
Methods for Indexing Stripes in Uncoded Structured
Light Scanning Systems

Alan Robinson

Sheffield Hallam University
Howard Street

Sheffield S1 1BW
 United Kingdom

a.robinson@shu.ac.uk

Lyuba Alboul
Sheffield Hallam University

Howard Street
Sheffield S1 1BW
 United Kingdom

l.alboul@shu.ac.uk

Marcos Rodrigues
Sheffield Hallam University

Howard Street
Sheffield S1 1BW
 United Kingdom

m.rodrigues@shu.ac.uk

ABSTRACT
This paper presents robust methods for determining the order of a sequence of stripes captured in an uncoded
structured light scanning system, i.e. where all the stripes are projected with uniform colour, width and spacing. A
single bitmap image shows a pattern of vertical stripes from a projected source, which are deformed by the surface of
the target object. If a correspondence can be determined between the projected stripes and those captured in the
bitmap, a spatial measurement of the surface can be derived using standard rangefinding methods. Previous work has
uniquely encoded each stripe, such as by colour or width, in order to avoid ambiguous stripe identification. However,
colour coding suffers due to uneven colour reflection, and a variable width code reduces the measured resolution. To
avoid these problems, we simplify the projection as a uniform stripe pattern, and devise novel methods for correctly
indexing the stripes, including a new common inclination constraint and occlusion classification. We give definitions
of patches and the continuity of stripes, and measure the success of these methods. Thus we eliminate the need for
coding, and reduce the accuracy required of the projected pattern; and, by dealing with stripe continuity and
occlusions in a new manner, provide general methods which have relevance to many structured light problems.

Keywords
Stripe indexing, structured light, 3d scanner, surface occlusions.

1. INTRODUCTION
The goal of structured light techniques is to measure the
shape of three dimensional objects using automatic
non-contact techniques. Early systems used a single
stripe or spot of laser light to measure a small part of
the object in each scan. Now the availability of
controlled light output from LCD projectors allows the
projection of a more complex pattern of light to
increase the area measured in a single instantaneous
scan.

The classic single stripe scanning system [Ber92a]
provides the profile of one "slice" through the target
object. In order to build a model of the complete
surface a number of spatially related profiles must be

scanned. To achieve this a sequence of scans is
captured. For each scan, the target object is moved in
relation to the scanner, or the projected stripe moves in
relation to the object, the movement being controlled to
the same resolution as required by the scanning system.
A system may require an accuracy of 1:20000
[Lev00a].

To avoid the need for accurate mechanisms and in
order to speed up the acquisition process, a number of
stripes can be projected at the same time and captured
as a sequence of stripes in a single frame. However, it
may be difficult to determine which captured stripe
corresponds to which projected stripe, when we attempt
to index the captured sequence in the same order as the
projected sequence. We call this the stripe indexing
problem. For this reason methods have been devised to
uniquely mark each stripe, by colour [Roc01a], stripe
width [Dal98a] and by a combination of both [Zha02a].

These and other works state the disadvantages of coded
structured light: with colour indexing there may be
weak or ambiguous reflections from surfaces of a
particular colour, and with stripe width variations the
resolution is less than for a uniform narrow stripe. This
last problem can be addressed by projecting and
capturing a succession of overlapping patterns of

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Journal of WSCG, Vol.12, No.1-3, ISSN 1213-6972
WSCG’2004, February 2-6, 2003, Plzen, Czech Republic.
Copyright UNION Agency – Science Press

differing width [Hal01a] but this means that it is not
possible to measure the surface in a single frame. Single
frame or "one-shot" capture is desirable because it
speeds up the acquisition process, and leads to the
possibility of capturing moving surfaces.

 Moreover, because of the limits of any colour coding
scheme, ambiguities will still exist; and stripe width
coding is likely to increase the difficulty of interpreting
shape correctly, such as when occlusions occur.

In this work we examine how far the correspondence
problem can be solved with uncoded stripes, where the
correct order of stripes in the captured image is
determined by original algorithmic methods. Each
captured frame will therefore provide a complete data
model for a patch on the surface of the target object.

In part 2 we describe the system, showing the
dependence between the stripe index and the
measurement of a surface point, and we define the
common inclination constraint. In part 3 we define the
continuity of stripes and the boundaries between
continuous patches, and two algorithms are designed
each of which indexes a sequence of corresponding
stripes. In part 4 we classify occlusions [Cas02a], to
improve the validity of the boundaries, and describe a
further connectivity algorithm. In part 5, the index is
compared to a template sequence, created by hand
using prior knowledge to ensure an exact
correspondence with the projected sequence. The
results of implementing both algorithms, with and
without dealing with occlusions, are presented.

2. DESCRIPTION OF THE SYSTEM
The scanning apparatus is shown in Figure 1, viewed
“from above”. Evenly spaced, vertical (i.e. parallel to
the Y axes) stripes are projected which intersect the XO
axis, and the distance between intersections is W. A
point s = (x,y,z) on the surface of the target object
reflects a beam (shown dotted) in stripe n through the
camera lens at OL and onto the image plane. This light
is sensed at (h,v) in the camera CCD array, measured to
an accuracy better than one pixel by the subpixel
estimator defined later in this section. The relation
between the CCD pixel array and the spatial image
plane is given by xB = hCF, yB = vCF, where F is the
focal length of the camera and CF is the spatial size of
one square pixel. P and D are the distances from the
origin X0Y0Z0 to the centres of the projector and camera
lens respectively. � is the angle between the Z axes of
the camera and projector.

The parameters of s are given by the scanning function
scan(h,v,n) = (x,y,z)

P
Wn

zWnx −= (2.1)

)cos(DzvCy −= θ (2.2)

)sin(cossincos

)sin(cos

θθθθ

θθ

hC
P

Wn
hC

hCWnDhC
z

++−

++=
 (2.3)

where h and v give the position of the sensing pixel and
n is the index of the stripe containing the sensed beam.
The constants W, P, D, C and � are found by
calibration. Note that, by construction, P is never equal
to zero.

Figure 1. Scanner viewed down the Y axes

Hence it can be seen that successful measuring of the
target surface is dependent upon correctly determining
the index n of each stripe appearing in the image.

Figure 2. Scanner viewed down the XL axis

Figure 2 shows the system viewed “sideways”, i.e.
down the XL axis. In order that parametric equations
2.1, 2.2 and 2.3 are correctly formulated, the projector
and camera are aligned “horizontally”, so that axes ZO,
ZP, ZL, XO, XP and XL are in the same plane.

The Common Inclination Constraint
The system is further constrained by positioning the
projector so that its origin OP lies on the XL axis of the
camera. Figure 2 shows that OP and OL will now both
lie on a plane yB = -F tanα, inclined at angle α to ZL. A
beam projected in this plane to surface point s will be
reflected back in the same plane and onto the image
plane at “row” -F tanα . If it is assumed that any beam
can only be reflected at one surface point, and that any
stripe can only contain one beam at a specific
inclination, it follows that each stripe can be sensed at
only one position in any “row” in the image plane.
This is only true when the system is constrained so that
the projected and reflected line of a beam always shares
a “common inclination”, hence the common inclination
constraint.

Figure 3. The Common Inclination Constraint

Another view (Figure 3) of this constraint is to consider
beams from OP striking the surface at S1 and S2. Lines
OP to S1 and OP to S2 are projected through the lens at
OL and onto the image plane I as lines OP' to S1' and OP'
to S2'. If OP follows the arrow to where line OP to OL is
parallel to image plane I, its "image" OP' will move
towards infinity, and all lines OP' to Sn' will be parallel.
Therefore, if all stripes are considered as a bundle of
beams emanating from the unique projection point OP,
then it follows that every beam path will appear to be
parallel when viewed from the image plane.

Processing the Image Data
The current system uses a standard monochrome video
camera synchronised to the PAL standard, at a
bandwidth of 5.5 MHz. The data is presented to the
system processors as a C x R array AB of discrete
brightness levels where aB∈[0, 255], and the array is
situated in the sensing plane of the camera.

Referring to Figure 4, from the bitmap array AB where
f(c,r) = aB, a peak array AP is created of local horizontal
maxima, i.e. peaks at the centre of each stripe, where

�
�
� +<≤

=
 otherwise FALSE

),1(),(1 if TRUE rcfrcf, r)f(c-
aP

 (2.4)

The indexing algorithms then use the peaks array AP to
label each peak with a stripe index array AI = C x R x N
where n is either a stripe index or "NULL" (shown
blank). To provide h, v and n for the scan() function, a
further data type I = H x V x N is created using a
subpixel estimator spe(c,r) = (h,v) with a design similar
to those used by [Fis96a].

Figure 4. Processing the pixel array

3. STRIPE INDEXING
The discrete bitmap image on the sensing plane is a
square tessellation of pixels, each pixel representing a
square with four corners and four sides.

Definition 1 Pixels P and Q are called direct
neighbours (d-neighbours) if they share a side, and
indirect neighbours (i-neighbours) if they share one
and only one corner.

As all pixels in the captured image are situated in a two
dimensional Euclidean plane, then each pixel may have
maximally eight neighbours (four direct and four
indirect) as seen in Figure 5, at position 4. [Pav82a].

We now refer to the peaks array AP in which pixels are
marked as TRUE if they are peaks (shown grey in
Figure 5).

Definition 2 A northern neighbour (n-neighbour) of a
current peak is defined as a d- or i- neighbour in the
row incremented by one. A southern neighbour (s-
neighbour) of a current peak as a d- or i- neighbour in
the row decremented by one.
Definition 3 A western neighbour (w-neighbour) is
defined as the nearest peak in the same row which has
a lesser column index. An eastern neighbour (e-
neighbour) is defined as the nearest peak in the same
row which has a greater column index.

Figure 5: Moving around the peaks data.

The maximum distance to the "nearest" peak will be
defined by an estimation of the greatest likely
separation of two consecutive stripes. The definition of
i-neighbours assumes that the stripe cannot move
laterally by more than one pixel as it moves up or
down, i.e. that the "slope" of the stripe is never less
than 45°. This will not be true in practice but, in
common with our general approach it will create extra
boundaries rather than wrongly connected stripes.
Figure 5 shows, relative to peak 1, its n-neighbour N, its
s-neighbour S, its w-neighbour W and its e-neighbour E.

Definition 4 A continuous stripe is a sequence of
distinct peaks {P1, P2, . . . , Pn} such that each peak in
the sequence {P1, P3, . . . , Pn-1} has one and only one
northern neighbour.

Consequently sequence {P2, P3, . . . , Pn} has one and
only one southern neighbour.

Definition 5 A patch is a subset of AP, maximally
possible, i.e. its peaks can be arranged in a maximal
number of successive continuous stripes.

Boundary peaks are created by a set of conditions
which are tested at each position in the peaks data. The
test assumes that a valid position must have valid
adjacent positions. In Figure 5, starting at position 1,
position NE can be found by moving north and east, or
by moving east and north. Similar tests are performed
in the south-east, north-west and south-west directions.
From position 2 moving north and east arrives at a
different position from moving east and north. Position
2 is therefore marked as a boundary, caused by the
disconnected peak at position 3.

In order to index the stripe peaks and mark boundaries,
two algorithms have been designed: the stripe tracer
and the flood filler.

The sequence of operations for the stripe tracer, shown
in Figure 6 is:

1. Find a start position in the peaks data space. Set the
stripe index to zero. The start point can be found by
hand or automatically.

2. Trace the current stripe northwards until a boundary
condition is met.

3. Return to start and repeat 2 moving southwards.

4. Increase the stripe index, move to the next peak
eastwards and repeat 2 and 3.

5. Repeat 4 until boundary condition is met.

6. Return to start and repeat 4 and 5 moving westwards,
decreasing the stripe index each time.

Figure 6: The stripe tracer algorithm.

The disadvantage of this process is that once a
boundary has been reached, the stripe will not be
“picked up” again, as can be seen from the lower part
of the two middle stripes. Therefore some valid stripes
in the continuous surface will be lost. To address this
problem a second algorithm has been devised to

perform a more thorough search for valid stripes: the
flood filler.

The flood fill recursive function is a classic algorithm
used in graphics software, e.g. by [Hil90a]. It has been
extensively adapted in this work to pass parameters of
stripe, row, heading and index:
flood(stripe, row, heading, index) {
 if(heading==NORTH) goNorth();
 if(heading==SOUTH) goSouth();
 if(heading==EAST) goEast(); index++;
 if(heading==WEST) goWest(); index--;

 if(boundary || alreadyIndexed) return;

 indices[stripe][row] = index;

 flood(stripe, row+1, NORTH, index);
 flood(stripe, row-1, SOUTH, index);
 flood(stripe+1, row, EAST, index);
 flood(stripe-1, row, WEST, index);
}

Figure 7. The flood filler algorithm

The flood filler will move north if boundary conditions
allow, otherwise east, otherwise south, or finally west.
If it cannot move in any direction, the current flood()
function is taken from the stack revealing the
parameters of the previous position and this is repeated
until a previous position is returned to which has a valid
move. In Figure 7 when the algorithm arrives at 5 it
cannot move, and peels back until it arrives at previous
position 6, whence it can move west to 7. This
algorithm will index the stripes missed in Figure 6, the
stripe tracer.

4. DEALING WITH OCCLUSIONS

Figure 8. Projector and Camera Occlusions

The tests in Section 5 show that connectivity algorithms
produce some indexing errors, typically by connecting
peaks which are from different stripes. These errors are
often caused by occlusions. An occlusion is an
obstruction, and in our scanning system it can produce
two types: a projector occlusion and a camera
occlusion.

In Figure 8 (left), four stripes radiate from the projector
origin at P, and illuminate the surface at positions 1, 2,
3 and 4. In the Figure we draw a dashed line from P
which grazes the surface at point ON, and continues to
point OF, where the line intersects the surface at a
second point. This line we call a supporting line, which
for a smooth surface will be tangential. The part of the
surface between ON and OF is an occluded area, shaded
from the projection point P. We call ON a near
occlusion point and OF a far occlusion point. Note that
an actual beam can only strike the surface at or close to
one of these two points.

Figure 8 (right) again shows four stripes cast onto a
surface, and a supporting line from the camera origin C
to near occlusion point ON and far occlusion point OF.
Here the occluded area is that part of the surface which
is hidden from the camera view. Therefore the
viewpoint for the camera occlusion is the camera
origin, and the viewpoint for the projector occlusion
is the projector origin.
Definition 6. A near occlusion point is a point on the
surface of the target object, such that a straight line
from that point to the viewpoint is supporting to the
surface at the near occlusion point.

Definition 7. A far occlusion point is a point on the
surface of the target object, such that a straight line
from that point to the viewpoint will support the surface
at a near occlusion point.

Occlusion boundaries

Figure 9. Occluded areas

Figure 9 (left) shows a target object, a circular button
protruding from a flat surface, lit by two light beams in
the same stripe plane, where the angle β between the
beams is very small. One beam strikes the surface at a
near occlusion point ON, denoted by a ring, the other at
a far occlusion point OF, denoted by a black disc. We
see an occluded area shaded grey which is defined by a
set of near and far occlusion points (rings and disks)
lying on the occlusion boundary. This shaded area is
the result of a projector occlusion, but there is a second

occluded area to the right of the dotted line, caused by a
camera occlusion, and this hides some of the projected
light from the projector view.

Figure 9 (right) shows the same target object, viewed in
the image plane of the camera, when the system is set
up with the Common Inclination Constraint. We recall
that with this constraint the beams appear to run in
parallel directions, which means that OF will be
translated laterally from ON but will be vertically very
close (a function of the angle β).

Occlusions of Projected Stripe Patterns
We can extend these observations to look at stripe
patterns on a target surface. Figure 10 shows our target
object of Figure 10, this time lit by a stripe pattern,
indexed from 1 to 7. Position c repeats the situation in
Figure 9, where we can assume that two adjacent beams
from stripe 2 strike the surface close to an occlusion
and are translated laterally. Similar situations occur at
b, d and e.

Figure 10. Classifying occlusions

In Figure 10 (right) parts of the object are magnified to
pixel level, and four typical situations are classified: at
(b) a low projector occlusion (l.p.o.), at (c) a high
projector occlusion (h.p.o.), at (d) a high camera
occlusion (h.c.o.) and at (e) a low camera occlusion
(l.c.o.).

Extending Connectivity to Deal with
Occlusions
We can now add further rules to our connectivity
algorithms, using the cases derived from Figure 10.
Firstly, a new data set is created from the peak array AP,
called the occlusion array, AO with elements:

�
�

�

�
�

�

�

++∨+∨+−¬
−+∨−∨−−¬

¬

=

 otherwise C
))1,1()1,()1,1((if U

))1,1()1,()1,1((if D
)),((if N

rcprcprcp

rcprcprcp

rcp

ao

 (2.5)

Thereby peaks, i.e. TRUE pixels, are labelled as
disconnected going up (U), disconnected going down
(D), or connected (C). Non peaks are denoted as N.

Figure 11 (left) shows a practical example of
connectivity, using AO and the cases shown in Figure
10. From the D peak at position 1 we look for U peak
complying with case b, c, d or e. Note that we can cross
fully connected stripes in our search.

In Figure 11 (right) we have found our U peak at
position 2, corresponding to a high camera occlusion
(case d). The occlusion boundary is drawn as a dotted
line connecting the D peak with the U peak. This
occlusion line now crosses a seemingly connected
stripe, and we therefore know that this is a falsely
connected stripe, and that there must be a break
approximately in the region of the occlusion line. We
therefore mark U and D peaks at positions 3 and 4.

We can see intuitively that a correct indexing should
now give us three stripes, where the stripe ending at 1
resumes at 3, and the stripe broken at 4 resumes at 2.
The indexing algorithms should find these connections
now that the new occlusion boundaries are known, and
preliminary results show some success.

Figure 11. Connecting occlusion points

5. EXPERIMENTAL RESULTS
In this section we present the results of implementation
of both algorithms. As a target object we use a sculpted
head, 200mm. high. We project 200 black and 200
white stripes into the camera viewing volume, which
equates to a spacing of 6 pixels between white peaks.
The theoretical limit is 2 pixels, i.e. one white pixel and
one black pixel, although this would result in
unresolvable spacing at surfaces which are oblique to
the camera. The results use a maximal test set within
this 6 pixel spacing, and future work will reduce the
spacing minimum.

The above procedures will produce patches of surface
considered by the system to be valid. To measure the
success of the two algorithms we compare a produced
data set with a previously created template. To create
the template, a copy of the bitmap image is marked by
hand so that the system will provide a data set which is
judged to be correct by eye using prior knowledge of
the target surface.

It can be seen from Figure 13 that the flood filler (tests
3 and 4) covers a larger patch than the stripe tracer
(tests 1 and 2). This observation is evaluated in Table 1.
The tests show that errors occur due to
miscorresponding and noncorresponding peaks.

We recall from Section 2 the array AI of index values
(either a stripe index or "NULL") for a pixel at
position (c,r) in the bitmap image. Function t(c,r) gives
the index of pixel (c,r) in the template, and a(c,r) the
index of the pixel in the same position in the index

array produced by the automated algorithms. We then
produce the following sets:

♦ C, "corresponding indexed peaks", i.e. the number
of elements where the peaks have the same index.
Peak (c,r)∈C such that

)),(()),(),((NULLrcarcarct ≠∧=

♦ M, "miscorresponding indexed peaks", i.e. the
number of elements where the peaks have different
indices. Peak (c,r)∈M such that

)),(()),(()),(),((NULLrctNULLrcarcarct ≠∧≠∧≠

♦ X, "noncorresponding indexed peaks", i.e. the
number of elements where a false peak is found.
Peak (c,r)∈X such that

)),(()),((NULLrctNULLrca =∧≠

These comparisons are presented in Table 1. It can be
seen that the stripe tracer (test 1) gives a smaller total
patch (21347 peaks) but with much greater
correspondence to the template than for the flood filler
(test 3) which covers a greater area (45641 peaks) but
with many more differences from the template (5188 +
14333 peaks).

These tests are then repeated (tests 2 and 4) when the
occlusion boundaries are added to the algorithm
conditions. A common connectivity error is seen in
Figure 12 (left), where stripes are shown as connected
at A, B and C when, with prior knowledge, we know
that a boundary exists, caused by an occlusion. These
errors are corrected using occlusion detection whose
results are shown in Figure 12 (right) with the "correct"
indexing at A, B and C. The "correctness" is measured
in the tests tabulated in Table 1.

Figure 12. Connectivity errors at A, B and C,
corrected at right using occlusion detection.

It can be seen from Table 1 that for the stripe tracer the
mis- and noncorresponding peaks are reduced to
zero when occlusion boundaries are included. In
addition, the occlusion boundaries prevent the more
pervasive flood fill algorithm from finding
noncorresponding peaks (14333 peaks reduced to 31).

Figure 13. Patches of template and four tests (see Table 1).

Table 1: Numerical analysis of correspondence between template and automatic models, with and without the

occlusion boundaries. The starting point is at (0,0).

6. CONCLUSIONS
In this paper we have shown that bounded patches can
be created which accurately model the surface of part
of a target object, using a uniform stripe scanning
system. To achieve this we have defined system
constraints such as the common inclination constraint,
to simplify the indexing algorithms. We have then
defined stripe continuity, patches and boundaries on
the target surface. We have shown, in the tests against
a template, that each of these factors contributes to the
successful scanning of the target object.

An open issue is the complexity of the algorithms.
The estimated upper bound of the stripe indexer
algorithm is O(n2) where n is the maximum number of
rows in the bitmap image. This value can be
improved. The complexity of the flood filler algorithm
is under investigation.

A comparison of the flood filler and stripe tracer
algorithms shows that greater correspondence can be
achieved with an algorithm which has more
constrained boundary tests and therefore creates a
smaller patch. Our current algorithms follow the
principle of "greater constraint and smaller
patches".

The addition of boundaries deduced from the likely
position of occlusions has been added to the indexing
algorithms, which have further increased the
contribution of correctly corresponding peaks, while
reducing the overall patch size. These results are
important for solving the indexing problem and
provide a robust and significant contribution to the
creation of accurate patches.

7. REFERENCES
[Ber92a] J.-A. Beraldin, M. Rioux, F. Blais, G. Godin, R.

Baribeau, (1992) Model-based calibration of a range
camera, proceedings of the 11th International
Conference on Pattern Recognition: 163-167. The
Hague, The Netherlands. August 30-September 3, 1992.

[Cas02a] U. Castellani, S. Livatino, R. B. Fisher, Improving
Environment Modelling by Edge Occlusion Surface
Completion, Proc. Int. Symp. on 3D Data Processing
Visualization and Transmission (3DPVT), Padova,
Italy, pp 672-675, June 2002.

[Dal98a] Raymond C. Daley and Laurence G. Hassebrook,
(1998) Channel capacity model of binary encoded
structured light-stripe illumination, in Applied Optics,
Vol.37, No 17, 10 June 1998.

[Fis96a] R. B. Fisher and D. K. Naidu (1996) A
Comparison of Algorithms for Subpixel Peak
Detection, in Sanz (ed.) Advances in Image Processing,
Multimedia and Machine Vision, Springer-Verlag,
Heidelberg.

[Hal01a] Olaf Hall-Holt and Szymon Rusinkiewicz, (2001)
Stripe Boundary Codes for Real-Time Structured-Light
Range Scanning of Moving Objects, proceedings of the
Eighth International Conference on Computer Vision
(ICCV 2001), July 2001.

[Hil90a] F. S. Hill Jr., Computer Graphics using OpenGL,
Prentice Hall, New Jersey, 1990.

[Lev00a] Marc Levoy, Kari Pulli, Brian Curless, Szymon
Rusinkiewicz, David Koller, Lucas Pereira, Matt
Ginzton, Sean Anderson, James Davis, Jeremy
Ginsberg, Jonathan Shade, and Duane Fulk, (2000) The
Digital Michelangelo Project: 3D scanning of large
statues in Computer Graphics (SIGGRAPH 2000
Proceedings).

Test
no:

Occlusion
detection

Algorithm
type

Corresponding
peaks C

Miscorresponding
peaks M

Noncorrespond-
ing peaks X

Total Peaks
C + M + X

1 NO stripe tracer 18681 2304 362 21347
2 YES stripe tracer 17332 0 0 17332
3 NO flood filler 26120 5188 14333 45641
4 YES flood filler 25668 2175 31 27874

[Pav82a] Theo Pavlidis, Algorithms for Graphics and
Image Processing, Springer-Verlag, Berlin-Heidelberg,
1982.

[Roc01a] C. Rocchini, P. Cignoni, C. Montani, P. Pingi
and R. Scopigno, (2001) A low cost 3D scanner based
on structured light, Computer Graphics Forum
(Eurographics 2001 Conference Proc.), vol. 20 (3),
2001, pp. 299-308, Manchester, 4-7 September 2001.

[Zha02a] Li Zhang, Brian Curless and Stephen M. Seitz,
(2002) Rapid Shape Acquisition Using Color
Structured Light and Multi-pass Dynamic
Programming, 1st International Symposium on 3D data
processing, visualization and transmission, Padova,
Italy, June 19-22, 2002.

