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ABSTRACT 
This paper presents a new method for realistic real-time rendering of tree foliage. Some approaches to this 
problem have been presented before but the quality of their results was not maintainable with respect to changes 
in view vector and observer distance. Our method is based on a hierarchy of images obtained from pre-
processing the botanical tree structure (an L-system) and storing the information in a texture data tree without 
increasing rendering time. The texture tree is traversed for each frame and an appropriate set of images is 
extracted and blended with the previous image set. The number of polygons is dramatically reduced – thus 
enabling interactive visualization and smooth transition between levels of detail. Our method can be easily 
applied to computer games and visual interactive applications containing vegetation. 
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1. INTRODUCTION 
Tree modeling is a field that has lately received much 
attention from the computer graphics community. 
Techniques like L-systems [Prus90], modeling by 
components [Lint99], and commercial applications 
such as OnyxTREE [onyx03] and AMAP [deRe88] 
suggest the possibility of interactive rendering scenes 
made up of tens, or hundreds, of trees. Still, these 
modeling methods produce too many polygons, 
making them unfeasible for interactive rendering of 
large scenes with many trees. 

One way of modeling trees more efficiently is by 
separating the model for the trunk and the branches 
from the model for the leaves. In this paper we use 
L-systems to model the trunk and branches. Given an 
L-system we derive it using production rules and 
obtain a string that can be graphically interpreted 

[Prus90]. Interpretation produces a multiresolution 
model that enables accelerated visualization of the 
geometry of the trunk and branches. 

For the tree foliage we propose a model that uses a 
set of pre-computed images for rendering. These 
images replace the leaves contained in a bounding 
box representing a group of branches. The images 
are organized in a hierarchical fashion representing 
different levels of detail (LODs). The method that 
computes this multiresolution representation is fully 
automatic. We obtain the best results when the size 
of the leaves is small compared to the size of the 
plant. 

Our model supports tree rendering at different LODs 
depending on viewer distance. The visual quality of 
the renderings does not depend on camera orientation 
or viewer distance. The coarsest LOD is represented 
by a bounding box containing the leaves of the entire 
tree. The finest LOD is made of a set of texture-
mapped polygons, one for each leaf. 

This representation supports progressive 
transmission by sending a stream of images 
corresponding to the different LODs. For the trunk 
and the branches a text file containing the L-system 
can be sent with just a few bytes. The L-system can 
then be interpreted at the destination. Also, we can 
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use other techniques to model them [Lluc01] 
[Lluc03]. 

Using our multiresolution representation, we can 
render several hundreds of trees at interactive rates. 
A frame rate of 15 fps is achieved by carefully 
choosing the LOD to be rendered for each tree. Our 
method creates a complex model in less than a 
minute. The model occupies less than 250Kbytes in 
compressed format. A tree can be as leafy as desired 
because additional leaves do not increase the 
rendering time. 

This article is organized as follows: Section 2 
reviews previous work in interactive tree rendering, 
Section 3 introduces the method we use to obtain the 
data structures and images used for rendering, 
Section 4 describes our rendering algorithm, and 
Section 5 presents the results obtained with our 
method. Conclusions and future work are discussed 
in the last section of the paper. 

2. BACKGROUND 
There are many real-time and virtual reality graphics 
applications that attempt to immerse the user in an 
outdoor scene. The scene can be made up of 
numerous natural elements such as plants and trees. 
For a more realistic effect, the scene usually includes 
a lot of detail. For example, it is important that the 
leaves of the trees be represented realistically – just 
in case the viewer gets closer. 

The most common acceleration technique for tree 
rendering uses impostors. An impostor replaces the 
tree, or part of it, with one or more textured 
polygons. There are two types of impostors. A 
billboard is an image texture mapped onto a polygon 
that is always facing the viewer. Alternatively, we 
can use two perpendicular polygons texture-mapped 
with a transparent texture. The main problem with 
these two approaches is that they lose realism as the 
user gets closer to the tree. 

A different model common in MMORPGs 
(Massively Multiplayer On-line Playing Games) 
compromises between the use of geometry and the 
use of impostors. The method requires user 
intervention to model the trunk and branches. For the 
trunk it uses a few cylinders. For the branches it uses 
a few textured polygons. For the leaves, it uses one 
billboard for each branch. 

Schmalstieg [Schm96] presents a method that 
supports direct rendering of L-systems by 
transforming the rewriting system into a directed 
cyclic graph. The method does not use an 
intermediate polygonal model making it very 
memory efficient. Once the graph is generated, it can 
be traversed from left to right to visualize the model. 

Only one model is needed to create a set of different 
individuals of the same species. It is enough to define 
the main features of the species and use some 
random values in the derivation process. Problems 
with this method appear when obtaining the LODs. 
LOD generation requires that a sub-graph 
(representing a tree branch) be replaced by a single 
primitive with an adequate color and shape. This is a 
complicated task that has to be done manually. 

Meyer and Neyret propose a method that renders 
volumetric textures interactively [Meye98]. This 
approximation is based on slicing a piece of 3D 
geometry into a sequence of layers. A layer is a 
rectangle containing the shaded geometry of a given 
slice. These layers are later used as transparent 
textures in the rendering process. An object is made 
of a triangular mesh with texture coordinates and 
height vectors associated to each vertex. It also uses 
a volumetric pattern formed by a set of RGBA 
textures representing very thin horizontal volume 
slices. A problem occurs when the observer is 
located in a place where the lines of sight with the 
height vectors form an angle close to 90º. In this 
case, holes appear between different slices and 
realism is lost. The solution is to create a group of 
slices for each of the main directions, tripling the 
number of necessary textures. 

Jakulin presents a technique that combines geometry 
for trunk and branches with images for leaves 
[Jaku00]. The crown is visualized by using a 
multilevel representation, where each level is made 
of a texture called a slice. For each tree, there are 
several groups of levels used to simplify rendering 
from different viewpoints. Transitions between 
LODs are made by controlling the texture opacity as 
a function of the angle formed with the look vector. 
This makes LOD transitions smoother and reduces 
the number of slices used by the model. Slices in the 
same group are parallel and equidistant. A tree is 
modeled using six slice groups forming a 60º angle 
between them, and containing five slices each. A 
total of 30 textures are thus used to model the leaves 
of a tree. This method is only valid for an observer 
located on the ground – and from ten to fifty meters 
away. Therefore, it is impossible to render fly-by’s 
without losing realism.  

3. DATA STRUCTURES 
We present a new model for efficient plant and tree 
rendering. Given a tree represented by an L-system, 
the multiresolution modeling process begins by 
deriving a parametric chain. The chain is interpreted 
and a data structure is created containing the relevant 
information for rendering. In this Section we 
describe this data structure and the algorithm that builds 
it.  



Description 
The data structure is a tree made of nodes and edges. 
Each node has a link to its parent node, its children 
list and its sibling list. There is a special node, called 
root, with no parent or siblings. Figure 1 shows an 
example of this data structure for a simple tree. We 
use it to model the trunk and branches of any plant or 
tree. 

Associated to each node we store a graphics 
primitive: for instance, a cylinder, a sphere or a 
polygon. Each node also contains information about 
the bounding box of its sub-tree. Bounding boxes are 
given by its two extreme points, min and max. They 
bound the current branch and all of its children. 

Figure 1. Tree hierarchical data structure. 

Construction 
We use stack-based turtle graphics [Prus90] to build 
a tree. We add a node every time a new module of 
the input string is interpreted. The module may have 
a graphical meaning, like a cylinder representing a 
branch, or it may encode a stack operation. There are 
two stack operations: PUSH that saves the turtle state 
in the stack and increases the tree level by one, and 

POP that recovers the stack state and decreases the 
tree level by one.  

The bounding box hierarchy is built while building 
the tree data structure. PUSH and POP modules 
represent the beginning and end of a new branch and, 
therefore, a new bounding box. At any time during 
the interpretation, an open box is a box whose 
dimensions are not final, because the children of its 
associated branch have not yet been completely 
traversed. The most recently created box is called 
last box. Finally, level gives the current depth in the 
graph.  

3.2.1 Generating the Bounding Boxes 
The following algorithm computes the bounding 
boxes associated to a tree’s parametric string: 

 
The algorithm runs as follows. When the interpreter 
finds a PUSH module, a new open box is created and 
initial values are assigned to its endpoints. From then 
on, all open box dimensions are updated for every 
module parsed, until a POP module is encountered. 
Once the process is finished, each node has an 
associated bounding box. Note that L-systems 
produce well-formed parametric chains, with equal 
numbers of PUSH and POP modules. Therefore, the 
bounding box associated to a node includes all the 
bounding boxes associated to its children, 
grandchildren, etc. 

After running this algorithm we are left with a 
bounding box hierarchy containing the tree’s 
geometry. Now we calculate a set of images 
representing the geometry located inside of each 
suitable box.  

3.2.2 Generating the Pre-Computed Textures 
We use images (textures) to replace the geometry of 
a tree’s leaves. When a bounding box is closed, its 
dimensions define a volume containing a branch of 
the tree and its children branches. So, we use the 
bounding box to generate a set of images that 

Process the modules of a parametric string 
In case module is: 

PUSH Create a new box 
Give initial values to min, max 

  Mark the box as last and open 
Increment level 

POP  Close the last box 
Save the box 

CYLINDER, FORM  
Update min,  max of all open boxes 

FORWARD Modify (advance) the turtle position 
TURN Modify (rotate) the turtle orientation 

node11→parent 

node1→parent 

root 

node11 node12 

root→child 

node11→sibling 

node11→child node12→child 

NILNIL 

node12→father 

node1 

node1→child 

root 

node1 

node12 node11 

Represented Tree 

node→parent 
node→child 
node→sibling



represent the geometry of the leaves located inside 
the box. At rendering time, we replace the leaves’ 
geometry with images.  

We generate an orthographic projection for each side 
of a box. We place the camera at the center of the 
target face, with the look vector facing the center of 
the box. Then, we project the leaves inside the box 
onto the target face, and store the resulting image as 
a texture map. At the end of the process, we have 
generated six images per bounding box. This may 
require a large amount of storage, especially if we 
generate one set of images per branch. The size of 
the images is also relevant. Most graphics cards have 
a texture memory of 32Mbytes – 64Mbytes for high-
end cards. Hence, we need to find a compromise 
between texture size and model quality. Figure 2 
shows an example. 

3.2.3 Texture Size 
Graphics cards typically impose two conditions on 
the selection of a texture’s size. First, both the 
horizontal and the vertical dimensions must be the 
same. Second, they have to be powers of two. We 
avoid textures that have dimensions larger than 128, 
since they are too big and require too much texture 
memory. We also avoid textures smaller than 64, 
since they are too small and introduce distortions 
when projecting the foliage. Consequently, we use 
textures of 64 and 128 square pixels. 64-pixel 
textures are used to represent four times more trees at 
a lower resolution. 128-pixel textures are used to 
represent higher-quality trees.  

 

Figure 2. Generating a pre-computed texture to 
replace the leaves of a tree branch 

Bounding boxes at the same tree level correspond to 
the same LOD. Boxes at higher levels include the 
boxes at lower levels. If the textures of a bounding 
box are rendered, the boxes inside of it are not 
rendered. If the observer is located far enough, the 
leaves will be rendered using the textures computed 
for the box bounding the whole tree. As the observer 

approaches the tree, smaller bounding box textures 
representing different branches are rendered. 

 

We choose a constant texture size for all levels. A 
texture does not depend on the size of the box it 
represents. Using 128x128 textures, we can store an 
entire binary tree of depth ten in roughly 96 Mbytes 
of memory. Now we focus on the task of reducing 
the number of levels whose textures need to be 
calculated. 

3.2.4 Number of Levels 
We limit the number of levels using an adjustable 
strategy that takes into account the tree’s topology. 
We compute the ratio between the volume of a 
node’s box and the volume of its parent’s box. If the 
ratio is smaller than a threshold, we do not generate 
textures for the node’s box. We use this threshold to 
adjust the number of LODs and the number of 
textures for a given tree. The choice of threshold is a 
tradeoff between realism and the amount of  storage 
used for textures.  

4. RENDERING ALGORITHM 
Interactive tree rendering is an expensive task due to 
the geometric complexity of tree models. Our 
algorithm solves this problem by using images to 
replace a tree’s leaves. In this section, we discuss our 
rendering algorithm and comment on some 
acceleration and visual improvement techniques. 

 

Figure 3. Rendering the textures associated to a 
bounding box. 



Consider the case when the viewer is relatively far 
from the tree. In that case, we replace the geometry 
of all the leaves by six texture-mapped polygons. The 
textures correspond to the bounding box of the root 
of the tree. The polygons are arranged in a cross, as 
illustrated in Figure 3. Only three polygons are 
actually visible to the viewer; the other three are 
back-face culled.  

Figure 4. Leaf rendering algorithm. 

As the viewer gets closer to the tree, we render 
texture-mapped polygons associated to finer LODs 
of the tree. The polygons replace the leaves 
stemming from a branch and its children branches 
located inside of the LOD’s bounding box. Figure 4 
shows this leaf rendering algorithm. Note that we 

have a distance associated to each LOD. That 
distance determines when that LOD is to be 
rendered. 

Computing the Distance Associated to an 
LOD 
Box textures have an optimal display distance that 
depends on their projected area in the final image. 
That area is maximized when the projection happens 
along the look vector. We can determine the distance 
between the viewer and the box so that the projected 
area is 128 or 64 pixels. That way, if the image is 
located at that distance, we do not have to scale it 
before projecting it. The distance that switches from 
one LOD to the next one can be obtained from the 
distance that maximizes the projected area of the 
texture. The projected area will be reduced if the 
object is closer to the viewer or the projection is not 
perpendicular to the viewing direction (see Figure 5). 
Distances that produce changes in the LODs are pre-
computed and stored for each bounding box. That 
way no extra computation is necessary at rendering 
time. 
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Figure 5. LOD distance computation 

Improvements on the Algorithm 
Our algorithm produces two types of artifacts. 
‘Popping’ occurs across textures in a box and when 
transitioning from one LOD to another. Additionally, 
our renderings look much like billboards with no 
sense of volume inside the bounding boxes. One 
option to solve these problems uses volumetric 

Leaf drawing algorithm 
// Using geometry: cylinders, cones, and/or polygonal 
meshes 
root_node := read tree root 
child_node := left child of root_node 
While (child_node <> NIL) ∧  
        (level of child_node ≤ top detail level) Do 
   obtain distance from viewer to child_node box 
   If distance > lod distance Then 
      draw child_node box  
// Using texture-mapped polygons 
// We have rendered a box for this branch, so we are 
// done 
// Now we continue with its next sibling, if it exists 
      While (child_node <> NIL) ∧  
           (right sibling of child_node = NIL) Do 
           child_node := parent of child_node 
      End While 
      If (child_node <> NIL) ∧  
           (child_node <> root_node) Then 
           child_node := right sibling of child_node 
      End If 
   Else 
// We continue rendering children 
      If (left child of child_node <> NIL) 
          child_node := right child of child_node 
      Else 
          While (child_node <> NIL) ∧  
                (right sibling of child_node = NIL) Do 
              child_node := parent of child_node 
          End While 
          If (child_node <> NIL) ∧  
               (child_node <> root_node) Then 
              child_node := right sibling of child_node 
          End If 
      End If 
   End If 
End While 
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textures, as proposed by Meyer and Neyret 
[Meye98]. Their solution divides the volume of a box 
into parallel slices, each with an associated texture. It 
requires, however, a much larger amount of texture 
memory, thus reducing the number of trees that can 
be represented. 

Instead we propose using six diagonally aligned 
textures per box. The textures are arranged as 
illustrated in Figure 6. Our approach improves the 
sense of volume inside the boxes without requiring 
additional storage. We also reduce the popping 
artefacts by alpha-blending the texture-mapped 
polygons associated to a box. Alpha blending is also 
used to achieve smooth transitions between LODs. 

 

 

 

Figure 6. Diagonally aligned textures. 

5. RESULTS  
We developed two applications to test our method. 
The first application supports modeling plants and 
trees using L-systems. It also generates the sets of 
images that represent the leaves of the trees at 
different LODs. The second application is an 
interactive renderer of our tree models. 

We run our tests on a Pentium III at 500 MHz with 
256 Mbytes of RAM and a GeForce 2 MX graphics 
card. Generating all the images associated to a tree 
takes less than one minute. The images occupy 
between 4 and 6 Mbytes of storage. If we use a 32 
Mbyte graphics card, we can store up to 8 complete 
tree models. Note that this is not necessary as we 
only need to store the LODs currently in use at any 
time. A model can be progressively transmitted by 
sending the definition file of the L-system followed 
by the images compressed and sorted by LOD. 

Figure 7 shows a tree model rendered using 
geometry and the three image-based approaches 
discussed in this paper. Note that there are barely any 
visual differences between the first and the last 
image. Still, the leaves in the first image require 
20000 texture-mapped polygons, while the last image 
only requires 50 polygons. 

Figure 8 contains a close view of a tree. The leaves 
closest to the viewer are represented by one polygon 
each. All the other leaves are rendered using pre-
calculated images. Figure 9 illustrates another feature 
of our method, namely, that the models can be 
rendered from any direction without loss of realism. 

Finally, Figure 10 compares the frame rate of our 
approach with the frame rate of a geometry renderer. 
Note that our approach can render scenes with a 
couple of hundred trees at interactive rates. 

6. CONCLUSIONS AND FUTURE WORK 
In this paper we present an image-based 
multiresolution approach to interactive tree 
rendering. Our method builds the LODs of a tree by 
grouping branches into a bounding box hierarchy. 
Associated to each bounding box we store six images 
representing the leaves contained in the box. The 
amount of memory used by this image representation 
is independent of the number of leaves of the tree. 
Our method automatically builds these tree models in 
less than one minute. 

At rendering time we select and display the right 
LODs and related images using a viewer distance 
criterion. For the same tree model, leaves closer to 
the viewer may be rendered at a higher LOD than 
leaves located further from the viewer. Unlike 
previous approaches, our tree models are view-
independent and we can render hundreds of them at 
interactive rates. Our models can also be 
progressively transmitted. The images that belong to 
the different LODs can be sent separately, starting 
with the coarsest LOD. In a low bandwidth scenario, 
we can send an L-system definition file occupying a 
just a few bytes. After that we can send the images or 
we can generate them locally at their destination. 

We are currently working on a multiresolution tree 
model that combines our image-based representation 
for the leaves with a procedural multiresolution 
representation for the trunk and branches [Lluc03]. 
Our goal is to apply the resulting modeling 
techniques to interactive computer graphics 
applications like computer games, simulation, 
interactive walkthroughs and fly-by’s, and virtual 
and augmented reality.  
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Figure 7. A tree whose leaves are rendered using (a) geometry only - 20.000 polygons, (b) axis aligned 
textures with 20 pol., (c) volumetric textures with 200 pol., and (d) diagonally aligned textures with 50 pol. 

 

Figure 8. A close view of a tree 



 

Figure 9. Trees rendered from different viewpoints. 

fps as a function of model size

0
5

10
15
20
25
30
35
40
45

2x2 3x3 4x4 5x5 6x6 8x8 10x10 12x12 15x15

Number of trees

fp
s

 

Figure 10. Frame rate as a function of the number of trees when rendering using geometry only 
(red) and using our image-based multiresolution approach (green). 

 


