP98,
ILRS03], little or no research has been published on
the compression of distance fields. Distance fields
have gained a wide appreciation in the graphics com-
munity recently as they have been found useful for
many applications, from contour connection [JC94],
object representation [Jon96, FPRJ00, JS01], object
reconstruction [CL96], interactive modelling [BC02],
skipping over empty space during ray-tracing [SK00]
to alternative data structures for the geometry simpli-
fication process. The common element for distance
fields is that they should enable the query of distance in
three-dimensional space to an object contained within
that space. The main approaches for achieving this
are to calculate the distance for each requested point,
the full distance field [JS01], an adaptive distance
field [FPRJ00] or a piecewise linear approximation
[WK03]. Broadly, the first involves a costly query of
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the object to calculate the closest distance and is only
suitable for objects with low primitive count, or cases
where few queries are required. The full distance field
calculates a discrete grid of distances, and the distance
to query points are calculated using interpolation from
known points. The adaptive distance field provide dis-
tances in a similar manner, but these are interpolated
from octree nodes. Finally the piecewise linear ap-
proximation method approximates the distance field
with linear functions, and distance queries are handled
by determining and evaluating the appropriate func-
tion.
Each approach has its own benefits and disadvantages
(most notably a trade-off between accuracy, storage re-
quirements and computational effort), and are there-
fore suited to different applications. The analysis of
the most appropriate approach is not the topic of this
paper, but rather methods for the compression of full
distance fields will be considered and evaluated.
Section 2 will describe some of the methods used for
compression of volume data. Their use on distance
fields will be evaluated and the compression ratios will
be reported.
Section 3 will show how a vector distance transform
can be used as a predictor of voxel values in a distance
field in order to aid the compression process. It will
derive the predictor, and give details of the implemen-
tation, including consideration to numerical accuracy
and space required.
Section 4 will examine and compare the various loss-
less and lossy techniques with the new Vector Trans-
form method, and Section 5 will conclude the paper



and suggest some future work.

2 PREVIOUS WORK
The compression of distance fields offers its own chal-
lenges when compared to image compression or stan-
dard volume compression. Images or volumes usually
represent data using an integer format of a certain bit
length - for example the hydrogen data (from AVS)
uses an 8 bit unsigned integer format, and the UNC
CThead uses a 12 bit signed integer format. Lossless
compression techniques can take advantage of some
values appearing more frequently than others (for ex-
ample, bone in CT data sets), and employ a codebook
approach to compression. Lossy techniques can quan-
tize the data further, use the DCT, or wavelets.
Distance fields, D, represent the distances as n bit
floating point numbers, where usually n=16, 32, or 64.
Each value represents the minimum distance from that
voxel, p, to the surface S:

D(p) = sgn(p) · min {|p − q| : q ∈ S}
sgn(p) =

{ −1 if p inside
+1 if p outside

where || is the Euclidean norm

(1)

Simple lossless compression may be achieved by en-
tropy encoding, or lossy compression can be achieved
by reducing accuracy in the form of quantizing the
original values, and then a lossless encoding may be
applied to achieve further compression. The next sec-
tions look at applying existing methods for lossless
and lossy compression to floating point distance fields.

2.1 Lossless techniques

Entropy encoding techniques such as Huffman coding,
run-length-encoding and arithmetic coding [Sal01]
have been developed with regard to text or integer
based data representations. Such methods perform
poorly on representations based upon real numbers be-
cause the bit patterns are too random for entropy en-
coding to work well (Table 1). Matters can be im-
proved by observing that the 64 bit IEEE floating point
representation is divided into 1 bit for sign, followed
by 11 bits for the exponent, and 53 bits for the man-
tissa (in practise 52 are stored, and the most significant
is implied to be 1). By rearranging the bits such that
all the sign bits occur first, followed by all the expo-
nent bits, and finally followed by the mantissa bits, it
is possible for entropy coding to take advantage of the
coherency in the sign, exponent, and the first few bits
of the mantissa (Table 2) (previously applied to image
data in [CM95] amongst others).
The lossless Lorenzo predictor [ILRS03] (which was
developed for scalar data) is not suited to floating point
distance field data sets (exactly predicting only 0.6%

Distance Field Original Entropy
64 bit IEEE f.p. size in bytes encoding
AVS Hydrogen 16777216 13156273

128 × 128 × 128 (100%) (78.42%)
CThead 67108864 61014252

256 × 256 × 128 (100%) (90.92%)

Table 1: Entropy encoding of 64 bit floating-point dis-
tance fields.

Distance Field Original Entropy
64 bit IEEE f.p. size in bytes encoding
AVS Hydrogen 16777216 13220415

128 × 128 × 128 (100%) (78.80%)
CThead 67108864 53505457

256 × 256 × 128 (100%) (79.73%)

Table 2: Entropy encoding of 64 bit floating-point dis-
tance fields after rearrangement of the bit-planes.

of voxel values in the CThead distance field). Another
predictor [FY94] performs similarly. Both predictors
have been designed with scalar data in mind, and work
well with such data.
Existing lossless techniques do not offer large com-
pression ratios for floating point distance fields, and so
lossy techniques, as discussed in the next section, may
be used to improve the compression ratio, but at the
expense of introducing variable amounts of error. As
shall be seen in Section 3, the method presented in this
paper offers a lossless encoding of floating point dis-
tance fields at a substantially improved ratio compared
to existing lossless techniques, and at a ratio compara-
ble to lossy compression methods.

2.2 Lossy Techniques

Wavelet transforms have been investigated extensively
for the compression of volume data [Mur93][IP98]
[Rod99][KS99]. Wavelets implement a hierarchical
approach to compression whereby each level in the hi-
erarchy is an interpolation of previous levels. Detail
coefficients are stored and, for lossy encoding, are set
to zero where they are less than a predefined thresh-
old. The coefficients are quantized and then entropy
encoding or zero-trees [Sha93] are employed for fur-
ther compression. For lossless encoding all detail co-
efficients are retained, and no quantization takes place.
Wavelet transforms can be suited to floating point dis-
tance field data by not using the quantization step.
Simple transforms, such as Haar, offer a means of gen-
erating good compression ratios whilst controlling the
overall error of the data set. Table 3 shows the Haar
transform used in both the lossless and lossy modes,
and the resulting error and data sizes for the CThead



Wavelet Coefficients Max
Transform set to zero Error

59858717 (89%) 0% 0.000
33667571 (50%) 49% 0.046
10863320 (16%) 85% 0.540

Table 3: Wavelet compression using Haar transform.

data set (original size 67108864 bytes). Entropy en-
coding rather than zero-tree encoding was used on the
detail coefficients. It can be seen from the table that
substantial savings in storage can be achieved if some
error is allowed in the data set. Approximating dis-
tance fields using piecewise linear functions has en-
abled a large compression at the expense of introduc-
ing some inaccuracy into the distance values [WK03].
This compression is particularly suited to situations
where distance values at, or around, the surface are
more important – e.g. during geometry processing.
The lossless method presented in this paper is suited
to situations where error is undesirable.

3 METHOD
The lossless method presented in this paper relies upon
the observation that Distance Transforms generally
produce good approximations to true distances. A
more accurate Vector Distance Transform will be used
as the basis for the predictor used in this method.

3.1 Vector Distance Transforms

The 3 × 3 × 3 Chamfer Distance Transform (CDT)
[Dan80] propagates distances throughout a volume,
D, by calculating the distance for the current voxel by
adding unit distance to each face neighbouring voxel,√

2 distance to each edge neighbour, and
√

3 distance
to each vertex neighbour, and then taking the mini-
mum of all those distances:

D(x, y, z) =
min(D(x + i, y + j, z + k) +

√
i2 + j2 + k2)

∀i, j, k ∈ {−1, 0, 1}
(2)

For implementation, the CDT is carried out in two
passes – forwards using previously calculated neigh-
bours, and backwards using the remaining neighbours.
CDTs suffer from poor accuracy as the distance from
the surface increases. This problem is overcome by
using Vector Distance Transform (VDT) techniques
[Mul92, SJ01] which enable accurate distance fields to
be generated quickly. VDTs store the vector v to the
closest point p to the surface at each voxel in a vol-
ume V such that V (p) = v, and add (or subtract) the
appropriate unit distance from each dimension based

upon the direction of the neighbour (again taking the
minimum):

D(x, y, z) =
min(|V (x + i, y + j, z + k) − (i, j, k)|)
∀i, j, k ∈ {−1, 0, 1}

(3)

VDTs propagate distances more accurately than CDTs,
but there are certain configurations which prevent
VDTs from being completely accurate. As these cases
are the exception rather than the majority case, the
VDT can be used as a predictor for a voxel value in
a distance field data set, and hence may be used as a
basis for a compression technique.

3.2 Derivation of the Predictor

In this section, a distance predictor will be derived,
which uses the known distances (d2 and d1) from 2
previous voxels, to calculate the distance for the cur-
rent voxel (d0). For derivation purposes, assume three
consecutive voxels v2, v1 and v0 in the x-axis with
v2 being the leftmost and distances to the surface at
each voxel d2, d1 and d0 respectively, with d2 and d1

known. Assuming the vector to the surface at v2 is (x,
y, z), then using a vector transform in the forward x
direction would result in v1 having a vector (x + 1, y,
z) to the surface, and v0 would have (x + 2, y, z).
We have:

x2 + y2 + z2 = d2
2 (4)

(x + 1)2 + y2 + z2 = d2
1 (5)

and
(x + 2)2 + y2 + z2 = d2

0 (6)

From Equations 4 and 5 we obtain:

y2 + z2 = d2
2 − x2 = d2

1 − (x + 1)2 (7)

so
d2
2 − x2 = d2

1 − x2 − 2x − 1 (8)

giving

x =
d2
1 − d2

2 − 1
2

(9)

Substituting into Equation 6 and using Equation 5 we
obtain

d2
0 = 2(d2

1 + 1) − d2
2 (10)

Equation 10 also can be derived in the y and z axes.
This gives 3 forward directions from which a voxel
distance may be calculated (the already computed face
neighbours of the current voxel).
In one case where v2, v1, and v0 form a diagonal
within the xy-plane we have

x2 + y2 + z2 = d2
2 (11)

(x + 1)2 + (y + 1)2 + z2 = d2
1 (12)



and
(x + 2)2 + (y + 2)2 + z2 = d2

0 (13)

From Equations 11 and 12 we obtain:

z2 = d2
2 − x2 − y2 = d2

1 − (x + 1)2 − (y + 1)2 (14)

which gives

x + y =
d2
1 − d2

2 − 2
2

(15)

Similarly, substituting into Equation 13 and using
Equation 12 we obtain

d2
0 = 2(d2

1 + 2) − d2
2 (16)

Equation 16 also can be derived in the yz-plane and
xz-plane. This gives 6 forward directions from which
a voxel distance may be calculated (the already com-
puted edge neighbours of the current voxel).
Similarly the 4 already computed vertex neighbours
of the current voxel lead to 4 forward directions from
which a voxel distance may be calculated using Equa-
tion 17 which is derived in a similar manner to above.

d2
0 = 2(d2

1 + 3) − d2
2 (17)

In summary, the distance at the current voxel may be
predicted from the distances at two previous voxels, in
any of 13 already considered (previously calculated)
directions. Each direction can be tested in turn until
the predicted distance is equal to the distance stored
at the voxel. In the case that a prediction succeeds, a
4 bit code can indicate the direction. If the prediction
is not successful, the 4 bit code can indicate this, and
the correct distance may be stored. The sign of d0 is
predicted using the sign of d1. All other distances are
removed. Entropy encoding may be applied to the 4
bit codes, and the stored distances to further compress
the data.

3.3 Implementation

The implementation uses a distance predictor which
requires the distance at the current (d0) and two pre-
vious voxels (d1 and d2), the number of axes, n, the
distances are from (n = 1, 2 or 3), and the bit code to
be stored if the distance can be predicted:

Predictable(d2, d1, d0, n, dir)
if (d2

0 = 2(d2
1 + n) − d2

2) ∧ (sgn(d0) = sgn(d1))
then

addbits(dir)
return true

else
return false

To compress the distances of a distance field D, the
predictor is called with distances from each direction

until one succeeds. If all fail, the distance is stored
explicitly, and an appropriate bit code is added. Only
four calls are shown, and a test to check the voxels are
inside the distance volume D is omitted for clarity

CompressDistances(D)
if Predictable(Di−2,j,k, Di−1,j,k, Di,j,k, 1, 0)

return
if Predictable(Di,j−2,k, Di,j−1,k, Di,j,k, 1, 1)

return
if Predictable(Di,j,k−2, Di,j,k−1, Di,j,k, 1, 2)

return
if Predictable(Di−2,j−2,k, Di−1,j−1,k, Di,j,k, 2, 3)

return
...
addbits(stored)
store(d0)

Once the distance predictor has been carried out on
the distance field, entropy encoding is carried out on
the bit store. The distance store is transformed using
bit-plane encoding before further compression using
entropy encoding.

3.4 Further Considerations

Numerical accuracy Due to the fact that distances
may be predicted over large numbers of voxels during
the vector transform, and each prediction is based on
a previous prediction, some errors may be introduced
due to numerical inaccuracies in the internal represen-
tation of floating point numbers. This has been over-
come in the implementation by using 128-bit doubles
for some of the intermediate calculations and by us-
ing a separate quality check. The quality check tests
uncompression during the prediction stage, using the
previously predicted voxel values. If the quality check
indicates the uncompressed value will differ from the
original value due to numerical accuracy problems, the
predictor is said to have failed, and the original dis-
tance value is stored. This solves the problem, but
reduces the number of predictable voxels by around
10% from the number that could be theoretically pre-
dicted. Future work will investigate the possibility of
minimising the prediction path in an attempt to reduce
the numbers of voxels that could be predicted, but can-
not, due to numerical accuracy problems.
Time and Space Distance field data sets can be quite
large – the CThead distance field example is around
64MB. Using wavelet compression would result in the
need to have the data set present in memory during
the whole operation, as the wavelet transform makes
several passes through the voxel values on each axis.
The algorithm presented here is linear, and makes just
one forward pass through the data during both com-
pression and uncompression. As a result the algo-
rithm needs at most just three slices of the data set in



memory at anyone time (the furthest voxel used during
prediction will be two slices above the current voxel).
This linear traversal of the data rather than the several
passes used to traverse the hierarchical data resulting
from the wavelet transform also results in this method
being faster than wavelet transforms – the Haar com-
pression takes about 12 seconds, and this method takes
about 3 seconds (on a P4 2.5GHz).

4 RESULTS
Two distance field data sets were used for the com-
parison. The first is a distance field data set produced
from the UNC CThead (Figure 1). Extra slices were
added at the top and bottom to make the distance field
256 × 256 × 128 (to make the size more convenient
for the wavelet transform). Distances were calculated
at sub-voxel accuracy to the skull. The second is a dis-
tance field data set produced from the AVS Hydrogen
data set (Figure 2). Extra slices were added around the
data set to make the distance field 128 × 128 × 128.
Distances were calculated at sub-voxel accuracy to a
value of 128 (the original data is 0 to 255). Lossless
and lossy compression techniques were carried out on
both data sets. Entropy encoding, this vector trans-
form, and entropy encoding after rearranging the bit-
planes were used as lossless methods. Tables 4 and 5
show that this vector transform method produces sub-
stantially better compression than entropy encoding
methods, resulting in a file which is a third of the size
of the next best method. It is also interesting to note
the size of error introduced by using a lossy method
(Haar transform) to create a file of the same size. In
the case of the AVS Hydrogen data set, the low error
produced by the Haar transform is due to the fact that
voxels have only 0–255 values in the original data set,
and therefore the distance field for 128 contains dis-
tances to integer voxel positions or a restricted number
of positions within the voxel, which compresses well.

5 CONCLUSION
This paper has compared various techniques for com-
pressing floating point distance fields. Both lossless
and lossy techniques were compared against a new
lossless technique. The new Vector Transform tech-
nique creates a predictor based upon a Vector Distance
Transform which was demonstrated to be most suit-
able for distance field data sets. The new technique
produces a lossless encoding at a third of the file size
of entropy encoders, and equivalent to lossy wavelet
transforms, where around 75% of the coefficients have
been set to zero. The error introduced by the wavelet
transforms was reported, although the lossless wavelet
transform should be used as the main comparison as
this Vector Transform technique is lossless.

Figure 1: CThead distance field (various distance off-
sets).

Figure 2: AVS hydrogen distance field (various dis-
tance offsets).

The algorithm predicts voxel values based upon two
previous values. The algorithm is memory efficient
as only three slices are necessary in main memory for
the algorithm to operate. It is time efficient as each
voxel is computed once (unlike hierarchical wavelet
methods).
Future work will concentrate on increasing the num-
ber of voxels that can be predicted by careful con-
sideration of the prediction path, and by examining if
a backward pass may be introduced. It may also be
possible to create a hierarchical method which would
allow lossy encoding and hence provide even better
compression ratios, but with controlled loss.

References
[BC02] A. Baerentzen and N. J. Christensen. Interactive

modelling of shapes using the level-set method.
International Journal of Shape Modelling, 8(2):79–97,
2002.

[CL96] Brian Curless and Marc Levoy. A volumetric
method for building complex models from range images.
In Proceedings SIGGRAPH ’96, pages 303–312, 1996.



Method Size in bytes Max Average Type
(and % of original) Error Error

Entropy Encoding 61014252 (91%) 0.000 0.000 lossless
Haar Transform 59858717 (89%) 0.000 0.000 lossless

Bit-plane Encoding 53505457 (80%) 0.000 0.000 lossless
Haar Transform 33667571 (50%) 0.046 0.004 lossy
Haar Transform 17538888 (26%) 0.300 0.022 lossy

Vector Transform 17459421 (26%) 0.000 0.000 lossless
Haar Transform 10863320 (16%) 0.540 0.053 lossy

Table 4: Comparison on 67108864 byte CThead distance field using lossy and lossless compression techniques.

Method Size in bytes Max Average Type
(and % of original) Error Error

Bit-plane Encoding 13220415 (79%) 0.000 0.000 lossless
Entropy Encoding 13156273 (78%) 0.000 0.000 lossless
Haar Transform 12872603 (78%) 0.000 0.000 lossless
Haar Transform 8726198 (52%) 0.003 0.0003 lossy

Vector Transform 3922737 (23%) 0.000 0.000 lossless
Haar Transform 3883749 (23%) 0.025 0.003 lossy

Table 5: Comparison on 16777216 byte AVS hydrogen distance field using lossy and lossless compression tech-
niques.

[CM95] H. Cai and G. Mirchandani. Wavelet transform
and bit-plane encoding. In International Conference on
Image Processing, volume 1, pages 578–581. IEEE
Computer Society Press, 1995.

[Dan80] P-E. Danielsson. Euclidean distance mapping.
Computer Graphics and Image Processing, 14:227–248,
1980.

[FPRJ00] S. Frisken, R. N. Perry, A. P. Rockwood, and
T. R. Jones. Adaptively sampled distance fields: A
general representation of shape for computer graphics.
In SIGGRAPH Proceedings on Computer Graphics,
pages 249–254, July 2000.

[FY94] J. Fowler and R. Yagel. Lossless compression of
volume data. In 1994 Symposium on Volume
Visualization, pages 43–50, 1994.

[ILRS03] L. Ibarria, P. Lindstrom, J. Rossignac, and
A. Szymczak. Out-of-core compression and
decompression of large n-dimensional scalar fields.
Computer Graphics Forum, 22(3):343–448, 2003.

[IP98] I. Ihm and S. Park. Wavelet-based 3D compression
scheme for very large volume data. In Graphics
Interface, pages 107–116, 1998.

[JC94] M. W. Jones and M. Chen. A new approach to the
construction of surfaces from contour data. Computer
Graphics Forum, 13(3):75–84, 1994.

[Jon96] M. W. Jones. The production of volume data from
triangular meshes using voxelisation. Computer
Graphics Forum, 15(5):311–318, December 1996.

[JS01] M. W. Jones and R. Satherley. Shape representation
using space filled sub-voxel distance fields. In Shape
Modelling and Applications, pages 316–325. IEEE
Computer Society Press, 2001.

[KS99] T. Kim and Y. Shin. An efficient wavelet-based
compression method for volume rendering. In
Proceedings Pacific Graphics, pages 147–157, 1999.

[Mul92] J. C. Mullikin. The vector distance transform in
two and three dimensions. CVGIP: Graphical Models
and Image Processing, 54(6):526–535, 1992.

[Mur93] S. Muraki. Volume data and wavelet transforms.
Computer Graphics and Applications, 13(4):50–56, July
1993.

[Rod99] F. Rodler. Wavelet based 3D compression with
fast random access for very large volume data. In
Proceedings Pacific Graphics, pages 108–117, 1999.

[Sal01] D. Salomon. A Guide to Data Compression
Methods. Springer, 2001.

[Sha93] J. M. Shapiro. An embedded hierarchical image
coder using zerotrees of wavelet coefficients. In
Proceedings DCC’93 (IEEE Data Compression
Conference), pages 214–233, 1993.

[SJ01] R. Satherley and M. W. Jones. Vector-city vector
distance transform. Computer Vision and Image
Understanding, 82:238–254, 2001.

[SK00] M. Sramek and A. Kaufman. Fast ray-tracing of
rectilinear volume data using distance transforms. IEEE
Transactions on Visualization and Computer Graphics,
3(6):236–252, 2000.

[WK03] J. Wu and L. Kobbelt. Piecewise linear
approximation of signed distance fields. In Vision,
Modeling and Visualization, page to be published. IOS
Press, 2003.


