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ABSTRACT 
Hybrid rendering   of   volume and polygonal  model   is  an interesting feature of visualization systems, since  it 
helps users to better understand the relationships between internal structures of the volume and fitted surfaces as 
well as  external surfaces.  Most of the existing bibliography focuses at  the problem of correctly integrating in 
depth both types of information.   The rendering method proposed in this paper is built on these previous results.  
It is aimed at solving a different problem: how to efficiently access to selected information of   a hybrid model.    
We propose to construct  a  decision tree (the Rendering Decision Tree), which  together with an auxiliary run-
length representation of the  model  avoids visiting unselected  surfaces and internal regions during a traversal of 
the model. 
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1. INTRODUCTION 
There are two main approaches of the visualization of 
voxel models: rendering the volume as a whole and 
rendering isosurfaces. The former approach is 
achieved by Direct Volume Rendering (DVR), which 
computes the contribution of all the voxels to the 
image. Indirect Volume Rendering (IVR) can 
perform the latter approach. Isosurfaces are first 
extracted from the volume data with the popular 
Marching Cubes algorithm [Loc87], or by contouring 
and slicing [Mey92]. Then, they are rendered with the 
standard hardware-assisted polygon-rendering 
pipeline. Alternatively, Direct Volume Rendering 
(DVR) [Lev90] can also render surfaces, by 
computing the contribution to the image of the 
volume cells that contain the isosurfaces, and 
applying a surface shading without need of 
intermediate representations. The major advantage of 

IVR to visualize surfaces is that, once the polygonal 
model is extracted, its rendering is generally faster 
than DVR, even if its number of faces is large. In 
addition, any level of zoom can be applied during 
IVR rendering, whereas the lack of an actual 
polygonal model in DVR reduces its suitability when 
the surface is very near the observer. However, DVR 
does not require any preprocessing step and, thus, it 
provides more flexibility to visualize different 
isosurfaces. 

Combining the two approaches, i.e. mixing surface 
and volume rendering is an interesting feature of 
volume visualization. It conveys more information 
than only surfaces but in a neater way than volume 
only. Therefore, it provides a better perception of the 
relationships between the different regions of the 
data. Mixing surfaces and volumes can also be used 
to show the interaction of external synthetic surfaces 
with a volume, as for example CAD models of a 
scalpel, bone prosthesis or a radiation beam with MR 
data or CT data.  

DVR provides a natural way to mix surface and 
volume rendering by applying different shading 
models to the cells depending if they belong to the 
boundary of a feature or to its interior. In this paper, 
we call hybrid shading this rendering modality. 
Moreover, hybrid shading can be extend to external 
surfaces by voxelizing them in a pre-process 
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[Kau87]. A similar approach has been used for 
realistic rendering of complex scenes with a huge 
number of faces and repetitive patterns such as 
forests, in which trees and leaves can be represented 
with geometrical models if they are near or as a 
voxelization storing BRDF's if they are far [Nom95] 
[Ney98]. However, this type of rendering requires a 
low ratio image pixel per voxel, because it does not 
have a polygonal model of the surfaces.  

An alternative to the voxelization is to keep separate 
representations of the volume and the surfaces (fitted 
as well as external) or a hybrid model representing 
both types of data, and to mix them during rendering. 
We will call hybrid rendering this approach to 
distinguish it from hybrid shading. Existing methods 
following this approach are based on ray casting 
[Lev90] [Fru91] [Miy92] [Sob94], Z-Buffer and 
Back-to-Front traversal [Goa89] [Kau90] [Eck99] 
[Tos93] and 3D texture-mapping [Kre99] [Boa03]. 
They are reviewed in the next section. 

Most of the existing hybrid rendering methods focus 
mainly at solving the problem of correctly depth 
sorting the volume samples and the polygons. They 
assume that all the volume and the surfaces must be 
rendered and thus, they essentially visit all the data. 
This is inefficient when not all the volume and not all 
the surfaces must be rendered, which is often the case 
in the exploration of a dataset. In fact, a desirable 
feature of hybrid rendering is the flexibility to render 
specific regions of the data, either their surface, their 
internal volume or both, while hiding others. 

Trying to restrict the traversal of a volume data set to 
the relevant cells is a general problem in volume 
visualization. It has been addressed for the 
acceleration of isosurfacing (octrees [Wil92], span 
space [Liv96]) as well as for speeding up volume 
rendering (kd-trees [Sub90], octrees [Wil94], run-
length encoding [Lac94]). However, as mentioned 
above, this problem has been little addressed in 
hybrid rendering [Lev90]. 

This paper addresses the problem of the fast 
exploration of hybrid models. Our primary goal is 
provide means of performing efficiently various 
visualizations of the models, changing the selection 
of the features to be rendered. We assume that the 
original model has been classified. Therefore, our 
method is not suitable for a first exploration of a 
dataset, but rather to efficiently manipulate it once its 
internal structure is known. The main application of 
our method is teaching by rendering atlas or case 
study models. It is suitable for hybrid shading with 
low ratio pixel/voxel as well as for hybrid rendering 
when zooming on the surfaces is required. 

In the next section, we review the previous work on 
hybrid rendering. Next, we describe the proposed 
model and the traversal algorithm associated to it. 
Finally, we show the results of the simulations and 
the conclusions.  

2. PREVIOUS WORK 
Ray casting can handle simultaneously different 
models by tracing the ray against each of them and 
merging their contribution along the ray. Based on 
this strategy, the hybrid ray tracer proposed by Levoy 
[Lev90] reduces the aliasing problems near the 
surfaces by performing an adaptive sampling of the 
volume. Miyazawa and Koyamada [Miy92] improved 
the antialiasing by first classifying the surface inside 
the volume. For each voxel, they compute a list of 
intersecting polygons. Therefore, the voxels with a 
non-empty list of polygons can be over sampled when 
rays are cast. Fruhauf [Fru91] also proposes the use 
of ray casting for volume, combined with any 
rendering algorithm for the geometric primitives 
capable of outputting an image space sorted list of 
elements that can be merged along the rays. 
Sobierajski and Kaufman [Sob94] designed a general 
ray tracer capable of handling various surfaces and 
volume models. They propose a classification of the 
intersection types that, together with the use of 
bounding boxes for the objects, avoid useless 
intersection tests and volume sampling of occluded 
regions.  

Z-Buffer has also been extended to mixed surfaces 
[Goa89], [Kau90]: two independent Z-buffer 
processes are realized and then, the image buffers are 
combined according to their associated depths. A 
similar idea is used in Volumizer [Eck99]. The 
disadvantage of these approaches is that they cannot 
handle correctly semi-transparent volumes and 
transparent surfaces simultaneously. In a different 
approach [Tos93], the synthetic surface is converted 
into a face-octree representation according to the 
orientation and resolution of the voxel model. The 
face-octree is traversed back-to-front simultaneously 
with the voxel model preserving the correct depth 
order and thus allowing transparency of both the 
volume and the surface. 

More recently, a 3D texture-map-based volume 
rendering approach has been proposed, able to render 
opaque and translucent polygons together with semi-
transparent volume at interactive rates [Kre99]. The 
volume is processed in a slice-by-slice basis. The 
volume slices and the translucent polygons clipped at 
the boundary of the slabs defined by two consecutive 
slices are rendered alternatively, preserving a correct 
depth composition. In order to avoid costly clipping 
operations of the polygons against the slices, the 



authors propose to use a bucket sort of the translucent 
polygons according to the slabs that they traverse. 
This strategy has also been used [Boa03] in order to 
render a hybrid octree which encodes the volume as 
well as the surface. The major advantage of the 
hybrid octree is that the texture associated to the 
volume can be generated at different levels of 
resolution depending on the variation of the scalar 
field in the node or its relative importance to the 
visualization. This characteristic simplifies the 
sorting of the surface polygons between slices, and it 
can be used to obtain multiresolution hybrid 
visualizations. 

Levoy addresses the problem of avoiding irrelevant 
data during hybrid rendering in the paper mentioned 
above [Lev90]. Levoy proposes to use an octree 
representation of the volume to efficiently skip over 
empty regions. However, as the surface model is kept 
separately from the volume, this method does not 
provide a fast way of accessing directly to voxels 
traversed by an external surface or containing a given 
isosurface. The face octree proposed in [Tos93] 
grants a fast access to the codified surface voxels but 
it is restricted to the codification of only one external 
surface and it does not classify the volume into 
regions. The hybrid octree described by Boada at al. 
[Boa03] provides also a fast access to surface nodes. 
In addition, similarly to the BON structure [Wil92], it 
stores the maximum and minimum values of each 
node and thus, it provides means of skipping over 
non-relevant nodes of the volume. However, it is 
restricted to one fitted surface. Finally, sorting 
intersection elements as proposed by Sobierajski at 
al. [Sob94] can avoid traversing occluded voxels or 
computing unnecessary intersections ray surfaces but 
it does not eliminate unwanted traversals.  

3. THE PROPOSED METHOD 
The Rendering Decision Tree (RDT) 
Our work is inspired on the Decision Trees, well 
known in the Information Theory field [Goo88] and 
used in decision analysis. Decision trees are boolean 
functions that classify variables of a multidimensional 
feature space into classes. They are such that each 
internal node of a tree tests a feature, each leaf node 
assigns a class or category and the arcs out of a node 
are labeled with the possible values of the features of 
this node. When rendering a scene, in general as well 
in volume and hybrid rendering, users must select and 
specify properties of the objects (or voxels) that 
should actually be visualized. This selection can be 
viewed as feature vector of a multidimensional 
feature space, in which the objects of a scene (voxels 
in a volume model) can be classified into semantic 
regions. Rendering queries are hardly arbitrary but 
rather follow the semantic structure of the scene. If 

this structure is known, it can be used to construct a 
decision tree, the Rendering Decision Tree(RDT) that 
will allow us to quickly determine the set of selected 
objects or voxels.  

In the initial exploration of a voxel model, users 
select relevant ranges of values by conveniently 
specifying transfer functions [Kni01] that set to zero 
the opacity of the other value ranges. Thus, in the 
rendering, although all the volume is traversed, non-
relevant regions are hidden. Let n be the number of 
voxels of a volume model. In order to render the 
model, only a subset of k voxels actually contribute to 
the image: those that fulfill the rendering 
specifications, i.e. those that belong to the selected 
class. Once the model has been classified, successive 
visualizations will drive to the selection of subsets 
within this classification. Traversing all the volume 
when these classes have already been characterized 
results in unnecessary visits to n-k remaining voxels. 
The aim of the RDT is provide a direct access to the 
selected subsets corresponding to the different 
classes. 

 

Figure 1 shows an example of a RDT for a model of 
the brain. It classifies the brain into three regions: the 
right and left hemispheres cortex and the cerebellum. 
Each of these regions is subdivided into two 
categories: boundary and interior. The internal 
regions of the hemispheres are in turn classified into 
other structures, which again separate the boundary 
from the interior. If, as an example, the user wants to 
render the surface of the cerebellum of the right 
hemisphere together with the volume of the left 
hemisphere, the tree is traversed and voxels that 
belong to these classes are selected for rendering. In 
the next section we discuss how to associate to each 
node of such a tree the corresponding information of 
the model.  

The run-length encoding 
Our method is suitable for hybrid shading as well as 
hybrid rendering. In both cases, we take as input the 

Figure 1. RDT Example for a model of the 
brain. Selected areas to be rendered are colored 

in blue. 



original voxel model. We use the classification step 
to construct an RDT that classifies the voxels into 
regions and into internal and boundary voxels. For 
hybrid shading, we first extract the relevant 
isosurfaces from the voxel model by applying a 
Marching Cubes algorithm. Each boundary voxel 
points to as many lists of polygons as extracted 
isosurfaces cross it. Furthermore, if a synthetic 
surface must be mixed with the volume, we classify 
and clip it with the volume cells as if it is a fitted 
surface. 
A naive approach in order to associate to the RDT 
nodes the set of corresponding voxels is to keep a 
simple list of voxels per node. This approach presents 
serious drawbacks. First, being each list independent 
from the order, this model would not preserve the 
spatial ordering inherent to the voxel model between 
the different classes. Moreover, this structure would 
have huge memory occupancy, as it would require for 
each non-empty voxel one pointer per region to 
which it belongs. 
We propose to construct an auxiliary voxel model 
that labels each voxel according to the leave of the 
RDT to which it belongs. We use a Run-Length (RL) 
codification of this model. Each leave of the RDT 
stores the label of its associated class in the RL 
model. Therefore, when a rendering selection is done, 
the RDT is traversed in order to compute the labels of 
the selected classes. If a terminal node matches the 
rendering criterion, its associated class is selected for 
rendering. If it is a non-terminal node that matches 
the rendering criterion, all its descendent classes are 
selected. The RL model is then traversed skipping 
over non-selected classes and accessing to the actual 
scalar or surface values of the voxels belonging to the 
selected classes only. 

 
 

 
Figure 2 illustrates this process with a color 
codification. The voxel model has been classified 
according to the RDT tree shown at the right of the 

figure. The RL is depicted together with the classified 
voxel model. It should be observed that, for clarity, 
the voxel model depicted is the classified one, 
although in the voxel array, we actually keep the 
original gray values of the data. The traversal of the 
RDT selects the blue and red voxels. The run-length 
traversal skips over the other colors, and accesses to 
the actual scalar and surface values of only the blue 
and red voxels.  
The traversal of the RL preserves the order of the 
voxel model, so it can be used for BTF and FTB 
traversals of the model, for splatting, shear-warp, or 
in order to compute 3D-texture maps of the model. 
However, it is not convenient for ray casting, as it 
does not provide a direct access to the voxels 
individually. As its primary goal is to speed up 
rendering, and being ray casting a slow method, this 
is not a major drawback. It should be observed that, if 
the camera rotates around the model, three run-length 
codifications must be computed corresponding to the 
three axes order permutations. 

It should be observed that, if a unique run-length 
model is constructed, each voxel must belong to only 
one leave of the RDT. This means that the 
classification process must partition the data into 
disjoint regions or into regions enclosed one into 
each other following the hierarchy of the RDT. This 
cannot be guaranteed if the classification criterion 
separates the boundary voxels of each surface into 
different classes, since boundary voxels may be 
crossed by more than one isosurface. However, this 
problem can be avoided if the RDT classifies voxels 
into different groups according to the combination of 
surfaces that cross them. As a consequence, nodes of 
a tree can share descendents. Specifically, nodes 
representing adjacent semantic regions can share a 
descendent node representing the voxels crossed by 
the boundaries of these regions. 

 

 
 

Figure 2. RL model based on the RDT labeling. 
At right, the RDT is depicted labeling the 

internal nodes with a letter and the leaves with a 
color. At bottom left, the classified voxel model 
is shown, and at top left top, its RL codification. Figure 3. Example of an RDT labeling with 

multiple surfaces crossing voxels. The RDT tree 
is depicted at the left; the regions in the voxel 

model at the middle and the labeling of the 
voxels in the RL at the right. 



Figure 3 illustrates such a structure. The RDT 
classifies the voxels into 9 regions: interior voxels 
(I1, I2, I3), voxels crossed by only one surface (B1, 
B2, B3) and voxels crossed by more than one surface 
(B1/B2, B1/B2/B3). The drawback of this solution is 
that it increases the number of classes and, therefore 
it may result in a higher fragmentation of the RL and 
thus, higher memory requirements. In order to solve 
this problem, instead of one RL model, several RL 
could be created, associated to the intermediate nodes 
of the RDT and traversed simultaneously. We are 
currently working on these types of structure, but the 
results shown in the next section correspond only to 
the former one.  

Rendering 
As mentioned above, our model is suitable for sorted 
traversals of the data. In our simulations, we have 
used it to render the model using the splatting 
strategy. The traversal of the run-length models 
accesses to the selected voxels, which can fall into 
three categories, depending on the visualization 
query: interior voxels, surface voxels and hybrid 
voxels. The former ones are purely volumetric. They 
are splatted according to their emission and 
absorption. When a surface voxel is reached, the 
polygons inside it are projected. It should be noted 
that if more than one surface crosses the voxel and 
the surfaces are translucide, the order of the 
projection of the polygons is relevant. We use the 
approach proposed by Kreeger and Kaufman [Kre99] 
to solve this problem, using the GL z-tests. Finally, 
for the third type of voxels, we first project the 
surface and next splatt the interior. As in other 
previous approaches, this actually composes 
erroneously the surface and the volume. Removing 
this error would require knowledge of the 
decomposition of the voxel into subvolumes 
according to the surfaces that cross it. We do not 
address this problem in this paper. 

4. RESULTS 
All the simulations have been carried out on a Sun 
Ultra 60 360MHz using our multimodal rendering 
software platform Hipo [Pui02]. For all the 
simulations, we have first executed a non-optimized 
version of the traversal algorithm using the original 
voxel model without RDT and RL. This rendering 
serves us as the unit of CPU cost. All the CPU costs 
shown in the tables are relative to this unit cost in 
order to effectively measure the improvements 
provided by the proposed method. 

Two datasets have been used: a 32x32x32, one byte 
intensity phantom model and a real dataset composed 
of 190x220x178 MR (Magnetic Resonance) data of 
the brain. The phantom model is composed of two 

disjoint voxelized spheres. The surfaces of these 
spheres have been extracted using a Marching Cubes 
algorithm. The RDT subdivides the volume into these 
two regions at the first level of the tree, and into 
interior and boundary regions at the second level.  

  

(a) (b) 

 

 

 

(c) (d) 

Figure 4 shows several rendered images of this 
model, selecting either the two surfaces, the two 
internal regions or mixing surfaces and volume. 
Table 1 gives information on the size of the model, 
its internal regions and the number of triangles of the 
surfaces.  

 Subtree 
Sphere 1 

Subtree 
Sphere 2 

Global 
Model 

Interior 
voxels 2.705 437 3.142 

Boundary 
voxels 1.440 464 1.904 

Empty 
voxels   27.722 

Surface 
triangles 3.704 1.352 5.056 

Table 1. Description of the Phantom hybrid 
model. 

Figure 4. Different images of the phantom 
model: (a) Triangle meshes of the extracted 

fitted surfaces, (b) Volume rendering, (c) 
Hybrid rendering of the volume of two regions 

and the wireframe surface of one region, (d) 
Hybrid rendering of one region of the volume 

and the shaded surface of the other region 
framed into the voxel model. 



Table 2 shows the cost of different traversals of the 
proposed model in comparison to full traversals of 
the structure. The simulations correspond to the 
images shown in Figure 4.  

Sub1 Sub2 kvol ksur khyb Oc. 
rat 

ren 
rat 

Surface Surface 0 1904 0 0.058 0.283 

Volum Volum 5046 0 0 0.095 0.359 

Volum Both 437 1440 464 0.071 0.325 

Surface Volum 4145 464 0 0.140 0.362 

Table 2. Simulation results on the Phantom model. 
The first two columns indicate the branch of each 
subtree that has been visualized (volume, surface 

or both). The next three columns indicate the 
number of selected voxels for each category: 

volume voxels (kvol), surface voxels (ksur) and 
hybrid voxels (khyb). Column 6 indicates the 

relative occupancy of the selected features, i.e. 
kvol+ksur+khyb divided by the total occupancy of 
the model 32768. Column 7 shows the relative cost 
of the rendering in relation to the cost of the same 
rendering without using the proposed structure. 

 

Similar simulations have been performed on the MR 
model of a human head as shown in Figure 5, 6 and 
7. In some figures, we have rendered the regions with 
a constant color, and in some others we have used the 
gray value of the model. In the former case, it is only 
necessary to traverse the RL model, since it is not 
required to access to the actual voxel array.  

  

(a) (b) 

 

However, in order to have comparable results in the 
simulations, we have performed this access for all 

selected voxels. The RDT is composed of two main 
branches: the brain, which is subdivided into regions 
as depicted in the RDT of Figure 1 and the rest of the 
head. The fitted surfaces correspond to the regions 
labeled as: right cerebral cortex, right cerebral white 
matter, left and right caudate, left cerebral cortex and 
left and right cerebellum cortex. Table 3 shows the 
occupancy of these regions in terms of number of 
voxels and surface triangles. The simulation results 
are listed in Table 4. 

  

(a) (b) 

 

  

(a) (b) 

 

 

 

 

Figure 5. Rendered images of the brain model. 
(a) volume of the left caudate, volume of the 
right cerebral cortex and the right cerebral 

white matter and surface of the left cerebellum 
cortex, (b) surfaces of the left and right cerebral 

cortex and of the left and right caudate. 

 

Figure 7. Rendered images of the brain model. 
(a) volume of the right cerebral cortex and the 

right cerebellum cortex and surface and volume 
of the left cerebral cortex and the left 

cerebellum cortex,  (b) volume of the non-brain 
voxels of the head and of the right cerebral 

cortex, volume of the left caudate and surface of 
the left cerebral cortex. 

 

Figure 6. Rendered images of the brain model. 
(a) same surfaces as Figure 5b plus surface and 
volume of the right cerebral white matter, (b) 
surface and volume of the right and the left 

cerebral cortex and surfaces of the right and the 
left cerebellum cortex. 

 



Region Interior 
voxels 

Boundar
y voxels 

Surface 
triangles 

Right cerebral 
cortex 511036 77792 382609 

Right cerebral 
white matter 165956 103513 256691 

Right caudate 1462 2693 7056 

Right 
cerebellum 

cortex 
60600 16410 52430 

Left cerebral 
cortex 509588 83890 388824 

Left caudate 1588 2576 6609 

Left cerebellum 
cortex 60484 16664 53871 

Non-brain head 
region 4423855 464540 958439 

Table 3. Description of the MR labeled model of 
the brain. 

 

Fig kvol ksur khyb ocup 
ratio 

render 
cost 
ratio 

5.a 879125 0 0 0.118 0.294 

5.b 0 166951 0 0.224 0.194 

6.a 332907 0 103513 0.058 0.291 

6.b 1020624 106301 161682 0.172 0.469 

7.a 1235910 0 100554 0.179 0.447 

7.b 4936479 83890 0 0.674 0.867 

Table 4. Simulation results for the MR head 
dataset. The first column indicates the 

corresponding figure; the three next columns 
show the number of volume voxels (kvol), surface 
voxels (ksur) and hybrid voxels (khyb); Column 5 

shows the ratio of occupancy of the selected 
features in terms of number of selected voxels 
divided by the size of the model 190x220x178; 

Column 6 shows the ratio of cost of our 
implementation in relation to full traversal of the 

model for the same selection. 

The relative cost of our method, in comparison to full 
traversal, ranges between 20% and 30% for the 
phantom model and 20% and 70% for the head 
model. This is an important speedup of the rendering. 
Taking into account that the cost of creation of the 
structure in relation to the basic rendering cost is 
0.49, the proposed method speeds up the rendering, 
even for only one traversal. It should be noted that 
this reduction in the cost is attributable to the 
efficiency of the proposed traversal, since the 
rendering cost itself (shading, projecting and 
compositing in the selected voxels) is the same in our 
method as a in full traversal. However, the rendering 
cost influences the overall improvement of the 

method, as it is part of the total cost. This explains 
the variation of the cost ratio, depending on the 
number, type of selected voxels and number of 
triangles per voxels. The efficiency of our method is 
due to the fact that the occupancy ratios are low, at 
most 30% in the five first simulations on the head 
model, which is not a biased data, since the 
simulations correspond to real physician's queries. 
The worst efficiency is obtained in the last simulation 
in which almost 70% of the voxels are selected. We 
expect the occupancy of relevant features to be low in 
other applications. This observation was the primary 
motivation of our work. 

 

5. CONCLUSIONS 
The method proposed in this paper is aimed at 
speeding the traversal of hybrid classified models. 
The Rendering Decision Tree (RDT) together with 
the auxiliary Run-Length encoding (RL) of the model 
provides means of accessing directly to the regions 
and the surfaces selected for rendering avoiding 
unnecessary traversals of the entire model. The 
simulations performed show that the method can 
improve the efficiency of the traversal in 60 to 70 % 
percent. Several development stem from this work. 
First, we would like perform more measurements of 
the relative efficiency of our structure in comparison 
to substituting the auxiliary RL model by multiple 
overlapping less fragmented RL at different levels of 
the tree. Comparison of its efficiency with octree 
structures are also desirable. In addition, more work 
should be done to enhance the depth composition for 
zooming on boundary voxels crossed by one or more 
surfaces. Finally, we are currently investigating 
means of reducing the IO operations for successive 
rendering with a similar rendering selection.  
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