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Abstract

In many application domains, data is collected and
referenced by its geo-spatial location. Spatial data
mining, or the discovery of interesting patterns in
such databases, is an important capability in the de-
velopment of database systems. A noteworthy trend
is the increasing size of data sets in common use,
such as records of business transactions, environ-
mental data and census demographics. These data
sets often contain millions of records, or even far
more. This situation creates new challenges in cop-
ing with scale.

In this paper we propose a novel pixel-oriented vi-
sual data mining approach for large spatial datasets.
It combines a quadtree based distortion of map re-
gions and a local reposition of pixels within these
map regions to avoid overlap in the display. Experi-
ments shows that it produces visualizations of large
data sets for the discovery of local correlations, and
is practical for exploring geography-related statisti-
cal information in a variety of applications including
population demographics, epidemiology, and mar-
keting.

1 Introduction

Nowadays, in a large number of application domains
data is collected and referenced by its geo-spatial lo-
cation. For example, credit card purchase transac-
tions include both the address of the place of pur-
chase and of the purchaser, telephone records include
addresses and sometimes coordinates or at least cell

Figure 1:Tradeoff between Shape and Overlap Fac-
tor – US-Year 2000 Census Median Household In-
come.

phone zones, and census data and other government
statistics also contain addresses and/or indexes for
places. People believe that these data sets are po-
tential sources of valuable information, providing a
competitive advantage (at some point) to its holders.
Government agencies also provide a wealth of sta-
tistical information that can be applied to important
problems in public health and safety, and combined
with proprietary data. Finding valuable details that
reveal fine structures hidden in the data, however, is
difficult.
There are many ways to approach analysis of this
data, including building statistical models, cluster-
ing, and finding association rules. In many cases
it is important to seek relationships that involve ge-
ographic location [3]. Spatial data mining is the
branch of data mining that deals with spatial (loca-
tion) data. However, it is almost impossible for users
to analyze the huge amount (usually tera-bytes) of
spatial data obtained from these large databases in
detail and extract interesting knowledge or general
characteristics. For data mining to be effective, it
is important to include the human in the data explo-
ration process and combine the flexibility, creativity,
and general knowledge of the human with the enor-
mous storage capacity and the computational power
of today’s computers. Visual data exploration aims



at integrating the human in the data exploration pro-
cess, applying its perceptual abilities to the large data
sets available in today’s computer systems. The ba-
sic idea of visual data exploration is to present the
data in some visual form, allowing the human to get
insight into the data, draw conclusions, and directly
interact with the data [12]. Presenting data in an in-
teractive, graphical form often fosters new insights,
encouraging the formation and validation of new hy-
potheses to the end of better problem-solving and
gaining deeper domain knowledge. Visual data min-
ing techniques have proven to be of high value in
exploratory data analysis and they also have a high
potential for exploring large databases. Visual data
exploration is especially useful when little is known
about the data and the exploration goals are vague.
Since the user is directly involved in the exploration
process, shifting and adjusting the exploration goals
is automatically done if necessary.

However, when large data sets are drawn on a
map, the problem of overlap or overplotting of data
points arises in highly populated areas, while low-
population areas are nearly empty. The overlap prob-
lem greatly confound the identification of local pat-
terns by undesired overlap or overplotting of data
points since the geo-spatial locations of the data are
highly non-uniformly distributed in a plane. Figure
6 illustrates this overplotting problem in the highly
populated Manhattan area.

In this paper we describe a novel pixel-oriented vi-
sualization technique for large spatial data sets. The
goal is to combine a state-of-the-art pixel-oriented
visualization technique and the flexibility, creativ-
ity, and general knowledge of human data analysts.
This combination produces visualizations of large
data sets for the discovery of local correlations, and
is practical for exploring geography-related statisti-
cal information in a variety of applications.

2 Previous Approaches

There are several approaches to coping with dense
geographic data already in common use [4]. One
popular method is 2.5D visualization showing data
points aggregated up to map regions. This tech-
nique is available in commercial systems such as Vi-
sualInsight’s In3D [1] and ESRI’s ArcView [2]. In
the In3D visualizations we can readily see that be-
cause of aggregation, important information is lost
if we are looking for patterns other than the coars-
est ones. An alternative approach, showing more de-
tail, is the visualization of individual data points as
bars on a map. This technique is embodied in sys-
tems such as SGI’s MineSet [5] and AT&T’s Swift
3D [7]. A problem here (figure 2(c)) is that too

many data points are plotted at the same position, and
therefore only a small portion of the data is actually
displayed. Moreover, due to occlusion in 3D, some
data is not visible unless the viewpoint is changed,
that is, its not possible to see all data at the same
time. One approach that does not aggregate the data,
but avoids overlap in the two-dimensional display, is
Gridfit [6]. The idea is to reposition pixels locally to
prevent overlap. Figure 2(b) shows an example. A
problem with Gridfit is that in areas with high over-
lap, the repositioning depends on the ordering of the
points in the database, which may be arbitrary. That
is, the first data item found in the database is placed
at its correct position, while subsequent overlapping
data points are moved to nearby free positions, and
so they are locally quasi-random in their placement.

3 Our Approach

In this section, we present an efficient algorithm that
approximates the kernel density functions to enable
the placement of data points at unique positions on
the output map with automatic smoothing depending
onx,y density and an array-based 3D density estima-
tion.

3.1 Problem Definition

The problem of visualizing geo-referenced data can
be described as a mapping of input data points,
with their associated original positions and statisti-
cal attributes, to unique positions on the output map.
The mapping function must satisfy three main con-
straints. In the following, we formally define this
problem. LetA be the set of input pointsA =
{a0, . . . ,aN−1} , whereai = (ax

i ,a
y
i ) is the original

position of each point andS1(ai), . . . ,Sk(ai) are their
associated statistical parameters. BecauseA is as-
sumed to be large, it is likely that we have many data
points i and j, for which the original positions are
very close or even the same, i.e.ai ≈ a j (see fig-
ure 3). Let the data display space (screen or window
space)DS⊂ Z2 be defined asDS= {0, . . . ,xmax−
1}×{0, . . . ,ymax− 1}, wherexmax andymax are the
maximal extension of the window. The goal of the
algorithm is to determine a mapping functionf of
the original data set to a solution set

B= {b0, . . . ,bN−1}, 0≤bx
i ≤ xmax−1, 0≤by

i ≤ ymax−1

such that

f : A→ B, f (ai) = bi ∀i = {0, . . . ,N−1},

i.e. f determines the new positionbi of ai . The map-
ping function must satisfy three constraints:



(a) Traditional 2D Map - with
overlap

(b) Non-overlap 2D Map (Gridfit)-
repositioning depends on the order-
ing of the points in the database

(c) 2.5D Bar Map (Swift)- too many data
points are plotted at the same position, and
therefore only a small portion of the data is
actually displayed

Figure 2:Approaches to Visualize Large Spatial Data Sets- An Overview

Figure 3: Dense data points in 3D space (x,y,s)-
United States Year 2000 Median Household Income

1. No-overlap Constraint
The most important constraint is that all data
points are visible, which means that each data
point must have a unique position. Formally,
this can be expressed as

i 6= j ⇒ bi 6= b j ∀i, j ∈ {1, . . . ,N−1}

2. Position Preservation Constraint
The second constraint is that the new positions
should be ’as close as possible’ to their original
ones. This can be measured by taking the ab-
solute distance of the points from their original
positions or as the relative distance between the
data points, leading to the following optimiza-
tion goals:

• absolute position preservation

N−1

∑
i=0

d(ai ,bi)−→min

• relative position preservation

N−1

∑
i=0

N−1

∑
j=0,i 6= j

(d(bi ,b j)−d(ai ,a j))
2−→min

The distance functiond can be defined by an
Lm-norm (m= 1 or 2)

d(bi ,b j) = m
√

(bx
i −bx

j)m+(by
i −by

j)m

.

3.2 Basic Idea

The basic idea of our approach is the rescaling of cer-
tain map regions to fit better the dense point clouds
(ax

i ,a
y
i ,S(ai)), whereai ∈DB are the geo-spatial data

points andS(ai) are the associated statistical values,
to unique positions on the output map. The idea
works as follows. First, we approximate the two-
dimensional density function in the two geographi-
cal dimensions(ax

i ,a
y
i ) performing a recursive par-

titioning of the dataset and the 2D screen space by
using split-operations according to the geographical
parameters of the data points and the extensions of
the 2D screen space. The goal is (a) to find ar-
eas with density in the two geographical dimensions
(ax

i ,a
y
i ) and (b) to allocate enough amount of pixels

on the screen to place all data points of dense re-
gions at unique positions close to each other. The
top-down partitioning of the dataset and 2D screen
space results in distortion of certain map regions.
That means, however, virtually empty areas will
be shrinking and dense areas will be expanding to
achieve pixel coherence. For an efficient partitioning
of the dataset and the 2D screen space and an effi-
cient scaling to new boundaries, we use a quadtree-
like data structure. The quadtree-like data structure
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Figure 4: The plot displays the dependency of the
number of overplotted pixels from the distortion
level with a resolution of 700x700 pixels.

enables an efficient determination of the old bound-
aries of the gridfile partition in the dataset and the
new boundaries of the quadtree partition in the 2D
screen space. The old and the new boundaries de-
termine the local rescaling of certain map regions.
More precisely, all data points within the old bound-
aries are relocated to the new positions within the
new boundaries.

Second, we use a sophisticated algorithm gridfit-
algorithm [6] which places all data points within the
new boundaries at unique pixels on the output map
in order to provide visualizations which are as posi-
tion and distance-preserving as possible. Note that
on the one hand distortion does not solve the over-
plotting problem, but on the other hand, in many
cases the automated pixel placement step only pro-
vides optimal visualization belonging the position
and distance-preserving constraints in high distor-
tion levels. However, the abstraction level of geo-
spatial maps increases exponentially with the distor-
tion level. The goal is to find a good trade-off be-
tween the visual esthetics and completeness of geo-
spatial maps. Figure 1 illustrates the described trade-
off.

3.3 Polygon Mesh Placement

Often, a map has an associated polygonal mesh of
geo-political boundaries that help in identifying lo-
cations. Assuming this mesh is given along with the
input pointsA, we would like to provide a trans-
formed mesh for the output map. The vertices of
the mesh are handled in a way similar to data points.
Each vertex is repositioned separately: first the cell
of the quadtree containing the vertex is found. Then,
the new position of the vertex is calculated by scal-
ing the cells of the quadtree, the original boundaries
in the data set, to the new boundaries in 2D display
space. To calculate the new position of each vertex,

the same algorithm as described in 3.2 is used. By
repositioning each vertex, we iteratively construct
the transformed polygon mesh.

3.4 Complexity

The time complexity of the proposed approach is
O(nlog2n) and the additional space overhead,O(n+
logn), is negligible.

4 Geo-Spatial Data Viewer

For the analysis of large geo-spatial data sets to be ef-
fective, it is important to include humans in the data
exploration process, combining their flexibility, cre-
ativity, and domain knowledge with the storage ca-
pacity and computational power of current computer
systems.

4.1 Exploratory Data Analysis (EDA)

Our Geo-Spatial Data Viewerfollows a three step
process:Overview first, zoom and filter, and then
details-on-demandwhich has been called the Infor-
mation Seeking Mantra [17]. In other words, in the
exploratory data analysis (EDA) of a data set, an an-
alyst first obtains an overview. This may reveal po-
tentially interesting patterns or certain subsets of the
data that deserve further investigation [11].

Our Geo-Spatial Data Viewerprovides an
overview of the geo-spatial data using familiar land-
covering maps. In this overview, the user can iden-
tify interesting patterns or groups in the geo-spatial
data and focus on one or more of them. To focus on
one or more of them, the data analyst can choose dif-
ferent distortion levels to view the geo-spatial phe-
nomena in more detail. The different distortion lev-
els can be chosen on the fly using the ’interactive
distortion slider’. The efficiency of our approach en-
ables a smooth change between the different distor-
tion levels. To get access to the geo-spatial data in the
different distortion levels, the data analyst can influ-
ence the pixel-placement. The goal is to get a reason-
able clustering of the data. To avoid non-practicable
visualizations, the pixel placement step depends on
the distortion level.

Arbitrary Distorted Geo-Spatial Quadtree Maps
not only provide the basic technique for all three
steps of the visual exploration process, but also
bridge the gaps between them. The analysis using
our geo-spatial data viewer can be seen as a hypoth-
esis generation process; the visualizations of the data
allow the data analyst to gain insight into the data,
and thereby develop and confirm new hypotheses.
The verification of hypotheses may also be achieved



(a) 2D Average Household Income
Plot (longitude, median household
income)- The two highest average
household income areas (Atlantic
Coast and Pacific Coast) regions
have up to $100.000 U.S. median
household income; the two lowest
average household income regions
are the New England and Rocky
Mountain regions

(b) 2D Average Household In-
come Plot (latitude, median house-
hold income)- The only significant
household income for the United
States is in the middle latitude re-
gion

(c) 3D Median Average Income Plot (longitude,
latitude, median household income)- Yields a
good separation of household income with re-
spect to six cities that are identified

Figure 5: Simple Visualizations of the 4D Density Function of the(x,y,s) data space- United States Year 2000
Median Household Income

through automatic techniques from statistics, pattern
recognition, or machine learning, as a complement
to visualization.

4.2 Statistical Displays for Parameter
Adjustment

Kernel Density Estimation (KDE) is based on the no-
tion that the influence of each data point can be for-
mally modeled using a mathematical function, called
a kernel. For more details on KDE see other refer-
ences [18, 16, 19]. Typical examples of kernels are
parabolic, square wave and Gaussian functions. The
kernel function is applied to each data point; an esti-
mate of the overall density of the data space can be
calculated by taking the sum of the influences of all
data points.

OurGeo-Spatial Data Viewerprovides 2D and 3D
visualizations of the resulting 4D Density Function
(see figures 3 and 5). The data analyst can interac-
tively choose different kernel functions and specify-
ing some parameters to control the approximation of
the kernel-density estimation in order to extract po-
tentially interesting patterns and examine the results
in the various distorted map.

The direct, static visualization of the fourth-
dimensional density function is difficult, since the
data is three dimensional. The examples of the
density function shown in figures 5(a) and 5(b) re-
sult from the two dimensions longitude-income and
latitude-income, respectively, both based on a Gaus-
sian kernel.

4.3 Interaction with the Map

In addition to the visualization technique, for an ef-
fective data exploration it is necessary to use one or
more interaction techniques.Interaction techniques
allow the data analyst to directly interact with the vi-
sualizations and dynamically change the visualiza-
tions according to the exploration objectives. The
following interaction techniques are implemented in
our Geo-Spatial Data Viewer.

Relate and Combine
the data analyst can relate and combine with
maps that display the data with identical coor-
dinates, it may be possible to quickly relate pa-
rameters and to detect local correlations, depen-
dencies, and other interesting patterns.

Navigation
data analyst can modify the projection of the
geo-spatial data onto the screen, our sys-
tem supports manual and automated navigation
methods

Interactive distortion slider
allows the data analyst to adjust the level of
detail increasing/decreasing the distortion level.
Figure 6 illustrates the view enhancement for
increasing distortion levels

Selection
provides data analysts with the ability to iso-
late a subset of the displayed data for operations
such as highlighting, filtering, and quantitative
analysis. Selection can be done directly on the
visualization (direct manipulation) or via dialog



Figure 6: From familiar land-covering (level 0) to arbitrary distorted geo-spatial quadtree maps (level 14)

boxes or other query mechanisms (indirect ma-
nipulation)

Interaction with the Temporal Dimensions
the basic idea is that the data analyst can choose
their own route through all 2.5D Bar Maps Dis-
play in ourGeo-Spatial Data Viewerby making
way finding decisions. For example, the data
analyst can manipulate scale and speed, as well
as the typical attributes of flight

Linking and Brushing
Geo-Spatial Data Viewer supports the data ana-
lyst with an interactive selection process called
Brushingcombined withLinking, a process to
communicate the selected data to these other
views of the data set. The data analyst can com-

municate all displayed geo-spatial data points to
2.5D Aggregated and 2.5D Bar Maps

4.4 Key Advantages

Some of the key advantages of ourGeo-Spatial Data
Viewerover automatic data mining techniques alone
are:

• it yields results more quickly, with a higher de-
gree of user satisfaction and confidence in find-
ings

• it is especially useful when little is known about
the data and the exploration goals are vague, be-
cause the analyst guides the search and can shift
or adjust goals on the fly



Figure 7: Year 1999 median household income ex-
ample: visualization without overplotting existing
pixels - example running in our geo-spatial data vi-
sualization environment.

• it can deal with highly non-homogeneous and
noisy data

• it can be intuitive and require less understand-
ing of complex mathematical or statistical algo-
rithms or parameters

• it can provide a qualitative overview of the data,
allowing unexpected phenomena to be isolated
for further quantitative analysis

5 Application examples

The first visualization in figure 6 with a distor-
tion level 0 is a familiar land-covering map. This
map provides random results in the highly populated
Manhattan area while low populated areas are virtu-
ally empty. With an increasing distortion level the
number of overplotted pixels decreases. Up to dis-
tortion level 5, the data analyst can easily find the
Manhattan data points, while at the same time the
overview of the whole state belonging to the median
household income is preserved. These maps clearly
show, that inhabitants with high income (blue color)
live on the East side of Central Park in Manhattan
and inhabitants with low income (red color) live on
the right side of Brooklyn. On the other hand, it
can also be seen that the majority of the inhabitants
of State New York live in New York City. Figure
4 shows the corresponding number of pixels which
cannot be directly placed to the output map depend-
ing on the distortion level for the Manhattan exam-
ple in figure 6. Figure 7 shows an example using the
same data set in our visualization environment for
geo-spatial data.

6 Future Work

One of the challenges today is to find out how to
deploy efficient visualization strategies to represent
geo-spatial data. The goal of ourGeo-Spatial Data
Vieweris to share ideas and connecting the informa-
tion visualization and geo visualization disciplines
[13]. Among the efficient strategies to represent geo-
spatial data and to interact with that data, linked
combination of maps with information visualization
techniques are avenues for future work. The ultimate
goal is to bring the power of visualization technology
to every desktop to allow a better, faster and more in-
tuitive exploration of very large data resources. This
will not only be valuable in an economic sense but
will also stimulate and delight the user. In future
work, we expect to investigate related approaches for
visualizing large geographical data sets. One idea is
to combine the pixel placement technique with a car-
togram algorithm, which first computes a distortion
of the output map having low shape and area error,
and then places pixels on this map.

7 Conclusion

We presentedGeo-Spatial Data Viewer, a novel
pixel-based visual data mining technique that com-
bines kernel-density-based clustering with visualiza-
tion, with an efficient approximation for display-
ing large spatially referenced data sets.Geo-Spatial
Data Vieweravoids the problem of losing informa-
tion because of overplotting data points. More pre-
cisely, it assigns each data point to a unique pixel
in the 2D display space, and tries to achieve a
good trade-off between absolute and relative position
preservation. We applied a number of real data sets
to evaluate theGeo-Spatial Data Viewer. The pro-
posed algorithm provides an effective, efficient solu-
tion to the optimization problem defined in this pa-
per, and is of practical value for exploring spatially
referenced statistical data.
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