
Using a classification tree to speed up rendering of
hybrid surface and volume models

Maria Ferre

URV Computer Science and Math.
Dept.

Av. Països Catalans, 20
 43007 Tarragona, Spain

mferre@etse.urv.es

Anna Puig
CREB Center of Biomedical

Engineering Research,
ETSEIB, UPC

08028 Barcelona, Spain

anna@maia.ub.es

Dani Tost
CREB Center of Biomedical

Engineering Research,
ETSEIB, UPC

08028 Barcelona, Spain

dani@lsi.upc.es

ABSTRACT
Hybrid rendering of volume and polygonal model is an interesting feature of visualization systems, since it
helps users to better understand the relationships between internal structures of the volume and fitted surfaces as
well as external surfaces. Most of the existing bibliography focuses at the problem of correctly integrating in
depth both types of information. The rendering method proposed in this paper is built on these previous results.
It is aimed at solving a different problem: how to efficiently access to selected information of a hybrid model.
We propose to construct a decision tree (the Rendering Decision Tree), which together with an auxiliary run-
length representation of the model avoids visiting unselected surfaces and internal regions during a traversal of
the model.

Keywords
Volume Rendering, Hybrid Rendering, Decission Tree, Run-length encoding.

1. INTRODUCTION
There are two main approaches of the visualization of
voxel models: rendering the volume as a whole and
rendering isosurfaces. The former approach is
achieved by Direct Volume Rendering (DVR), which
computes the contribution of all the voxels to the
image. Indirect Volume Rendering (IVR) can
perform the latter approach. Isosurfaces are first
extracted from the volume data with the popular
Marching Cubes algorithm [Loc87], or by contouring
and slicing [Mey92]. Then, they are rendered with the
standard hardware-assisted polygon-rendering
pipeline. Alternatively, Direct Volume Rendering
(DVR) [Lev90] can also render surfaces, by
computing the contribution to the image of the
volume cells that contain the isosurfaces, and
applying a surface shading without need of
intermediate representations. The major advantage of

IVR to visualize surfaces is that, once the polygonal
model is extracted, its rendering is generally faster
than DVR, even if its number of faces is large. In
addition, any level of zoom can be applied during
IVR rendering, whereas the lack of an actual
polygonal model in DVR reduces its suitability when
the surface is very near the observer. However, DVR
does not require any preprocessing step and, thus, it
provides more flexibility to visualize different
isosurfaces.

Combining the two approaches, i.e. mixing surface
and volume rendering is an interesting feature of
volume visualization. It conveys more information
than only surfaces but in a neater way than volume
only. Therefore, it provides a better perception of the
relationships between the different regions of the
data. Mixing surfaces and volumes can also be used
to show the interaction of external synthetic surfaces
with a volume, as for example CAD models of a
scalpel, bone prosthesis or a radiation beam with MR
data or CT data.

DVR provides a natural way to mix surface and
volume rendering by applying different shading
models to the cells depending if they belong to the
boundary of a feature or to its interior. In this paper,
we call hybrid shading this rendering modality.
Moreover, hybrid shading can be extend to external
surfaces by voxelizing them in a pre-process

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Journal of WSCG, Vol.12, No.1-3, ISSN 1213-6972
WSCG’2004, February 2-6, 2004, Plzen, Czech Republic.
Copyright UNION Agency – Science Press

[Kau87]. A similar approach has been used for
realistic rendering of complex scenes with a huge
number of faces and repetitive patterns such as
forests, in which trees and leaves can be represented
with geometrical models if they are near or as a
voxelization storing BRDF's if they are far [Nom95]
[Ney98]. However, this type of rendering requires a
low ratio image pixel per voxel, because it does not
have a polygonal model of the surfaces.

An alternative to the voxelization is to keep separate
representations of the volume and the surfaces (fitted
as well as external) or a hybrid model representing
both types of data, and to mix them during rendering.
We will call hybrid rendering this approach to
distinguish it from hybrid shading. Existing methods
following this approach are based on ray casting
[Lev90] [Fru91] [Miy92] [Sob94], Z-Buffer and
Back-to-Front traversal [Goa89] [Kau90] [Eck99]
[Tos93] and 3D texture-mapping [Kre99] [Boa03].
They are reviewed in the next section.

Most of the existing hybrid rendering methods focus
mainly at solving the problem of correctly depth
sorting the volume samples and the polygons. They
assume that all the volume and the surfaces must be
rendered and thus, they essentially visit all the data.
This is inefficient when not all the volume and not all
the surfaces must be rendered, which is often the case
in the exploration of a dataset. In fact, a desirable
feature of hybrid rendering is the flexibility to render
specific regions of the data, either their surface, their
internal volume or both, while hiding others.

Trying to restrict the traversal of a volume data set to
the relevant cells is a general problem in volume
visualization. It has been addressed for the
acceleration of isosurfacing (octrees [Wil92], span
space [Liv96]) as well as for speeding up volume
rendering (kd-trees [Sub90], octrees [Wil94], run-
length encoding [Lac94]). However, as mentioned
above, this problem has been little addressed in
hybrid rendering [Lev90].

This paper addresses the problem of the fast
exploration of hybrid models. Our primary goal is
provide means of performing efficiently various
visualizations of the models, changing the selection
of the features to be rendered. We assume that the
original model has been classified. Therefore, our
method is not suitable for a first exploration of a
dataset, but rather to efficiently manipulate it once its
internal structure is known. The main application of
our method is teaching by rendering atlas or case
study models. It is suitable for hybrid shading with
low ratio pixel/voxel as well as for hybrid rendering
when zooming on the surfaces is required.

In the next section, we review the previous work on
hybrid rendering. Next, we describe the proposed
model and the traversal algorithm associated to it.
Finally, we show the results of the simulations and
the conclusions.

2. PREVIOUS WORK
Ray casting can handle simultaneously different
models by tracing the ray against each of them and
merging their contribution along the ray. Based on
this strategy, the hybrid ray tracer proposed by Levoy
[Lev90] reduces the aliasing problems near the
surfaces by performing an adaptive sampling of the
volume. Miyazawa and Koyamada [Miy92] improved
the antialiasing by first classifying the surface inside
the volume. For each voxel, they compute a list of
intersecting polygons. Therefore, the voxels with a
non-empty list of polygons can be over sampled when
rays are cast. Fruhauf [Fru91] also proposes the use
of ray casting for volume, combined with any
rendering algorithm for the geometric primitives
capable of outputting an image space sorted list of
elements that can be merged along the rays.
Sobierajski and Kaufman [Sob94] designed a general
ray tracer capable of handling various surfaces and
volume models. They propose a classification of the
intersection types that, together with the use of
bounding boxes for the objects, avoid useless
intersection tests and volume sampling of occluded
regions.

Z-Buffer has also been extended to mixed surfaces
[Goa89], [Kau90]: two independent Z-buffer
processes are realized and then, the image buffers are
combined according to their associated depths. A
similar idea is used in Volumizer [Eck99]. The
disadvantage of these approaches is that they cannot
handle correctly semi-transparent volumes and
transparent surfaces simultaneously. In a different
approach [Tos93], the synthetic surface is converted
into a face-octree representation according to the
orientation and resolution of the voxel model. The
face-octree is traversed back-to-front simultaneously
with the voxel model preserving the correct depth
order and thus allowing transparency of both the
volume and the surface.

More recently, a 3D texture-map-based volume
rendering approach has been proposed, able to render
opaque and translucent polygons together with semi-
transparent volume at interactive rates [Kre99]. The
volume is processed in a slice-by-slice basis. The
volume slices and the translucent polygons clipped at
the boundary of the slabs defined by two consecutive
slices are rendered alternatively, preserving a correct
depth composition. In order to avoid costly clipping
operations of the polygons against the slices, the

authors propose to use a bucket sort of the translucent
polygons according to the slabs that they traverse.
This strategy has also been used [Boa03] in order to
render a hybrid octree which encodes the volume as
well as the surface. The major advantage of the
hybrid octree is that the texture associated to the
volume can be generated at different levels of
resolution depending on the variation of the scalar
field in the node or its relative importance to the
visualization. This characteristic simplifies the
sorting of the surface polygons between slices, and it
can be used to obtain multiresolution hybrid
visualizations.

Levoy addresses the problem of avoiding irrelevant
data during hybrid rendering in the paper mentioned
above [Lev90]. Levoy proposes to use an octree
representation of the volume to efficiently skip over
empty regions. However, as the surface model is kept
separately from the volume, this method does not
provide a fast way of accessing directly to voxels
traversed by an external surface or containing a given
isosurface. The face octree proposed in [Tos93]
grants a fast access to the codified surface voxels but
it is restricted to the codification of only one external
surface and it does not classify the volume into
regions. The hybrid octree described by Boada at al.
[Boa03] provides also a fast access to surface nodes.
In addition, similarly to the BON structure [Wil92], it
stores the maximum and minimum values of each
node and thus, it provides means of skipping over
non-relevant nodes of the volume. However, it is
restricted to one fitted surface. Finally, sorting
intersection elements as proposed by Sobierajski at
al. [Sob94] can avoid traversing occluded voxels or
computing unnecessary intersections ray surfaces but
it does not eliminate unwanted traversals.

3. THE PROPOSED METHOD
The Rendering Decision Tree (RDT)
Our work is inspired on the Decision Trees, well
known in the Information Theory field [Goo88] and
used in decision analysis. Decision trees are boolean
functions that classify variables of a multidimensional
feature space into classes. They are such that each
internal node of a tree tests a feature, each leaf node
assigns a class or category and the arcs out of a node
are labeled with the possible values of the features of
this node. When rendering a scene, in general as well
in volume and hybrid rendering, users must select and
specify properties of the objects (or voxels) that
should actually be visualized. This selection can be
viewed as feature vector of a multidimensional
feature space, in which the objects of a scene (voxels
in a volume model) can be classified into semantic
regions. Rendering queries are hardly arbitrary but
rather follow the semantic structure of the scene. If

this structure is known, it can be used to construct a
decision tree, the Rendering Decision Tree(RDT) that
will allow us to quickly determine the set of selected
objects or voxels.

In the initial exploration of a voxel model, users
select relevant ranges of values by conveniently
specifying transfer functions [Kni01] that set to zero
the opacity of the other value ranges. Thus, in the
rendering, although all the volume is traversed, non-
relevant regions are hidden. Let n be the number of
voxels of a volume model. In order to render the
model, only a subset of k voxels actually contribute to
the image: those that fulfill the rendering
specifications, i.e. those that belong to the selected
class. Once the model has been classified, successive
visualizations will drive to the selection of subsets
within this classification. Traversing all the volume
when these classes have already been characterized
results in unnecessary visits to n-k remaining voxels.
The aim of the RDT is provide a direct access to the
selected subsets corresponding to the different
classes.

Figure 1 shows an example of a RDT for a model of
the brain. It classifies the brain into three regions: the
right and left hemispheres cortex and the cerebellum.
Each of these regions is subdivided into two
categories: boundary and interior. The internal
regions of the hemispheres are in turn classified into
other structures, which again separate the boundary
from the interior. If, as an example, the user wants to
render the surface of the cerebellum of the right
hemisphere together with the volume of the left
hemisphere, the tree is traversed and voxels that
belong to these classes are selected for rendering. In
the next section we discuss how to associate to each
node of such a tree the corresponding information of
the model.

The run-length encoding
Our method is suitable for hybrid shading as well as
hybrid rendering. In both cases, we take as input the

Figure 1. RDT Example for a model of the
brain. Selected areas to be rendered are colored

in blue.

original voxel model. We use the classification step
to construct an RDT that classifies the voxels into
regions and into internal and boundary voxels. For
hybrid shading, we first extract the relevant
isosurfaces from the voxel model by applying a
Marching Cubes algorithm. Each boundary voxel
points to as many lists of polygons as extracted
isosurfaces cross it. Furthermore, if a synthetic
surface must be mixed with the volume, we classify
and clip it with the volume cells as if it is a fitted
surface.
A naive approach in order to associate to the RDT
nodes the set of corresponding voxels is to keep a
simple list of voxels per node. This approach presents
serious drawbacks. First, being each list independent
from the order, this model would not preserve the
spatial ordering inherent to the voxel model between
the different classes. Moreover, this structure would
have huge memory occupancy, as it would require for
each non-empty voxel one pointer per region to
which it belongs.
We propose to construct an auxiliary voxel model
that labels each voxel according to the leave of the
RDT to which it belongs. We use a Run-Length (RL)
codification of this model. Each leave of the RDT
stores the label of its associated class in the RL
model. Therefore, when a rendering selection is done,
the RDT is traversed in order to compute the labels of
the selected classes. If a terminal node matches the
rendering criterion, its associated class is selected for
rendering. If it is a non-terminal node that matches
the rendering criterion, all its descendent classes are
selected. The RL model is then traversed skipping
over non-selected classes and accessing to the actual
scalar or surface values of the voxels belonging to the
selected classes only.

Figure 2 illustrates this process with a color
codification. The voxel model has been classified
according to the RDT tree shown at the right of the

figure. The RL is depicted together with the classified
voxel model. It should be observed that, for clarity,
the voxel model depicted is the classified one,
although in the voxel array, we actually keep the
original gray values of the data. The traversal of the
RDT selects the blue and red voxels. The run-length
traversal skips over the other colors, and accesses to
the actual scalar and surface values of only the blue
and red voxels.
The traversal of the RL preserves the order of the
voxel model, so it can be used for BTF and FTB
traversals of the model, for splatting, shear-warp, or
in order to compute 3D-texture maps of the model.
However, it is not convenient for ray casting, as it
does not provide a direct access to the voxels
individually. As its primary goal is to speed up
rendering, and being ray casting a slow method, this
is not a major drawback. It should be observed that, if
the camera rotates around the model, three run-length
codifications must be computed corresponding to the
three axes order permutations.

It should be observed that, if a unique run-length
model is constructed, each voxel must belong to only
one leave of the RDT. This means that the
classification process must partition the data into
disjoint regions or into regions enclosed one into
each other following the hierarchy of the RDT. This
cannot be guaranteed if the classification criterion
separates the boundary voxels of each surface into
different classes, since boundary voxels may be
crossed by more than one isosurface. However, this
problem can be avoided if the RDT classifies voxels
into different groups according to the combination of
surfaces that cross them. As a consequence, nodes of
a tree can share descendents. Specifically, nodes
representing adjacent semantic regions can share a
descendent node representing the voxels crossed by
the boundaries of these regions.

Figure 2. RL model based on the RDT labeling.
At right, the RDT is depicted labeling the

internal nodes with a letter and the leaves with a
color. At bottom left, the classified voxel model
is shown, and at top left top, its RL codification. Figure 3. Example of an RDT labeling with

multiple surfaces crossing voxels. The RDT tree
is depicted at the left; the regions in the voxel

model at the middle and the labeling of the
voxels in the RL at the right.

Figure 3 illustrates such a structure. The RDT
classifies the voxels into 9 regions: interior voxels
(I1, I2, I3), voxels crossed by only one surface (B1,
B2, B3) and voxels crossed by more than one surface
(B1/B2, B1/B2/B3). The drawback of this solution is
that it increases the number of classes and, therefore
it may result in a higher fragmentation of the RL and
thus, higher memory requirements. In order to solve
this problem, instead of one RL model, several RL
could be created, associated to the intermediate nodes
of the RDT and traversed simultaneously. We are
currently working on these types of structure, but the
results shown in the next section correspond only to
the former one.

Rendering
As mentioned above, our model is suitable for sorted
traversals of the data. In our simulations, we have
used it to render the model using the splatting
strategy. The traversal of the run-length models
accesses to the selected voxels, which can fall into
three categories, depending on the visualization
query: interior voxels, surface voxels and hybrid
voxels. The former ones are purely volumetric. They
are splatted according to their emission and
absorption. When a surface voxel is reached, the
polygons inside it are projected. It should be noted
that if more than one surface crosses the voxel and
the surfaces are translucide, the order of the
projection of the polygons is relevant. We use the
approach proposed by Kreeger and Kaufman [Kre99]
to solve this problem, using the GL z-tests. Finally,
for the third type of voxels, we first project the
surface and next splatt the interior. As in other
previous approaches, this actually composes
erroneously the surface and the volume. Removing
this error would require knowledge of the
decomposition of the voxel into subvolumes
according to the surfaces that cross it. We do not
address this problem in this paper.

4. RESULTS
All the simulations have been carried out on a Sun
Ultra 60 360MHz using our multimodal rendering
software platform Hipo [Pui02]. For all the
simulations, we have first executed a non-optimized
version of the traversal algorithm using the original
voxel model without RDT and RL. This rendering
serves us as the unit of CPU cost. All the CPU costs
shown in the tables are relative to this unit cost in
order to effectively measure the improvements
provided by the proposed method.

Two datasets have been used: a 32x32x32, one byte
intensity phantom model and a real dataset composed
of 190x220x178 MR (Magnetic Resonance) data of
the brain. The phantom model is composed of two

disjoint voxelized spheres. The surfaces of these
spheres have been extracted using a Marching Cubes
algorithm. The RDT subdivides the volume into these
two regions at the first level of the tree, and into
interior and boundary regions at the second level.

(a) (b)

(c) (d)

Figure 4 shows several rendered images of this
model, selecting either the two surfaces, the two
internal regions or mixing surfaces and volume.
Table 1 gives information on the size of the model,
its internal regions and the number of triangles of the
surfaces.

 Subtree
Sphere 1

Subtree
Sphere 2

Global
Model

Interior
voxels 2.705 437 3.142

Boundary
voxels 1.440 464 1.904

Empty
voxels 27.722

Surface
triangles 3.704 1.352 5.056

Table 1. Description of the Phantom hybrid
model.

Figure 4. Different images of the phantom
model: (a) Triangle meshes of the extracted

fitted surfaces, (b) Volume rendering, (c)
Hybrid rendering of the volume of two regions

and the wireframe surface of one region, (d)
Hybrid rendering of one region of the volume

and the shaded surface of the other region
framed into the voxel model.

Table 2 shows the cost of different traversals of the
proposed model in comparison to full traversals of
the structure. The simulations correspond to the
images shown in Figure 4.

Sub1 Sub2 kvol ksur khyb Oc.
rat

ren
rat

Surface Surface 0 1904 0 0.058 0.283

Volum Volum 5046 0 0 0.095 0.359

Volum Both 437 1440 464 0.071 0.325

Surface Volum 4145 464 0 0.140 0.362

Table 2. Simulation results on the Phantom model.
The first two columns indicate the branch of each
subtree that has been visualized (volume, surface

or both). The next three columns indicate the
number of selected voxels for each category:

volume voxels (kvol), surface voxels (ksur) and
hybrid voxels (khyb). Column 6 indicates the

relative occupancy of the selected features, i.e.
kvol+ksur+khyb divided by the total occupancy of
the model 32768. Column 7 shows the relative cost
of the rendering in relation to the cost of the same
rendering without using the proposed structure.

Similar simulations have been performed on the MR
model of a human head as shown in Figure 5, 6 and
7. In some figures, we have rendered the regions with
a constant color, and in some others we have used the
gray value of the model. In the former case, it is only
necessary to traverse the RL model, since it is not
required to access to the actual voxel array.

(a) (b)

However, in order to have comparable results in the
simulations, we have performed this access for all

selected voxels. The RDT is composed of two main
branches: the brain, which is subdivided into regions
as depicted in the RDT of Figure 1 and the rest of the
head. The fitted surfaces correspond to the regions
labeled as: right cerebral cortex, right cerebral white
matter, left and right caudate, left cerebral cortex and
left and right cerebellum cortex. Table 3 shows the
occupancy of these regions in terms of number of
voxels and surface triangles. The simulation results
are listed in Table 4.

(a) (b)

(a) (b)

Figure 5. Rendered images of the brain model.
(a) volume of the left caudate, volume of the
right cerebral cortex and the right cerebral

white matter and surface of the left cerebellum
cortex, (b) surfaces of the left and right cerebral

cortex and of the left and right caudate.

Figure 7. Rendered images of the brain model.
(a) volume of the right cerebral cortex and the

right cerebellum cortex and surface and volume
of the left cerebral cortex and the left

cerebellum cortex, (b) volume of the non-brain
voxels of the head and of the right cerebral

cortex, volume of the left caudate and surface of
the left cerebral cortex.

Figure 6. Rendered images of the brain model.
(a) same surfaces as Figure 5b plus surface and
volume of the right cerebral white matter, (b)
surface and volume of the right and the left

cerebral cortex and surfaces of the right and the
left cerebellum cortex.

Region Interior
voxels

Boundar
y voxels

Surface
triangles

Right cerebral
cortex 511036 77792 382609

Right cerebral
white matter 165956 103513 256691

Right caudate 1462 2693 7056

Right
cerebellum

cortex
60600 16410 52430

Left cerebral
cortex 509588 83890 388824

Left caudate 1588 2576 6609

Left cerebellum
cortex 60484 16664 53871

Non-brain head
region 4423855 464540 958439

Table 3. Description of the MR labeled model of
the brain.

Fig kvol ksur khyb ocup
ratio

render
cost
ratio

5.a 879125 0 0 0.118 0.294

5.b 0 166951 0 0.224 0.194

6.a 332907 0 103513 0.058 0.291

6.b 1020624 106301 161682 0.172 0.469

7.a 1235910 0 100554 0.179 0.447

7.b 4936479 83890 0 0.674 0.867

Table 4. Simulation results for the MR head
dataset. The first column indicates the

corresponding figure; the three next columns
show the number of volume voxels (kvol), surface
voxels (ksur) and hybrid voxels (khyb); Column 5

shows the ratio of occupancy of the selected
features in terms of number of selected voxels
divided by the size of the model 190x220x178;

Column 6 shows the ratio of cost of our
implementation in relation to full traversal of the

model for the same selection.

The relative cost of our method, in comparison to full
traversal, ranges between 20% and 30% for the
phantom model and 20% and 70% for the head
model. This is an important speedup of the rendering.
Taking into account that the cost of creation of the
structure in relation to the basic rendering cost is
0.49, the proposed method speeds up the rendering,
even for only one traversal. It should be noted that
this reduction in the cost is attributable to the
efficiency of the proposed traversal, since the
rendering cost itself (shading, projecting and
compositing in the selected voxels) is the same in our
method as a in full traversal. However, the rendering
cost influences the overall improvement of the

method, as it is part of the total cost. This explains
the variation of the cost ratio, depending on the
number, type of selected voxels and number of
triangles per voxels. The efficiency of our method is
due to the fact that the occupancy ratios are low, at
most 30% in the five first simulations on the head
model, which is not a biased data, since the
simulations correspond to real physician's queries.
The worst efficiency is obtained in the last simulation
in which almost 70% of the voxels are selected. We
expect the occupancy of relevant features to be low in
other applications. This observation was the primary
motivation of our work.

5. CONCLUSIONS
The method proposed in this paper is aimed at
speeding the traversal of hybrid classified models.
The Rendering Decision Tree (RDT) together with
the auxiliary Run-Length encoding (RL) of the model
provides means of accessing directly to the regions
and the surfaces selected for rendering avoiding
unnecessary traversals of the entire model. The
simulations performed show that the method can
improve the efficiency of the traversal in 60 to 70 %
percent. Several development stem from this work.
First, we would like perform more measurements of
the relative efficiency of our structure in comparison
to substituting the auxiliary RL model by multiple
overlapping less fragmented RL at different levels of
the tree. Comparison of its efficiency with octree
structures are also desirable. In addition, more work
should be done to enhance the depth composition for
zooming on boundary voxels crossed by one or more
surfaces. Finally, we are currently investigating
means of reducing the IO operations for successive
rendering with a similar rendering selection.

6. ACKNOWLEDGMENTS
This work has been funded by the project MAT2002-
04297-C03-02 from the Ministerio de Educación y
Ciencia.

7. REFERENCES
[Boa03] Boada, I, and Navazo, I., 3D texture-based

hybrid visualizations. Computers and Graphics,
(27):41-49, 2003.

[Eck99] Eckel, G., OpenGL volumizer programer’s
guide. Document nº 0073720001, 1999.

[Fru91] Fruhauf, M., Combining volume rendering
with line and surface rendering. Proceedings of
Eurographics’91, pages 21-32. Elsevier Science
Publisher (North Holland), 1991.

[Goa89] Goadsell, D.S., Mian, S. and Olson, A.J.,
Rendering volumetric data in molecular systems.
Journal of Molecular Graphics, 7, March 1989.

[Goo88] Goodman, R.M. and Smyth, P. Decision tree
design from a communication theory standpoint.
IEEE Transactions on Information Theory,
34(5):979-994, 1988.

[Kau87] Kaufman, A. Efficient algorithms for 3D
scan-conversion algorithms of parametric curves,
surface and volumes. ACM Computer Graphics,
21:171-179, July 1987.

[Kau90] Kaufman, A., Yagel, R. and Cohen, D.
Intermixing surface and volume rendering. 3D
Imaging in Medicine: Algorithms, Systems and
Applications, pp. 217-228, 1990.

[Kre99] Kreeger, K. and Kaufman, A. Mixing
translucent polygons with volumes. Proc. IEEE
Visualization, pp. 191-198, 1999.

[Kni01] Kniss, J., Kindlmann, G. and Hansen, C.
Interactive volume rendering using multi-
dimensional transfer functions and direct
manipulation widgets. Proceedings of the
conference on Visualization 2001, pp. 255-262.
IEEE Press, 2001

[Lac94] Lacroute, P and Levoy, M. Fast volume
rendering using a Shear-Warp factorization of the
viewing transformation. ACM Computer
Graphics, 28(4):451-458, July 1994.

[Lev90] Levoy, M. A hybrid ray tracer for rendering
polygon and volume data. IEEE Computer
Graphics & Applications, 10(8):33-40, March
1990.

[Liv96] Livnat, Y., Shen, H.W. and Johnson, C.R. A
near optimal isosurface extraction algorithm using
the span space. IEEE Transactions on
Visualization and Computer Graphics, 2(1),
March 1996.

[Loc87] Lorensen, W.E. and Cline, H.E. Marching
Cubes: A high resolution 3D surface construction
algorithm. ACM Computer Graphics, 21(4):163-
169, July 1987.

[Mey92] Meyers, D., Skinner, S. and Sloan, K.
Surfaces from contours. ACM Transactions on
Graphics, 11(3):228-258, 1992.

[Miy92] Miyazawa, T. and Koyadama, K. A high-
speed integrated renderer for interpreting multiple
3D volume data. The Journal of Visualization and
Computer Animation, 3:65-83, 1992.

[Ney98] Neyret, F. Modeling, animating and
rendering complex scenes using volumetric
textures. IEEE Transactions on Visualization and
Computer Graphics, 4(1):55-70, 1998.

[Nom95] Noma, T. Bridging between surface
rendering and volume rendering for
multiresolution display. Proceedings of the 6th
Eurographics Workshop on Rendering, pp 57-67.
Eurographics, 1995.

[Pui02] Puig, A., Tost, D. and Ferre, M. Design of a
multimodal rendering system. Proc. 7th
International Fall Workshop Vision, Modeling
and Visualization 2002, Greiner G., Niemann H.,
Ertl T., Girod B. and Seidel HP. Editors, pp 488-
496, 2002.

[Sob94] Sobierajski, L.M. and Kaufman, A.
Volumetric ray tracing. Proc. 1994 Symposium on
Volume Visualization, october 1994.

[Sub90] Subramanian, K.R. and Fussell, D.F.
Applying space subdivision techniques to volume
rendering. Proc. Visualization’90, pp 150-159,
1990.

[Tos93] Tost, D., Puig, A. and Navazo, I.
Visualization of mixed scenes based on volume
and surface. Proc. European Workshop on
Rendering, pp 281-294, 1993.

[Wil92] Wilhems, J. and Van Gelder, A. Octrees for
faster isosurface generation. ACM Transactions
on Graphics, 11(3):201-227, July 1992.

[Wil94] Wilhems, J. and Van Gelder, A.
Multidimensional trees for controlled volume
rendering and compression. Proc. ACM
Symposium on Volume Visualization, 11:27-34,
October 1994.

