
Diffusion and Multiple Anisotropic Scattering for 
Global Illumination in Clouds 

 
Nelson Max 

Lawrence Livermore National Lab.  
Mail Stop L-560 

7000 East Avenue  
 USA 94550 Livermore CA 

max2@llnl.gov 

Greg Schussman 
Stanford Linear Accelerator Ctr. 

Mail Stop 26 
2575 Sand Hill Road 

USA 94025 Menlo Park CA 

schussman@SLAC.stanford
.edu 

 

Ryo Miyazaki, Kei Iwasaki,             
and Tomoyuki Nishita 

University of Tokyo 
7-3-1 Hongo, Bunkyo-ku  
Japan 113-0033 Tokyo 

{ryomiya, kei-i, nis}@nis-
lab.is.s.u-tokyo.ac.jp 

 
ABSTRACT 

The diffusion method is a good approximation inside the dense core of a cloud, but not at the more tenuous 
boundary regions. Also, it breaks down in regions where the density of scattering droplets is zero. We have 
enhanced it by using hardware cell projection volume rendering at cloud border voxels to account for the straight 
line light transport across these empty regions. We have also used this hardware volume rendering at key voxels 
in the low-density boundary regions to account for the multiple anisotropic scattering of the environment. 
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1. INTRODUCTION 
The appearance of a cloud is produced by multiple 
scattering of the incident illumination. The phase 
function for the result of two scattering events is the 
convolution of their two phase functions, and the 
convolution of any non-delta-function phase function 
with itself enough times approaches a uniform 
distribution, as shown in [Stam95]. In the interior of a 
cloud, the water droplets are dense, and the mean free 
path of a photon is short, so the large number of 
scattering events in a voxel will cause it to radiate 
scattered light diffusely. In the diffusion 
approximation, explained briefly in section 2 below, 
the equation for radiance transport is approximated 
by an equation for diffuse light transport, which can 
be more easily solved by multigrid relaxation. Kajiya 
and von Herzen [Kaj84] first proposed it to the 
computer graphics community, and Stam [Stam95] 

gave the first practical implementation for radiance 
transport in clouds. The diffusion calculations in 
[Stam95] assume a rectangular solid of non-zero 
cloud droplet density, which is unrealistic for actual 
clouds. Furthermore, Mie scattering from small water 
droplets is concentrated in the forward direction, and 
this directional scattering is evident in the subtle 
color and intensity effects at the edges of a cloud, 
where the expected number of scattering events is not 
large enough to produce anisotropy. The goal of our 
work is photorealistic rendering of clouds using the 
diffusion approximation on the dense core, with 
modifications to account for regions of zero droplet 
density, and multiple anisotropic scattering at the 
edges. 

Older work on global illumination in participating 
media is well summarized in [Per97] and the 
references cited there. The basic Monte Carlo method 
of tracing random rays from the light source or the 
viewpoint suffers from the problem that few paths 
from the viewpoint reach the light source, and vice-
versa. By tracing photons from the light source, 
accumulating scattering events into a voxel data 
structure called a photon map, and then doing a final 
gather from the viewpoint by ray tracing the photon 
map, Wann Jensen and Christensen [Jen98] solve this 
problem. However, in realistically large and dense 
clouds, the photons will basically make a random 
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walk through the dense medium, and progress a 

straight line distance O(n ) in n bounces, total path 
length n, or computation time n. Thus illumination on 
one side of a dense cloud will take a very long time to 
reach the other side. Recently, Premoze, Ashikmin, 
and Shirley [Prem03] have applied the path integral 
method from quantum mechanics to make a more 
efficient approximation, but it can be biased because 
it takes into account mainly the forward scattering, 
and does not account for all light paths. 

Jensen et al. [Jens01] proposed  an approximate 
solution to the diffusion equations, using a dipole of 
two point sources, one above and one below a planar 
object surface, and a simple analytic solution for the 
diffusion equation for point sources in a 
homogeneous medium. Jensen and Buehler [Jens02] 
applied this to objects represented by surface point 
clouds, using an octree hierarchy to cluster the effects 
of irradiance at points far from the position being 
rendered. Mertens et al. [Mer03] used a similar 
hierarchical method on polygonal surfaces, with a 
semi-analytic integration for the effect of the 
irradiance on a triangle. Lensch et al. [Len02] used 
triangle-based piecewise linear basis functions for 
global transport, and texel-based piecewise constant 
basis functions for local transport. Dachsbacher and 
Stamminger [Dach03] combine this local/global 
transport separation with the hierarchical evaluation 
into a texture-based approximation, which can be 
evaluated in real time using programmable vertex and 
fragment shaders. The dipole approximation used in 
all these methods assumes that the surface is planar, 
and that the medium is uniform and optically thick. 
These methods give plausible realistic renderings for 
more complex geometry, but cannot deal with the 
non-diffuse scattering discussed above at the tenuous 
edges of clouds, where the mean free path of a photon 
is comparable to the geometry feature size, and the 
diffusion approximation is invalid. 

2. DIFFUSION APPROXIMATION 
The following is a brief summary of the derivation of 
the diffusion approximation. For details, see [Ish78]. 
(Note that the derivation in [Stam95] is incorrect, and 
Stam’s equations differ from Ishimaru’s by factors of 
3 in several terms.) 

The equation for light propagation in a participating 
medium is 
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where X is 3D position, ω and ω’  are ray directions 
on the unit sphere, I(X,ω) is radiance at X flowing in 
direction ω, s is length along the ray in direction ω, 
κ(X) is the extinction coefficient, a is the albedo, the 
scattered fraction of the extinction, and p(ω,ω’ ) is the 
phase function giving the probability density that 
scattered light from ω’  scatters to ω. (Note that in 
[Ish78],  p(ω,ω’ ) also includes the albedo a.) 

In a cloud, κ(X) = ρ(X) σt, where ρ(X) is the number 
density of water droplet particles, and σt is the 
extinction “cross section” per particle. Also let σs = a 
σt be the scattering cross section per particle, and σa 
= σt – σs be the absorption cross section per particle.  

Assume that the phase function p(ω,ω’ ) depends only 
on the angle θ  between the unit vectors ω and ω’ , 
and let 
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be the average cosine of the scattering angle θ. For 
the Henyey-Greenstein scattering phase function 
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which we use, p1 = g. 

Let Iri(X, ω) be the reduced incident radiance, which 
can be computed from the sun and sky radiance 
Isky(ω) by the attenuation formula 
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Let  
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be the “diffuse” radiance that has been scattered at 
least once. Approximate Id(X, ω) with the first order 
dependence on the unit direction vector ωωωω : 
            Id (X,ω) =  I0(X) + I1(X) � ωωωω . 
Substituting  
        I (X,ω) = Iri(X, ω) + I0(X) + I1(X) � ωωωω              (3)      

into equation (1), and integrating ω over the unit 
sphere, we get a scalar equation. Then multiplying by 
the unit vector ωωωω and integrating over the unit sphere, 
we get a vector equation. We solve this vector 
equation for I1(X) in terms of I0(X) and its 
derivatives, and substitute the result into the scalar 
equation, which also involves the divergence of I1(X). 
By doing some vector algebra, vector calculus, and 
mathematical manipulations on these equations, we 
end up with the single “diffusion” equation 
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where 
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is the “transport cross section”, 
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 is the first scattered external illumination,  
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is the first scattered external illumination averaged 
over the unit sphere, and 
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 is its directionally weighted average, a vector. 

The incident sun and sky illumination are assigned to 
direction bins on the subdivided surface of a unit 
cube, as shown in Figure 1b). The power in bin i is 
Isky(ωi)∆ωi , where ∆ωi is the solid angle of bin i. 
This power is propagated into the voxels of the cloud 
volume to compute Iri (X,ωi) by tracing a dense 
collection of rays in the direction ωi , starting from 
the external faces of the box enclosing the cloud. 
Each ray intersects the voxels in a collection of 
segments Sj, along which the attenuation integral in 
(2) can be accumulated. The lengths l(Sj) of these 
segments weight the contributions of  Iri (X,ωi)  to the 
integrals in (5) and (6) at the voxel X. So the 
contribution to the integral (5) of a ray segment Sj is 
ρ(X) σs Iri (X,ωi) ∆ωi l(Sj). The phase function 
p(ω,ω’ ) depends only on the angle θ between ω and 
ω’ . Thus the contribution of light flowing in direction 
ω’  = ωi to the integral (6) lies only along direction 
ωi , since the other components cancel by symmetry. 
It therefore equals ρ(X) σs Iri (X,ωi) ∆ωi l(Sj) p1 ωωωωi . 
After these contributions are summed for all rays in 
direction bin i, the values of the sums for (5) and (6) 
in each voxel are normalized by dividing by the sum 
of the lengths l(Sj) of the segments it contains. The 
scalar Q0(X) and the vector Q1(X) are saved at each 
voxel X. 

The sky and sun colors were computed taking into 
account Rayleigh scattering from the molecules in the 
atmosphere, using the methods of [Nis96], [Dob97], 
and [Pre99], and Mie scattering from aerosols, using 
the methods of [Slo02]. 

Boundary Conditions 
For the boundary conditions at the surface of the 
voxel regions containing non-zero droplet density, we 
really want the inward diffuse radiance Id(X, ω) to be 
exactly zero for all directions ω with ωωωω � n > 0, where 
n is the inward surface normal. But this is impossible 
for a function of the form I0(X,ω)+ I1(X, ω)�ω ω ω ω  unless 
the function is zero for all ω. So an approximate 
condition of no total inward flow is used: 
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where the integral is over the inward hemisphere. 
After some mathematical manipulations, this results 
in the boundary condition: 
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For more details on the derivation of this equation 
and of equation (4), see [Ish78]. 

Finite Difference Solution 
To solve the partial differential equation (4) we use 
finite differences to estimate the derivatives. The 
difference for the gradient of I0 is evaluated at the 
face centers, and for the value of ρ in the first term of 
equation (4), the average of the ρ(X) for the two cells 
sharing the face is used, unless one of them has ρ = 0, 
in which case the value at the other cell is used. 
Central differences are used to evaluate the gradient 
for the last term of equation (4). All this results in a 
set of linear equations relating each value I0(X) to the 
values at its six adjacent neighbors. The boundary 
condition (7) is enforced by assuming a temporary 
value of I0(Xe) at an adjacent empty cell Xe where the 
droplet density is zero, set to satisfy (7), and using it 
to compute the differences for equation (4). This 
affects the coefficients of the linear equations, which 
end up not involving I0(Xe), so the temporary value of 
I0(Xe) can be different for different full cells adjacent 
to the same empty cell Xe. 

The resulting set of linear equations can be solved 
iteratively by the Gauss-Seidel or Jacobi method, by 
setting each I0(X) to a weighted sum of its old value 
and the old values of its six neighbors, plus a constant 
term involving Q0 and Q1 that comes from the 
constant right hand side of the linear equation. This 
will take a long time for a large grid, since a bright 
spot caused by sunlight hitting one side of the cloud 
can only propagate across one adjacent cell per 
iteration, so it will take many iterations for it to affect 
the opposite side of the cloud. Therefore a multigrid 
method is used. This is like mip mapping. The data 



volume is considered as a multi-resolution octree 
hierarchy, and coarser versions of the linear equations 
are written for lower levels of the hierarchy. Their 
solutions are used to correct the solutions at finer 
levels of the hierarchy to allow for faster propagation, 
and the solution method iterates up and down the 
levels in the hierarchy until convergence. For details, 
see [Bri00]. We used the Hypre system API and 
multigrid solver from Lawrence Livermore National 
Laboratory [Hypre03]. 

3. PROPAGATION IN CLEAR AIR 
If Xe is an empty border voxel with ρ(Xe) = 0, 
adjacent across face F to a full voxel X, with ρ(X) > 
0, as shown in Figure 1a), we place a viewing cube, 
shown in Figure 1b), at the center of Xe. Then, as in 
the hemicube algorithm for radiosity, we render the 
scene, including the clouds, onto the six faces of this 
viewing cube. We used 64 by 64 resolution images 
on each cube face, and then averaged the colors into 
the 4 by 4 direction bins for each face, as shown in 
Figure 1b), to give a total of 96 direction bins for the 
six faces. 
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E G 
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Figure 1. a) Light propagating from an empty cell 
to a full cell. b) A viewing cube divided into bins. 

 

Figure 1a) shows several rays in the direction ωi at 
the center of direction bin i, crossing face F. Instead 
of continuing to propagate and attenuate Iri (X,ωi) to 
accumulate the values of Q0 and Q1 as described 
above, we replace the propagating value by the 
average color seen in direction bin -ωi, which is 
indicated in bold lines in Figure 1b), in order to 
include the inscattered light from the clouds. If F is 
the only face across which Xe is adjacent to a full cell, 
all directions ωi crossing F from Xe to X have flow 
towards the left, so we need only render the hemicube 
to the right of the bold line in Figure 1b). Similarly, if 
Xe is adjacent to only two full voxels, across faces F 
and G that share a common edge E, then the needed 
incoming directions fill two overlapping hemicubes, 
and we do not render the two half faces adjacent to 
the dashed edge E’ shown in Figure 1b). 

The diffusion approximation assumes that the clouds 
are dense, so that enough multiple scattering takes 

place to make the radiance almost independent of 
direction. As described above and in [Ish78], I1(X) 
can be computed from I0(X) and its derivatives. 
However the linear approximation (3) for I(X) is not 
valid at the edges of the cloud, where single 
scattering, and orders of multiple scattering too low 
to insure directional independence, are important. 
Therefore the approximation (3) cannot be used to 
render an image of the cloud surface.  

Instead, hierarchical volume rendering is used to 
render the volume with opacities ρ(X)σt  and voxel 
colors I0(X). (The solution described above is done 
for the red, green, and blue wavelength bands.) An  
octree hierarchy of least squares approximations to 
the color and opacity values on the various level 
cubes is precomputed, together with the RMS error of 
each approximation. Then, in a view dependent 
manner which weights the error by the projected area 
of the cube on the image, appropriate cubes are 
selected, and composited in back to front order, using 
the hardware cell-projection method. The details are 
given in [Schu01]. For this application, the algorithm 
in [Schu01] was modified to handle color, and to use 
either piecewise linear or piecewise constant 
functions in the approximation hierarchy. 

The revised values for Q0 and Q1 obtained by 
propagating the incident radiance from this volume 
rendering are used again in obtaining a new solution 
to the partial differential equation (4), and the 
sequence of PDE solution, volume rendering, and ray 
propagation is iterated until I0 stops changing 
significantly. The illumination and shadowing of the 
ground by the sky and clouds is also found using 
hardware volume rendering onto hemicubes placed 
on a ground sample grid, and the diffusely reflecting 
ground is included as a background to the volume 
rendered radiance images of the cloud. The sky 
hemisphere, colored as described above, is also part 
of the background. However the radiance of the sun 
exceeds the dynamic range of the fixed-point frame 
buffer, so the sun is not added to the sky background. 
Instead,  the direct sunlight, Isun(Xe,ωsun) is 
propagated and attenuated separately, and saved as 
Irisun(Xe,ωsun) at every voxel. Its effects are added 
separately to Q0 and Q1. 

4. FINAL GATHER 
The final rendering is a “final gather” ray tracing of 
the volume solution to equation (4). The reduced sun 
flux I risun(Xe,ωsun) is used, together with the exact 
phase function p(ωsun, ωviewing) to give an exact final 
single scattering of the attenuated sunlight, similar to 
two pass volume rendering for shadow effects. This 
can give the brightening effect on the edges of a 
cloud when the sun is directly behind it. However, it 
cannot account for the multiple directional scattering 



of the sunlight, nor of the skylight, which contributes 
to the darker and bluer color of the edges of the 
cloud, when seen against other non-edge cloud 
regions as a background.  

To include a more accurate multiple directional 
scattering effect for the regions near the edges of the 
cloud, where the particle density is below a threshold 
T necessary for the diffusion approximation to be 
adequate, we again use volume rendering. When 
doing the final gather ray tracing per pixel, we 
determine low-density ray segments Sj where the ray 
stays within the edge region where 0 < ρ(X) < T. For 
each such segment, we integrate ρ(X)σt along the 
segment to get the optical depth Dj, put a cube at the 
“center” point cj where the integral reaches half this 
value Dj, and compute the radiance on the faces of 
the cube using volume rendering, as above. The x 
axis of the cube is aligned with the direction of the 
viewing ray, as shown in Figure 2.  
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Figure 2. Faces and subface of the viewing cube. 

 

Knowing Dj, the Poisson distribution [Poi97] can tell 
us the probability qij of scattering of scattering 
exactly i times along this segment: 
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This is only an approximation, because the scattering 
will change the direction of the ray. However, for 
small water droplets inside clouds, the scattering is 
highly peaked in the forward direction, so for the first 
few orders of scattering, it is a good approximation.  

To get the phase function for the result of i scattering 
events, we must convolve the phase function 
p(ω,ω’ ) with itself i - 1 times, using integration over 
the unit sphere. This is particularly simple for the 
Henyey-Greenstein phase function, because the result 
is the same formula, with g replaced by gi, as can be 
proved by expanding p(ω,ω’ ) as a Legendra series in 
cosθ. These multiple scattering phase functions 
pi(ω,ω’ ) are precomputed, and saved for each pixel 
on the faces of the viewing cube shown in Figure 2. 
Then for each ray segment Sj, they are multiplied 

pixelwise by the radiance images on the cube and 
summed to give a convolution sample Kij. Finally the 
Kij are multiplied by the probabilities qij and summed 
over i to get the contribution Ej of the segment Sj to 
the viewing ray through a pixel: 

                   �=
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If the centers cjkl of a collection of segments Sjkl for a 
region of pixels (k, l) form a continuous surface, there 
is a possible speed-up. The higher order (large i) 
scattering convolutions Kijkl of the radiance images 
are blurred, and thus change slowly with the pixel 
index (k, l). Therefore they can be interpolated from a 
sparser sampling of the pixels in the region. Only the 
probabilities qijkl needs to be computed at every pixel. 
On the other hand, for smaller i, only the front face of 
the cube containing the viewing direction need be 
accurate, because the scattering is mainly forward. 
For even smaller i, only a central section of the front 
face is required. This saves rendering time because 
the clipping to the view frustum is performed while 
traversing the octree hierarchy, so clipping eliminates 
large octree cells, and their children are not even 
considered.  

We used three different viewing cube sampling 
patterns. The first is for the rear five faces of the 
viewing cube in Figure 2: ABCD, AEFB, BFGC, 
CGHD, and DHEA, which are sampled initially along 
rays at every 8 output image pixels in x and y, as 
indicated by the *  symbols in Figure 3 below. This 
figure shows the method of computing the 
convolutions for these five faces, for the first low-
density segment, if any, along the viewing rays for 
part of a low resolution image.  
 

    2 1     2 -  4 1                                                      

  1 - 1 1 1 - - -  1 1                   1                                

  1 2 - 2 - 2 - - - 2 1             2 - 2 -  

  1 - - - - - - 1 - - 1 1     1 1 1 - - - -  

4 - - - 4 - - - 4 - - - 4 - - - 4 - - - 4 -  

- - - - - - - - - - - - 1 - - - - - - - - -  

- - - - - - - - - - - - 2 - - - - - 2 - 2 -  

- - - - - - - - - - - - - - - - - - - 1 1 1  

4 - - - * - - - - - - - * - - - 4 - 2 1      

- - - - - - - - - - - - - - - - - - - 1      

2 - 2 - - - - - - - - - - - - - - - 2 - 2    

1 1 1 - - - 1 - - - - - - - - - - - - - -    

  1 2 - - - - - - - - - - - - - 4 - - - 4    

  1 - - - - 1 - - - - - - - - - - - - - -    

  1 2 - - - - - - - - - - - - - - - - - - -  

  1 - - - - - - - - - - - - - - - - - - - -  

    2 - * - - - - - - - * - - - - - - - * - 

  

Figure 3. Convolution computation locations. 



The convolutions Kijkl are bilinearly interpolated to 
the positions indicated by the symbol “–” if the 
values of the distances along the ray at which the 
viewing cubes were placed are close enough. If not, a 
new viewing cube is placed at the appropriate 
distance along the ray, and new values of Kijkl are 
calculated. These new calculations are done 
hierarchically at the vertices of a quadtree, in order to 
find values that may be satisfactory for interpolation 
in one or more sub-squares. Thus a 4 in Figure 3 
indicates a new viewing cube along a ray at an output 
image pixel with x and y coordinates divisible by 4, a 
2 indicates a new viewing cube along a ray at a pixel 
with x and y coordinates divisible by 2, and a 1 
indicates a new viewing cube for a pixel whose x or y 
coordinate is an odd number. A blank indicates that 
the viewing ray had no low-density segments.                                                                                  

The second sampling pattern was for the front face 
EFGH of the viewing cube, which was initially 
sampled every 4 pixels in x and y, with doubled 
resolution, in order to give more accurate interpolated 
convolutions near the peak of the forward scattering 
phase function. The final pattern uses only the center 
quarter IJKL of the front face of the viewing cube, 
initially sampled every 2 pixels in x and y. The total 
pixels were the same as on the front face in the 
previous case, so the pixel spacing is half the spacing 
on the whole front face, and a quarter the spacing on 
the other five cube faces. This central section is 
disregarded when computing the convolution for the 
whole front face. Thus, every direction is counted 
exactly once in the three methods, and the 
convolutions which have been interpolated or 
computed for each of them can be added to get the 
total convolution for each low-density ray segment. 

The convolutions are computed hierarchically on 9 
by 9 blocks of pixels, so that when interpolation is 
allowed, the convolutions to be interpolated are 
already known. The blocks are computed in 
horizontal sweeps across the image, so that the left 
hand column of pixels is known from the previous 
block, and the top row of pixels is known from the 
previous sweep of blocks. Thus the convolutions 
need only be saved for the right hand column of the 
previous block, and for one full image row, 
representing the bottom row of the previous sweep’s 
blocks. Once the convolutions are known for the low-
density segments, equations (8) and (9) are evaluated 
per pixel, and the voxel segments on the viewing ray 
are composited from front to back, using either the 
low-density convolution solution (appropriately 
weighted by the optical depth of the voxel segment), 
the high-density diffusion solution, or a density 
dependent interpolation of the two (in order to 
eliminate aliasing artifacts from switching solutions). 

5. RESULTS  
We used the final time step of a cloud simulation 
produced by a hierarchical octree enhancement of the 
simulation method of [Miy02], using the stable semi-
Lagrangian advection scheme of [Stam99] and the 
vorticity confinement method described in [Fed01]. 
The simulation was at resolution 200 x 160 x 120, 
and was averaged down to 100 x 80 x 60 cells for 
rendering. A rectangular solid enclosing the cells with 
non-zero droplet density had size 91 x 51 x 25. 

Figure 4 shows a cloud with only single scattering of 
the sun illumination. Since the phase function for the 
droplets has p1 = g = 0.9, and the scattering is 
strongly peaked in the forward direction, with little 
scattering towards the viewpoint, the cloud is very 
dark and has been artificially brightened. Figure 5 
show the final gather of the diffusion approximation 
solution with both sun and sky illumination, but no 
correction for the low-density boundary regions, and 
no propagation across the clear air. Figure 6 shows 
the added effects of the volume rendering method of 
accounting for the low-density regions at the edge of 
the cloud, using only the initial sun, sky and ground 
illumination in the diffusion solution. Figure 7 shows 
the result of one iteration of the clear air propagation, 
using volume rendering at the border voxels to image 
the clouds. If one flips between Figures 6 and 7 in a 
screen image viewer, one can see that some regions 
of the cloud look brighter in Figure 7. An image from 
two iterations of the clear air propagation is 
indistinguishable from Figure 7. 

Figure 7 took 21 minutes and 33 seconds to compute, 
on a 1.7 GHz Pentium 4 with nVidia GeForce3 
graphics. Of this time, 46 seconds was spent setting 
up and solving the linear equations for diffusing the 
incident sunlight, 2 seconds for setting up the octree 
hierarchy, 227 seconds to render the 12460 viewing 
cubes at the border cells around the clouds, at 
resolution 64 by 64 per face, and the 32 by 32 array 
of hemicubes on the ground sample grid, 94 seconds 
to propagate the flux from the ground, sky, and cloud 
in 96 directions though the cloud, another 46 seconds 
to solve the revised linear equations taking into 
account this extra flux, and 854 seconds to render the 
image, including the time to render the viewing cubes 
at the low-density segments, compute the 
convolutions, interpolate and weight them, and ray 
trace the 480 by 360 image.  

Figure 8, at a time near sunset, took 24 minutes and 
45 seconds. The final rendering time took longer, 
1034 seconds, because there were more cloud pixels 
in this image, due to different viewing parameters. 

 

 



 
Figure 4. Single scattering only. 

 
Figure 5. Initial diffusion solution. 

 
Figure 6. Initial diffusion solution with correction 

for low-density regions. 

6. DISCUSSION AND FUTURE WORK 
The hardware rendering component of our work 
suffered from the dynamic range limitations of the 8 
bit fixed point format of our graphics hardware 
pipeline. We hope to produce more accurate results 
using floating-point graphics pipelines and frame 
buffers. The computing time and memory sizes limit 
the data resolution for our diffusion and light 
propagation passes, but we hope to add extra 

resolution to the final gather pass, by ray tracing the 
original volume instead of the averaged version, and 
interpolating the radiance solution. We also hope to 
add a subvoxel-resolution Perlin noise texture and to 
advect the texture coordinates using the velocity from 
the weather simulation. 

 

 
Figure 7.  Diffusion solution with correction for 

low-density regions, after one iteration of 
propagation through clear air. 

 
Figure 8. Image at sunset. 

 

The artifacts near the bottom of Figures 6 and 7 come 
from the transitions where two low-density segments 
join into one. The probabilities qij for larger numbers 
of scattering events are higher for the larger optical 
depth of the single low-density segment, so that more 
illumination is included from the sides, and less from 
the front. We should add some kind of transition to 
alleviate the edges caused by this abrupt switch. 
Currently for the volume rendering in the final gather, 
all cells except the one containing the viewpoint cj 
are rendered. We should also remove any cell 
intersecting the low-density segment Sj, in order to 
avoid double counting the scattering along this 
segment. 
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