
Non-evaluated manipulation of complex CSG solids  
Rafael J. Segura, Francisco R. Feito, Juan Ruiz de Miras 

Universidad de Jaén 
Escuela Politécnica Superior 

Avda. Madrid, 35 
 Spain (E) 23071, Jaén 

rsegura@ujaen.es, ffeito@ujaen.es, demiras@ujaen.es 
 

ABSTRACT 
One of the most important problems to solve in Solid Modeling is computing boolean operations for solids 
(union, intersection and difference). In this paper we present a method to obtain the boolean operators based on 
covering the solids by simplices without evaluating the boundary. The representation of the obtained solid does 
not correspond with the minimal boundary of the solid, but using the appropriate algorithms it is possible to 
calculate some properties of the final solid, such as point-in-polyhedron test, visualization, volume or octree 
generation. The proposed method is also suitable for complex solids bounded by triangular meshes or CSG with 
polyhedral primitives. 
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1. INTRODUCTION 
Computing boolean operations between solids is 

a well known formal problem, specially for solids 
represented using a B-rep scheme. For other schemes 
of representation, the problem is in practice finally 
reduced to the B-rep problem (boundary evaluation). 
However, due to the complexity of computing, most 
approaches tend to do some simplification;  some 
solutions are only theoretical, but some authors 
consider that the aim of Computational Geometry  
must be the finding of useful algorithms that can be 
implemented in practice[Chaz,Lee96]; other solutions 
reduce the problem to 2D [Gardan96]. Finally, other 
authors propose algorithms that work only with 
convex faces [Sugi94,Prep88,Chaz92]. But usually 
most of the solids used in practice, specially 
mechanical pieces, have not simple faces, but 
complex ones, with holes or other kind of faces. 

An alternative to boundary evaluation is to 
compute boolean operations without evaluating the 
final solid. This method is very useful in CSG 

representation [Bron90], because in this scheme of 
representation the evaluation of the solid boundary is 
not needed. So, it is specially used to display the 
solid obtained by making boolean operations. 

Using the initial idea proposed by Torres and 
Feito[Tor93,Fei97a], we have developed a system for 
Solid Modelling, valid for any type of solid with 
planar faces (concave or convex, with or without 
holes, manifold or non-manifold). We have 
developed in a satisfactory way robust and efficient 
algorithms to solve the inclusion of points in a 
solid[Fei97b], and to study the intersection of a 
segment (or ray) and a polygon[Seg98]. 

As a result of this research, a method to calculate 
boolean operations for Solid Modelling is presented. 
The proposed method does not evaluate the boundary 
of the solid, and it uses the formal definitions of these 
operations to work. The boundary of the obtained 
solid is not minimal, i.e., it does not correspond with 
the real boundary of the solid. Instead of it, an 
intermediate representation is proposed, but the main 
advantages of this representation are speed, validity 
and robustness of the method. 

In the first section the theoretical foundations of  
Solid Modelling by Simplicial Coverings is 
presented; these definitions allow us to obtain a 
theorem to represent solids. Later, we will propose a 
data structure to represent solids in 3D. After that, 
algorithms to compute boolean operations between 
general polyhedra with planar faces will be presented. 
Finally, the application of this method to complex 
solids bounded by triangular meshes is shown.. 
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2. THEORETICAL FOUNDATIONS 
Definition 1.  Let x∈ℜ . The function sign(x) is 

defined as  
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Definition 2. Let T=(A,B,C) be a triangle; the 
signed area of  T (denoted by [T]) is defined as 
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Let four points be A,B,C,D ∈  R³. The signed 
volume of the tetrahedron of vertices D, A, B, and C, 
denoted by [DABC], is defined as  

[ ]




















=

1
1
1
1

·
6
1

ddd

ccc

bbb

aaa

zyx
zyx
zyx
zyx

signDABC  

It is said that a triangle/tetrahedron is a positive 
triangle/tetrahedron if its signed area/volume is 
positive It can be easily proved that a tetrahedron has 
positive orientation (that is, the remaining vertices are 
ordered counterclockwise with respect to one vertex) 
if the signed volume is positive. 

Definition 3. The signed volume of a pyramid P 
with vertex V and base F(V1V2…Vn), is denoted by 
[P] and is computed as  
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being Q an arbitrary point laying on plane 
defined by F. If the vertex of the pyramid coincides 
with the origin of co-ordinates it is said to be an 
original pyramid. 

Definition 4. The sign of a face F of a general 
polyhedra, denoted by [F], is the sign of the pyramid 
obtained by joining the face with the origin of co-
ordinates.. 

Theorem 1.[Fei97a]} Generator System. Let S 
be a solid with faces F1F2...Fm, given in consistent 
orientation (the normal vector goes outside the solid). 
Then  
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where Pi represents the original pyramid 
obtained by joining the face Fi with the origin of co-
ordinates. 

Proof. See [Fei97a] 

Instead of using pyramids, we can use tetrahedra; 
this will allow us a simplification in the computations 
[Fei97a]. As it can be seen, the pyramids do not have 
to be disjoint. This will allow us to work with 
coverings of the solids, instead of disjoint partitions 
of them. The main advantage of this approach is that 
the covering can be obtained in a very simple way 
with an linear algorithm, keeping the initial 
representation of the solid (a vertex-edge-face graph). 
Another advantage is that it is not necessary to store 
the triangulation of the solid; it is only needed to 
know the edges of the solid and an arbitrary point, 
and therefore, there is no additional information to 
store. 

Definition 5. Let P be a polygon, the covering of 
the P, denoted as Cp, is the set of triangles obtained 
by joining an arbitrary point of the plane of P with 
every edge of the polygon.  

Analogy, let a solid be S, the covering of S, 
denoted as Cs, is the set of tetrahedral obtained by 
joining every triangle of the covering of every face of 
S with an arbitrary point. 

Theorem 2. [Fei97b]. Let Q be a point, and S be 
a solid  (a polygon in 2D). Then Q is inside S if 

[ ]∑ =
i

ii TTQsign 1)·,(  

where Ti∈ Cs, [Ti] is the signed volume (or 
signed area in 2D) of the simplex, and the function 
sign(Q,Ti)}returns the signed volume (or area in 2D) 
of the simplex formed by point Q and simplex Ti (an 
edge in 2D or a face in 3D). 

Corollary 1. Let Q be a point inside solid S. 
Then ∃  Ti∈ Cs, [Ti]>0, with Q included in Ti. 

Proof. Trivially, it can be seen that, when the 
inclusion of a point in a solid is computed, we only 
use algebraic adding operations. So, at any moment it 
must be true that the sign of Ti is positive to obtain a 
positive  result. Also, it is trivial to prove that the 
points of the solid included in negative Ti are also 
included in, at least, two positive Tj, because the 
result must be positive. 

Lemma 2. [Seg01] Let T=(ABC) be a triangle, 
and S=(QQ�) be a segment,  with Q and Q' placed at 
opposite sides of plane Π defined by T, and ordered 
in such a way that the [QABC]>0. Then segment S 
cuts triangle T if  
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Proof. See [Seg01]. 

Corollary 2. [Seg98]} Let P=P1P2...Pn be a 
polygon with covering Cp={T1T2�.Tn}, and 
S=(QQ�) be a segment  with Q and Q' placed at 
opposite sides of plane Π defined by P, in such a way 
that P is ordered counterclockwise with regard to Q. 
Then S intersects P if 
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Proof. Let M be the intersection point between 
the ray and the plane Π. Then M∈ P if M belongs to n 
positive triangles and n-1 negative ones (see corollary 
1). So, ( ) ( ) 0111·1·1 >=+−=−−+ nnnn  

In the case of P is ordered clockwise with respect 
to Q, then the corollary can be expressed in an 
analogous way, but changing the sense of the 
comparison. The case of intersections with vertices or 
edges of the polygon can be detected by studying the 
intersection with the triangles of the covering. 

3. REPRESENTING SOLIDS BY SIM-
PLICIAL COVERINGS. 

Once we have presented the theoretical basis of 
the formal method of simplicial coverings, we are 
going to propose a simple data structure to represent 
solids in 3D. The data structure is based on another 
existing data structure for boundary representation, 
but adapting it to represent non-manifold solids. The 
idea is to store two arrays: an array of n 3D points 
representing the vertex of the solid; and a list of 
faces, where each one is represented as an array of 
integer values (the position of every vertex of the face 
in the list of vertex of the solid), representing the 
topology of the faces of the solid.. In the structure of 
the face are also stored the normal vector and the sign 
of the face (see def. 4). 

In order to represent different loops of a face a 
false edge is introduced in the list of indices 
representing a face. In figure 1 this fact is shown. 
Polygon is composed by two loop (the first one 
delimited by vertices 0,1,2,3,4,5 and 6, and th second 
one delimited by vertices 7,8,9,10,11,12 and 13). The 
correct definition of the face will be 
0,1,2,3,4,5,6,7,8,9,10,11,12,13,7,6,-1. As it can be 
seen, a false edge delimited by vertices 6 and 7 has 
been introduced twice, once in each sense. So, when 
the covering of the polygon is constructed, two 
triangles are obtained, each one with  different sign. 

Another solution to store different loops is to 
consider them as different faces, but orientating their 
normal vectors properly, so the external loops will be 
oriented in a way that their normal vectors point 
outside the solid, and the internal loops will be 
oriented so that their normal vectors point inside the 
solid (the sign of the internal loop is negative respect 
to the external one). 

 
 

 

4. BOOLEAN OPERATIONS. 
By using the previous data structure, we can use 

exactly the definition of the Boolean operations to 
implement them as follows: 

Complementary. 
In order to implement the unary complementary 

operation is enough to invert the list of indices of the 
solid. So, the normal vector of each face changes its 
orientation (but not its direction). 

Union. 
The union operation can be implemented by 

joining the lists of vertices from both solids, and 
doing the same with the lists of indices from them. 
The resultant list of indices must be arranged in a way 
that the indices of the vertices corresponding to the 
second solid must be increased in n, being n the 
number of vertices of the first solid. 

Difference. 
The difference operation is defined as the set of 

points that belong to A and do not belong to B. So, in 
order to implement this operation it is enough to join 
the lists of vertices from both solids. The list of 
indices of the resultant solids is built by joining the 
lists of faces from the solids, but inverting the sign of 
the faces of the second solid. 

Intersection. 
The intersection is defined as the set of points 

belonging to A, that also belong to B. So, the 
implementation of this operation is similar to the 
union operation, but it will be necessary to take into 
account the condition ∧  when the inclusion of points 

Figure 1. Introducing false edges on the 
representation of a face 



in A U B is studied. In order to create the data 
structure asociated to A I B, we use the De Morgan�s 
law, where 
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5. PROPERTIES OF SOLIDS. 
Area and Volume. 

The volume of the solid obtained by applying 
one of the previous operations is computed by adding 
the signed volume of all the tetrahedra obtained by 
covering the solid. To obtain these tetrahedra, an 
arbitrary point is chosen (for example, the origin of 
coordinates), and then, for each face of the solid, the 
face is covered by triangles. Again, it is necessary to 
choose an arbitrary point to make the covering of this 
face, but any vertex of it can be chosen. 

With this covering, it is easy to compute the area 
and the volume of the solid. These properties are 
directly derived from the formal specification of 
solids. So, the area can be computed as  

( ) ( )∑∑
= =

=
n

i

k

j

j
iTAreaSArea

1 1

 

Likewise, the volume of the solid is computed as 
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It is important to note that those triangles with 
negative sign provide the final result with a negative 
area (or volume). So, The final result is valid. 
Equally, in the case of false edges, as these edges are 
included twice (once in each sense), then their areas 
are made void. 

Point-in-polyhedron test. 
Theorem 2 gives us a method to determine 

whether a point is inside a solid (or not). Applying 
the algorithm derived from this theorem (see 
[Fei97b]) to the representation explained in previous 
sections, a method to study the inclusion of points in 
solids is obtained. We must remember that the 
algorithm returns the position of the point with regard 
to the solid  (INSIDE, OUTSIDE, FACE, EDGE or 
VERTEX). 

In figure 3, two examples of boolean operations 
are shown. In case a), A U B and A I B results are 
shown. In this case, the interior of A U B is defined 
by the points which verify that the inclusion test for 
them is greater than 0. So, the inclusion test for the 
points of the common part of A and B values at 2, and 
the remaining ones at 1. In order to study the 
intersection A I B the inclusion test must take a value 
greater than 1, i.e. it must be valued at 2. 

In figure 3.b, A-B case is shown. In this case, the 
order of the vertices corresponding to solid B has 
been changed, and therefore, the signs from the 
triangles of the covering of B have also been 
changed. So, the interior of A-B is defined by the 
points which verify that the inclusion test values 
exactly at 1. It is important to note that the result is 
not regularized because of the common boundary of 
A and B. This situation can be solved by multiplying 
by 2 the result of the inclusion test regarding loop A 
when it returns EDGE. In this case, in the common 
boundary, the values obtained will be 2 for loop A, 
and -1 for loop B, and as a consequence, the final 
result will be 1. 

In figure 4, a study of point inclusion in solids 
obtained by boolean operations is shown. Two 
mechanical pieces have been used: in figure 4.a, the 
union of both pieces is shown; in figure 4.b, the 
difference between both pieces is shown. In figure 4.c 
a bombing of the figure obtained by the difference 
operation is shown. A collection of 20,000 random 
points has been generated in the bounding box of the 
resultant solid: points inside the solid appear in green 
and points outside the solid in red. 

Figure 2. Covering the solid by tetrahedra: the 
process with a face 



 

 
 

   

 

 
 

6. VISUALIZATION OF SOLIDS. 
In order to obtain a visualization of the solids, 

several methods can be chosen, depending on the 
quality of the results. Nowadays, the most used 
method is using a Z-Buffer to render every polygon 
of the final result. Some modifications have been 
made to that method to render a CSG tree using a Z-
Buffer, but all of them require that the faces of the 
used primitives must be convex [Ste00]. To apply 
this method to the data structure proposed in this 

paper it is necessary to make some changes to the 
basic algorithm. So, the negative polygons are not 
rasterized. There is a problem in this basic solution: if 
a negative face is overlapped with a positive one, 
then exists a hole in the solid, and then, the face 
visible through the pixels of the hole is a back face or 
the background. To solve this case, the overlapped 
faces of the solid must be joined with false edge, as it 
is shown in figure 1.  

 

Ray-Casting.  
The ray-casting method is based on following the 

trajectory of a ray passing through a pixel[Fol94]. For 
each pixel of the viewing window, a ray starting on 
the Projection Reference Point (PRP) and passing 
through the pixel is constructed. Then, for any solid 
of the scene, the intersection between the ray and the 
solid is computed; the colour of the pixel is the 
colour of the solid whose intersection with the ray is 
the nearest to the PRP. To test the intersection 
between a ray and arbitrary polygons in 3D, the 
algorithm proposed in [Seg98] can be used. The main 
problem of the adaptation of the basic algorithm to 
the scheme of representation proposed previously is 
that we can obtain some intersections with the solid 
in the same point, and maybe, these intersections are 
not valid because some of them are probably outside 
the solid. In figure 5 this problem is shown (green 
polygons are positive faces, and red polygons are 
negative ones). So, it is necessary to store all the 
intersections between the ray and the faces of the 
solid. For each intersection, the intersection point and 
the sign of the face are stored. Then, the colour of the 
pixel is the colour of the nearest intersection point 
where the addition of the signs from faces sharing this 
intersection point is positive. In this way, holes in 
faces are solved. 

 

 

Figure 5. Ray-casting of polygons: sorting the 
intersections  

Figure 3. Value of inclusion in Boolean 
Operations 

Figure 4. Inclusion in boolean operations 



The additional cost of the proposed 
modifications is O(k·log k ) being k the maximum 
number of intersections found for a concrete ray. 

 

7. CONVERSION TO ENUMERATIVE 
SCHEMES OF REPRESENTATION. 
Voxelization of solids. 

Voxelization of solids is a very useful tool to 
represent volumetric information. The problem 
consists on dividing the volume into regularly spaced 
pixels (in 2D) or voxels (in 3D) implemented 
typically as an array in which it is stored information 
such as color or opacity of each pixel or voxel 
occupied by the solid. 

The main problem of the voxelization is to 
obtain the points of the space occupied by the solid. 
In 2D there are several algorithms to do it, although 
the most used is the scan-line algorithm [Fol94]. In 
3D, there are also several algorithms, but a very 
interesting approach is the one proposed in [Fan00], 
which proposes a voxelization algorithm using the 2D 
hardware to obtain slices of the solid. However this 
algorithm requires computing the intersection 
between the solid and each slice, because all the solid 
is used as input on the algorithm. Our method uses 
only part of the information of the solid, and 
therefore, the computation of the intersections is 
simpler. 

Theorem 2 gives us a simple method to voxelize 
solids. The solids are not voxelized directly on the 
3D array, but in a special buffer called presence 
buffer, PB. This buffer stores one bit per pixel 
indicating the presence of the solid in the volume 
covered by this voxel. The operation needed for this 
buffer is only the negation of the value stored 
previously on every voxel. 
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Once the voxelization of the solid has been 
completed, the information stored on the presence 
buffer is transferred to the final array, applying its 
corresponding volumetric properties. The properties 
of every voxel depends on the properties of the solid. 
If we consider only homogeneous solids, then we can 
consider that the properties of every voxel are the 
same. Only two values are possible in the PB: 0 or 1. 
Only the voxels with presence value 1 are rendered to 
the array using the corresponding properties. The 
voxelization process is as follows (see figure 6): 

•  Rasterize every tetrahedra of the covering of the 
solid in the PB, changing the value of the 
positions covered by the tetrahedron. 

•  Transfer all positions with presence value being 
equal than 1 to the frame buffer, by applying a 
function such as: given a point of the solid, it 
returns the corresponding colour of the solid in 
that point. The definition of this function 
depends on every solid. 

A complete description of the algorithm can be 
found on [Rue02]. 

Direct octree generation. 
Traditional algorithms to obtain octrees require 

computation of plane-plane intersections. However, 
our conversion process is based on the point-in-
polyhedron test previously detailed. 

Basically, the algorithm consists on classifying each 
octant with regard to the solid, beginning at top level 
(figure 7.a) and recursively decomposing the universe 
cube until a fixed level is reached (figure 7.b). Octant 
classification is carried out by testing whether some 
points, eight vertices of each octant plus its centroid, 
are inside the solid or not. 

 

 

 
 

Two problems must be avoided: mistaken results 
due to earlier classification of octants in models with 
complex topology, and no necessary subdivision of 
octants completely inside or outside the solid. To 
achieve this, the conversion algorithm can stop in an 
intermediate level if thresholds previously established 
for the classification of a octant are reached. This 

Figure 6. Rasterization of solids 

Figure 7. Octant classification 



optimization allows us to obtain an agreement 
between an accurate result and the time consumed for 
classification of the entire octree. For a detailed 
explanation of this conversion algorithm see [Rui02]. 

Next section shows several octrees obtained 
through this method, and the visual interpretation of 
thresholds for the octant classification. 

 

8. TRIANGULAR MESHES. 
Triangle meshes have become a typical 

representation for modeling. But using such a 
representation for other purposes than rendering also 
requires the implementation of robust and efficient 
geometric algorithms. 

We can easily apply our methods to triangular 
meshes. The fundamental differences with regard to 
general polyhedra are: the new algorithms are simpler 
and more efficient; the application to meshes implies 
a simplification because the used operations are 
basic. The methods can be applied to meshes 
containing the minimum topological information, that 
is, a labelled list of vertices indicating their 
coordinates and a list of triangles containing the 
references to their vertices. Obviously, when more 
information is available, as triangles sharing edges or 
vertices, it could be used to accelerate the proposed 
algorithms. The algorithms are also valid for non-
manifold models defined by triangle meshes and for 
models with holes; moreover, they can be applied to 
multi-resolution models. 

Figures 7.a and 7.b show two solids bounded by 
triangular meshes (Buddha and chess queen). Figure 
7.c shows Buddha U queen, and figures 8.a, 8.b and 
8.c show Buddha Iqueen, queen - Buddha and 
Buddha - queen, respectively. Figures 9.a - 9.d show 
the corresponding octrees for solids in figures 8.a - 
8.c. These figures have been generated with ESC-
MOD SYSTEM [Rui02], a solid modeling system 
that can deal with both free-form solids and solids 
bounded by complex planar triangular meshes. Figure 
8.c shows the main problem in our approach: very 
thin areas of the solid could not be detected due to no 
calculation of plane-plane intersections. This problem 
is solved by reducing the threshold that classifies an 
octant as black, that is, an octant is considered black 
if only a few number of test points are inside the 
solid. The resulting octree is shown in figure 9.d. 

 

9. CONCLUSIONS. 
We have presented a representation scheme for 

solids with planar faces (manifold or non-manifold, 
with or without holes, convex or concave ones). The 

method is based on covering the solid by simplices, 
and providing a data structure smaller than other 
data-structures valid for non-manifold solids. 

With this data structure, a method to compute the 
Boolean operations has been presented. The 
algorithms are fast and robust, but the solid obtained 
is not minimal because there is no evaluation of the 
boundary of the solid. 
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By using the appropriate algorithms, some 
typical problems of solid modeling have also been 
solved: area, volume, inclusion, visualization or 
octree generation of the solid are obtained in an easy 
and efficient way. 

The proposed model can be useful as an 
intermediate representation for solids in applications 
in which the main objective is to know the shape of 
the solid and not its final boundary. The method 
proposed is also valid for studying the classification 
of points in solids. Another field of application of the 
model could be the conversion of the solids from one 
scheme of representation to another one. For 
example, we can use it as an intermediate 
representation from CSG to B-rep scheme. 

Figure 7. Happy Buddha, Chess Queen and 
Happy Buddha UUUU Chess Queen. 

Figure 8. Happy Buddha IIII Queen, Queen – 
Happy Buddha,  Happy Buddha - Queen. 
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