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ABSTRACT

We present a new scheme for the reconstruction of large geometric data. It is based on the well-known radial
basis function model combined with an adaptive spatial and functional subdivision associated with a family of
functions forming a partition of unity. This combination offers robust and efficient solution to a great variety
of 2D and 3D reconstruction problems, such as the reconstruction of implicit curves or surfaces with attributes
starting from unorganized point sets, image or mesh repairing, shape morphing or shape deformation, etc. After
having presented the theoretical background, the paper mainly focuses on implementation details and issues, as
well as on applications and experimental results.
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1 MOTIVATION
In many applications fields, real-world datasets are of-
ten provided as a non-uniform, unorganized set of a large
amount of discrete data. The main (and maybe the most
difficult) problem to solve, in order to exploit these scat-
tered data, is to efficiently and precisely reconstruct a
continuous function starting from this dataset. In the field
of geometric modeling, for instance, this problem has be-
come of major importance due to the rapid development
of 3D range scanners that acquire 3D geometries as an
unstructured set of points.

Reconstructing a continuous function starting from un-
organized data sets has been intensively studied over the
last decades. Generally, the techniques can be divided
into two major categories. The first category tries to gen-
erate a parametric function that interpolates or approxi-
mates the initial dataset. Piecewise linear approximation
is the easiest and the most popular technique in this cat-
egory. The second category interpolates or approximates
the dataset by building a family of implicit real-valued
scalar functions where the reconstructed domain is de-
fined as the zero-set of them.

We will focus in this paper on the reconstruction of im-
plicit surfaces without loss of generality. About 20 years
ago, in an extensive survey, Franke [Frank82] identified
radial basis functions (RBFs) as one of the most accurate
and stable methods to solve scattered data interpolation
problems. The pionneering work to interpolating surfaces
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Figure 1: Example of surface reconstruction from un-
organized points.

using RBFs starting from unorganized point sets can be
attributed to Savchenko et al. [Savch95] and Turk and
O’Brien [Turk98]. Using these techniques, the implicit
surface is calculated by solving a linear system. Unfortu-
nately, since the RBFs have global support, the equations
lead to a dense linear system. Hence, both techniques fail
to reconstruct surfaces from large point sets consisting of
more than several thousands of points.

To overcome this problem, by using Wendland’s
compactly supported RBFs [Wendl95], Morse et al.
[Morse01] showed how to reconstruct implicit surfaces
from larger datasets since the involved linear system be-
comes sparse. This algorithm was further improved by
Kojekine et al. [Kojek03] by organizing the involved
sparse matrix into a band-diagonal sparse matrix which
can be solved more efficiently. Unfortunately, the radius
of support has to be chosen globally, which means that the
method is not robust against non-uniform datasets where
the density of the samples may vary significantly over the
dataset. A multi-scale approach such as the one proposed
by Ohtake et al. [Ohtak03b] overcomes this limitation,
but it is not feasible for the approximation of noisy data.
Anyway, for all techniques using compactly supported ra-
dial basis functions, the number of points that can be pro-
cessed is still limited since the techniques remain global
in nature.

A different approach to interpolate large point sets has



been proposed by Carr et al. [Carr01] based on a fast
evaluation of RBF technique by Beatson et al. [Beats97,
Beats92] using fast multipole methods. Unfortunately,
the far field expansion has to be done for every radial
basis function, and is very complex to implement.

Another fast evaluation method of RBFs, based on the
partition of unity method, was proposed by Wendland in
a theorical survey [Wendl02a] and a more practical sketch
[Wendl02b] on which we have based our approach.

Two other methods to reconstruct implicit surfaces with-
out using radial basis functions have drawn much atten-
tion recently. In the first one, called Point Set Surfaces,
presented by Alexa et al. [Alexa01, Alexa03] an implicit
surface is reconstructed using a projection operator based
on the method of moving least squares. The resulting
implicit surfaces is defined by all points that project on
themselves, and the defining function is never calculated
explicitly. Unfortunately, the computation of the projec-
tion operator is rather expensive since a non-linear opti-
mization problem is involved.

In the second one, called MPU implicits, developped re-
cently by Ohtake et al. [Ohtak03a], the partition of unity
method [Frank80] is used to reconstruct implicit surfaces.
By using weighted sums of different types of piecewise
quadratic functions capturing the local shape of the sur-
face, implicit surfaces from very large point sets can be
reconstructed while preserving sharp features.

We combine in this paper two well-known methods in
order to obtain a new reconstruction scheme for large
datasets. RBFs are used to solve a set of small local prob-
lems and the partition of unity (POU) method combines
the local solutions together to get the final reconstruction.
As we will see, this combination is not only robust and
efficient, but also offers a high level of scalability as the
data does not need to be completely stored in memory,
but can be accessed sequentially from disk.

Note that our presentation focuses more on geometric
data, because it is the application field where there are
the larger available datasets. But our technique is valid
for any dimension discrete dataset. This is not the case
for alternative reconstruction techniques such as Point Set
Surfaces [Alexa01, Alexa03] or MPU [Ohtak03a], which
are totally driven by the specific properties of 3D surface
reconstruction. As an example of multidimensional re-
construction we present a technique that combines the re-
construction of geometric and colorimetric discrete data
to generate an implicit surface with solid texture.

The paper is oganized as follows: Section 2 provides the
theoretical background of our technique. In Section 3,
we present our implementation and the practical choices
to obtain an easy, efficient, and robust reconstruction al-
gorithm. Section 4 presents some 3D applications and
experimentals results, and in Section 5 we conclude and
indicate some directions to future work.

2 THEORY

2.1 Radial basis functions

Given the set of N pairwise distinct points
P = fp1; : : : ;pNg of dimension d: pk 2 R

d , and
the set of values fh1; : : :hNg, we want to find a function
f : Rd ! R with

8i f (pi) = hi: (1)

In order to obtain a radial basis function (RBF) recon-
struction of the point set P, a function f satisfying the
equation

f (p) =
N

∑
i=1

ωiφ(kp;pik)+π(p) (2)

has to be found. We denote here kpi;p jk the Euclidean
distance, ωi the weights, φ : R ! R a basis function,
and π a polynomial of degree m depending on the choise
of φ. π(p) = ∑ciπi(p) with fπαg

Q
α=1 a basis in the d-

dimensional null space containing all real-valued poly-
nomials in d variables and of order at most m, hence
Q =

�m+d
d

�
.

The basis function φ has to be conditionally positive def-
inite [Iske02], and some popular choices proposed in the
literature are shown below:

biharmonic φ(r) = r with π of degree 1 (3)

pseudo-cubic φ(r) = r3 with π of degree 1 (4)

triharmonic φ(r) = r3 with π of degree 2 (5)

As we have an under-determined system with N +Q un-
knowns (ω and c) and N equations, so-called natural ad-
ditional constraints for the coefficients ω are added, so
that

∑
i

ωic1 = ∑
i

ωic2 = : : := ∑
i

ωicQ = 0: (6)

The equations (1), (2), and (6) determine the following
linear system:

Ax = b (7)

A =

�
Φ PT

P 0

�
(8)

Φ =

�
φ(kpi;pjk)

���� i=1:::N
j=1:::N

�

P =

�
πα(pi)

���� i=1:::N
α=1:::Q

�

x = [ω1;ω2; : : : ;ωN ;c1;c2; : : : ;cQ]
T

b = [h1;h2; : : : ;hN ;0;0; : : : ;0| {z }
Q times

]T (9)

The solution vector x is composed of the weights ωi and
the polynomial coefficients ci for equation (2) and repre-
sent a solution of the interpolation problem given by (1).

If an approximation rather than an interpolation is re-
quired, one solution is to modify the diagonal of the ma-
trix Φ Φ� 8kπρI (see Carr [Carr01, Carr03]), where
the parameter ρ controls the fitting tolerance (i.e. the re-
sult is getting smoother when ρ is increased).

2.2 Partition of unity method

The main idea of the partition of unity (POU) approach
is to divide the global domain of interest into smaller do-
mains where the problem can be solved locally. More for-
mally, the global difficult problem P is decomposed into
several smaller local problems Pi and their local solutions
Si are combined together using the weighting coefficients
of Si that act as smooth “glueing” functions to obtain a
global solution S .



Consider a global domain Ω and divide it into M
“slightly” overlapping subdomains fΩig

M
i=1 with Ω �

S
i Ωi. On this set of subdomains fΩig

M
i=1, we construct a

partition of unity, i.e. a collection of non-negative func-
tions fwig

M
i=1 with limited support supp(wi)�Ωi and

with ∑wi = 1 in the entire domain Ω.

For each Ωi, a set Pi = fp 2 Pjp 2 Ωig is constructed,
and a local reconstruction function fi is computed. The
global solution is then defined as a combination of the
local functions weighted by the partition functions wi.

F(p) =
M

∑
i=1

fi(p)wi(p): (10)

The condition ∑wi = 1 is obtained from any other set of
smooth functions Wi by a normalization procedure

wi(p) =
Wi(p)

∑ j Wj(p)
: (11)

Any function Wi is appropriated, but to guarantee the con-
tinuity of the global interpolation function F , it has to be
continuous at the boundary of the regions Ωi.

2.3 Complexity analysis

The solution of the linear system (7) of size N requires
O(N3) floating point operations and O(N2) core-memory
cells. Thus it is clear that direct methods are not suit-
able for a number of constraints greater than several thou-
sands.

In the partition of unity approach, Ω is divided into
M subdomains. With a “good”, quasi-uniform distri-
bution, every Ωi contains N=M constraints in average.
The new solution requires O(M(N=M)3) operations and
O((N=M)2) cells. As N=M can be considered as a con-
stant, the reconstruction complexity is in O(N), hence it
is linear with respect to the number of constraints.

Another benefit using the POU method is in the evalu-
ation of the interpolating function (2). The global RBF
approach requires O(N) operations for one single evalu-
ation. Using the POU approach, two steps are required:
first, finding all regions containing the point to evaluate,
and second, evaluating the radial basis functions of the
small local regions. Thus, the number of operations re-
quired is O(M+N=M). Using an appropriate partitioning
and data structure for fast neighbor searching like octree
or kd-tree, we can reduce the first step to O(logN) or
even O(1), and with N=M considered as a constant, the
evaluation complexity is O(1).

3 RECONSTRUCTION SCHEME

3.1 Partitioning and local reconstruction

According to the equations (10) and (11) two families of
functions have to be built: the weighting functions Wi and
the local reconstruction functions fi. Our reconstruction
algorithm requires two steps: a space partition step that
determines a set of overlapping domains fΩig with as-
sociated weighting functions fWig, and a reconstruction
step that computes the set of local functions f fig.

As we strive for an optimal reconstruction time, we have
to obtain a quasi-uniform repartition of the points in the

Algorithm 1 Partition(P, Ωi)
Require: points P, domain Ωi
Ensure: set of domains fΩjg

compute n number of points P
if n > Tmax then

subdivide Ωi into overlapping Ω1
i ; : : : ;Ωk

i
Partition(P, Ω1

i )
. . .
Partition(P, Ωm

i )
else if n < Tmin then

while n 62 [Tmin;Tmax] do
if n < Tmin then

enlarge Ωi
else if n > Tmax then

reduce Ωi
end if

end while
domain OK, add Ωi to fΩ jg

else
domain OK, add Ωi to fΩ jg

end if

domains Ωi. The recursive algorithm 1 describes an adap-
tive subdivision of the domain Ωi, so that each subdomain
contains between Tmin and Tmax points.

If we call this function with the bounding domain Ω of
the point set P, the result is a set fΩ1; : : : ;ΩMg where
8Ωi Tmin � Card(Pi)� Tmax.

Starting from the domain Ωj we divide it recursively into
m overlapping domains Ω1

j : : :Ωm
j . When the number of

points Pn
j in Ωn

j domain is higher than Tmax we continue
with the recursive subdivision. If the number of points
is smaller than Tmax, the recursion is terminated and the
current domain is added to the fΩig set. However, if a do-
main Ωi does not contain enough points, the local inter-
polation fi can lead to unexpected results. Hence, when
the number of points is smaller than Tmin, we have to ad-
just Ωi. The adjusting scheme is an iterative process when
Ωi is enlarged and reduced until the number of points Pi
is between Tmin and Tmax as explained in the following
subsection.

The second step is quite simply: for every domain Ωi in
the fΩig set, a RBF reconstruction fi is computed from
the point set Pi as shown in section 2.1.


i


i



1
i



1
i



2
i



2
i



3
i



3
i



3
i



4
i



4
i



4;1
i



4;1
i



4;2
i



4;2
i



4;3
i



4;3
i



4;4
i



4;4
i

Figure 2: Space subdivision (Ωi and Ω4
i ) and domain

enlarging (Ω3
i ) in order to adaptively balance the num-

ber of points per domain.

Figure 2, shows a hierarchy of domains, created by our
partitioning algorithm. The final fΩig set contains all the
leafs of the tree.



The Tmax parameter controls time and stability. Increas-
ing its value improves the local reconstruction at the
cost of evaluation time. For the surface reconstruction,
Tmax 2 [120;200] is a reasonable threshold. We use also
Tmin > 30 that leads to a reconstruction without visible
artifacts.

3.2 Operations on domains

The domains Ωi can be of any shape, in practice, we use
two simple and convex objects: axis-aligned ellipsoids
of center C and axis A (Figure 3(a)), and axis-aligned
bounding boxes defined from the two opposite corners
S and T (Figure 3(a))

In order to enlarge or reduce a domain we simply scale
it by a factor while keeping the domain center as shown
Figure 3(b).

Figure 3(c) shows a subdivision step. In this stage a do-
main Ω is divided in eight (in the 3D case) equal-sized,
overlapping subdomains based on a classical octree de-
composition.

The table formalizes such operations according to S, T , C
and A parameters. We denote the new parameters of the
transformed domain with S0, T 0, C0 and A0.

ellipsoid Ωe box Ωb

enlarge or
reduce

A0 = kA
C0 =C

S0 = S� (k�1)(T�S)
2

T 0 = T + (k�1)(T�S)
2

subdivide A0 =
p

3
2 dA

C0 =C� A
2

S0 = S� (d�1)(T�S)
4

T 0 = S+T
2 + (d�1)(T�S)

4

The cofficient k denotes a scale factor in the iterative
process of the enlarge/reduce scheme in order to adapt
the domain size to the number of points. In practice,
we take k = 1:05 for enlarge and k = 0:98 for reduce.
The coefficient d is an overlap factor. A larger value for
d yields larger overlapping zones and larger subdomains
and hence a more stable reconstruction, but also increases
the total number of domains and the reconstruction time
(d = 1:1 is a good compromise).

3.3 Weighting function

The choice of the weighting functions Wi determines the
continuity between the local solutions fi and the continu-
ity of the global reconstruction function F . Our weight-
ing functions Wi are defined as the composition of a dis-
tance function Di : Rn ! [0;1], where Di(p) = 1 at the
boundary of Ωi and a decay function V : [0;1]! [0;1]:
Wi(p) =V ÆDi(p).

We propose two formulations for the distance func-
tion Di; Db

i for a box and De
i for an ellipsoid:

Db
i (p) = 1� ∏

r2x;y;z

4(p(r)�S(r))(T (r)�p(r))
(T (r)�S(r))2

De
i (p) = ∑

r2x;y;z

(p(r)�C(r))2

(A(r))2

Depending on the choice of the decay function V , a more
or less smooth weighting function Wi is created with the
desired continuity over the domain Ωi. We suggest to use
one of the following formulations for V that were chosen
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Figure 3: Operations on the ellipsoid and box regions.
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Figure 4: Distance function and weighting function
for a rectangular region.

by including some simple constraints similar to the con-
struction of base spline functions (V (0) = 1, V (1) = 0,
V 0(0) =V 0(1) = 0, etc.).

C
0 : V 0(d) = 1�d

C
1 : V 1(d) = 2d3�3d2 +1

C
2 : V 2(d) =�6d5 +15d4�10d3 +1

Figure 4 shows the geometric interpretation of these for-
mules for a 2D rectangular domain.

3.4 Reconstruction constraints

When the set of values fh1; : : :hkg of the conditions (1)
are distinct, we can solve various reconstruction prob-
lems using the technique described so far. However,
when reconstructing implicit surfaces from a set of N dis-
tinct points P = fp1; : : : ;pNg, we want to find a function
satisfying

8i F(pi) = 0; (12)



(a) 1000 points (b) 2000 points (c) 4000 points (d) 8000 points (e) 16000 points (f) 32000 points

(g) 15 000 points (h) 50 000 points (i) 150 000 points

Figure 5: Reconstruction of the Stanford Bunny and Dragon from different initial point sets.

and the conditions (1) are not sufficient because
h1 = h2 = : : := hN = 0.

Unfortunately, with these conditions, the system (7) has
the trivial solution, the constant function F(p)= 0, which
is not useful. One common solution [Turk98, Carr01] is
to use off-surface points: the constraints (12) are com-
pleted by an additional set of points P0 = fp0

1; : : : ;p
0

lg
where F(p0

i) = hi 6= 0. These off-surface points p0

i can
be computed starting from the initial points pj and mov-
ing them along the normal vector: p0

i = p j + k jn j. The
normal is usually obtained during data acquisition, how-
ever, when the normal is not available, it can be estimated
from neighboring points [Hoppe92].

Based on the common convention that F(p) > 0 inside
and F(p) < 0 outside the surface, Turk and O’Brien
[Turk98] add one off-surface point at the exterior of the
surface (kj > 0;hi =�1) on every initial point. Carr et
al. [Carr01] propose to add two new points on both sides
of the surface (kj > 0;hi =�1 or kj < 0;hi =�1) for a
subset of the initial points.

In practice, we found that taking a translation value ki as
1% of the length of the bounding box is often, but not
always, sufficient. Carr et al. [Carr01] give a simple con-
dition to reconstruct surfaces without auto-intersections:
for every off-surface point p0

i = p j +k jn j, the nearest sur-
face point has to be the point pj that it is derived of.

4 APPLICATIONS AND RESULTS
All results presented in this section were performed on
an Intel Pentium 1.7 GHz with 512 MB of RAM running
Linux. To solve the linear systems, we used the linear
solver from the GNU Scientific Library package [GNU]
based on LU-decomposition.

To visualise the resulting implicit surfaces, we used a
polygonizer such as [Loren87, Bloom94] to create a
polygonal mesh. We can even imagine a more topo-
logically stable algorithm based on knowlegde about the
initial points [Cresp02]. As other possible solutions,

we can mention the oriented particles method [Witki94,
Lomba95] and a mixed forward and backward warping
method [Reute03].

Our first application is the reconstruction of implicit
surfaces starting from unorganized point sets. Table 1
presents the processing times depending on the initial
number of constraints.

We denote #P the number of points (with two additional
off-surface points the total number of constraints is 3#P),
M the number of regions, trec the geometry reconstruction
time in seconds, tpoly the polygonization time in seconds
using Bloomenthal polygonizer [Bloom94] with a reso-
lution of 2% of object’s bounding box size, and eRMS the
RMS error of the reconstructed surface.

Model #P M trec eRMS tpoly
Bunny 1 000 50 6 0.19 126

2 000 157 17 0.17 182
4 000 223 24 0.13 134
8 000 676 73 0.10 218
16 000 946 106 0.07 170
32 000 2 577 329 0.04 288

Buddha 25 000 1 814 143 0.15 445
50 000 3 553 369 0.12 701

100 000 7 431 717 0.10 1 020
150 000 10 126 1 216 0.08 1 400
300 000 22 285 2 652 0.02 2 354
500 000 33 745 5 254 0.005 4 064

Table 1: Processing time and error of different models.

The initial models Bunny, Happy Buddha and Dragon
borrowed from Stanford 3D Scanning Repository [Lar]
were downsampled and the complete process consisting
of reconstruction and polygonizing was applied. At the
same time we computed the RMS error of the downsam-
pled constraints set compared to the initial point set. We
can confirm the linear complexity of our reconstruction
process, whereas usual polygonal reconstruction (based
on Delaunay triangulation for instance) is O(N logN) at
best. Note that the global error decreases proportionally
to the number of points as it is expected. Figures 1 and 5
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Figure 6: Reconstruction time in function of number
of points. Bunny and Buddha. See also Table 1

Figure 7: Linear morphing between Max Planck head
and Igea.

show the examples of the reconstruction quality.

The influence of the two thresholds Tmin and Tmax is shown
in Table 2. The same 8000 points model of the Dragon
[Lar] was processed with different parameters. Visual re-
sults have shown that increasing Tmax above a threshold
does not influence the reconstruction quality but only in-
creases the processing time, whereas a too small Tmin can
lead to visible artefacts.

Tmin Tmax M trec tpoly
20 50 1474 23 93
50 100 638 82 135
50 200 434 104 143
50 300 251 226 187
50 400 195 364 237
100 300 251 283 253
100 400 195 451 309

Table 2: Influence of Tmin and Tmax.

All characteristics of implicit surfaces that are recon-
structed using our implementation still apply, such as
function-based shape modelling [Pasko95]. As an exam-
ple, we show in Figure 7 the linear morphing from the
Max Planck head to the Igea head.

The second application is the possibility to combine ge-
ometric reconstruction with the reconstruction of ad-
ditional surface attributes such as color channels, re-
flectance, and others. Such attributes can be considered
as an intersection of the surface and a 3D procedural
solid texture, where each attribute is reconstructed sepa-
rately. Note that the number of constraints to reconstruct
the implicit surface can be different from the number of
constraints to reconstruct the attributes (Figure 8). As
said, this is a unique feature of our RBF/POU reconstruc-
tion technique compared to alternative technique such as

Point Set Surfaces or MPU that can only handle geomet-
ric constraints.

A nice characteristic is, that the same deformation func-
tion applied to the implicit surface and the attributes con-
serves the geometry and texture coherence. As an exam-
ple Figure 9 shows a Chameleon model twisted along the
z axis.

Figure 8: Independent reconstruction of geometry and
texture. First row: surface reconstruction from 10 000
points, second row: from 100 000 points. First column:
texture reconstruction from 10 000 points, second col-
umn: from 100 000 points.

Table 3 presents the reconstruction time for the geome-
try (tgeo) and the texture (ttex) in seconds, and also shows
the memory usage (in MB) during reconstruction. As we
can see, the memory peak has a linear complexity what
confirms a theoretically limited memory due to local re-
construction stages.

Model #P M tgeo ttex Mem
King 2 500 271 9 2 7

10 000 809 49 10 10
40 000 2 595 222 55 22

Chameleon 25 000 2 228 109 39 17
50 000 3 671 272 77 28
75 000 7 203 352 148 42
100 000 9 129 586 183 58

Table 3: Geometry and texture reconstruction. Mem-
ory peak.

Mesh repairing is another common use of 3D reconstruc-
tion. As partition of unity is a purely local method,
meshes with very large holes may be incorrectly repaired,
so we propose a simple semi-automatic process where the
user has to specify additional subdomains that include the
hole boundary. Figure 10 shows that it is sufficient to
manually add one single region containing the boundary
of the hole to repair the mesh as expected.

The following results show additional features of the sur-
face reconstruction. The difference between interpola-
tion and approximation is shown at Figure 11. The same
10 000 points model of the Stanford Bunny was recon-
structed with a different fitting tolerance ρ. Finally, Fig-
ure 12 shows that non-uniform, scattered data can be very



(a) Initial point set from incomplete mesh (b) Incomplete reconstruction. The hole is
too large.

(c) Correct reconstruction with user interac-
tion

Figure 10: Mesh repairing.

Figure 9: Twisted chameleon - simultaneous transfor-
mation of reconstructed geometry and texture.

(a) Interpolation. (b) Approximation. Fitting
tolerance ρ = 10�6

Figure 11: Interpolation and approximation of point
set.

robustly reconstructed whether the density variation is
smooth (Figure 12(a)) or sharp (Figure 12(b)).

Another interesting application domain is volume recon-
struction for medical images. Medical images are often
acquired as a set of slices distanced of some millimeters.
A difficult problem is to connect the slices by reconstruct-
ing the missing information between. We obtained con-
vincing results (not presented here) simply by consider-
ing the raw data as a sampling of a 3D signal function and
then applying the reconstruction scheme on it.

(a) Non-uniform dataset with smooth density variation

(b) Non-uniform dataset with sharp density variation

Figure 12: Variable point density test.

5 CONCLUSION AND FUTURE
WORKS

We described a new approach to reconstruct large geo-
metric datasets by dividing the global reconstruction do-
main into smaller local subdomains, solving the recon-
struction problems in the local subdomains using radial
basis functions with global support, and combining the
solutions together using the partition of unity method.
Our approach has a nice behaviour with respect to the
size of the dataset. Furthermore, the local reconstruction
problems can be solved by various, non-communicating
entities due to the independence of the local subdomains.
Moreover, the stability of the reconstruction using ra-
dial basis functions makes our approach robust against
highly, non-unifomly distributed and topologically com-
plex datasets allowing its usage in various application
fields.

We showed the quality of our approach on a variety of
examples in different domains, and the quantitative re-



sults confirmed our expectation of the linear complexity
behaviour. We think that the simplicity of the described
process combined with the practical implementation is-
sues given in this paper makes our approach highly ac-
cessible.

Our new approach intrigues us in various areas for cur-
rent and future resarch. For example, the hierarchy of
regions has useful information only into its leafs. We
are currently investigating how the recursive domain de-
composition method can be exploited in order to define a
multiresolution representation that can be used not only
for progressive reconstruction, but also for level-of-detail
evaluation and visualization.

Moreover, we are currently exploiting the locality of our
reconstruction scheme to define a point-based modeling
environment in order to improve previous work by Turk
et al. [Turk02] and ourselves [Reute03]. Not only the lo-
cality of the reconstruction process, but also the constant
evaluation time of the reconstruction function makes our
new approach attractive for interactive modelling appli-
cations. Herein, we are also using our approach to cre-
ate 3D procedural textures from the attributes of the non-
uniformly distributed points.
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