
High-Quality Silhouette Illustration for Texture-
Based Volume Rendering

 Zoltán Nagy, Reinhard Klein

Institut für Informatik II, University
of Bonn

Römerstraße 164
53117 Bonn

Bonn, Germany

{zoltan|rk}@cs.uni-bonn.de

ABSTRACT
We present an accurate, interactive silhouette extraction mechanism for texture-based volume rendering.
Compared to previous approaches, our system guarantees silhouettes of a user controlled width without any
significant preprocessing time. Our visualization pipeline consists of two steps: (a) extraction of silhouettes with
a width of one pixel, and (b) image post-processing for broadening of silhouettes. Step (a) is a mixture of
object- and image-based- silhouette extraction models, maximally exploiting the screen resolution. This hybrid
approach is neither sensitive to accuracy in gradient representation nor to the precision of the depth-buffer, as in
earlier procedures. Step (b) is accomplished via smoothing and applying a threshold to the temporary result
obtained in (a). To keep the latter process efficient, we perform fast convolution using FFT. Our silhouette
extraction is conceptually similar to the corresponding method for polygonal representations, checking the front-
and back facing property of adjacent triangles.

Keywords
NPR, volume rendering, silhouettes, stylization, contours, FFTW.

1. INTRODUCTION
Volume rendering has become an important tool for
scientific visualization in the last decade. The major
focus in this area lies in the exploration of datasets as
obtained from Computer Tomography (CT),
Magnetic Resonance Imaging (MRI) or simulations.
Iso-surface extraction and direct volume rendering
(DVR) have proved themselves as interactive
exploration methods for input data in texture-based
volume rendering. These two methods are alike in
their objectives to approximate the look of the
analyzed objects as they would appear in reality: iso-
surface extraction describes an opaque-like look,
whereas DVR visualizes a semi-transparent
appearance.

Only recently, researchers have recognized the
impact of combining the two areas of (i) volume
rendering and (ii) non-photorealistic rendering
(NPR). NPR leaves freedom to guide the attention of
the observer to special features of the object, like
silhouettes, creases, cusps, or material edges. For an
overview of this topic and the terms mentioned
above, we refer to [StSc02], [MöHa02] and
[GoGo01].

This work deals with the question of how to detect
and illustrate silhouettes in volumetric datasets
efficiently and robustly. We address the problem of
capturing silhouettes with a guaranteed width of one
pixel and broadening of silhouettes either by a user-
defined, fixed width -or adaptively, depending on the
distance to the viewer.

Our paper is organized as follows. In section 2, we
review related work. In section 3, we describe our
method of finding silhouettes in the dataset from a
particular view. Section 4 explains how the
silhouettes can be broadened for advanced
stylization. The remaining sections summarize results
and conclude our work.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Journal of WSCG, Vol.12, No.1-3, ISSN 1213-6972
WSCG’2004, February 2-6, 2004, Plzen, Czech Republic.
Copyright UNION Agency – Science Press

2. PREVIOUS WORK
2.1 Polygonal Models
Detecting silhouettes for polygonal representations is
most simple. A well-established criterion is used,
which we call the front/backface property of two
adjacent polygons: an edge is called silhouette edge,
if exactly one of two triangles sharing an edge faces
the viewer [MöHa02], i.e.

(n0 · v > 0) ≠ (n1 · v > 0) (1),

must hold, where n0, n1 are the respective triangle
normals and v is the viewing vector.

The union of silhouette edges forms the silhouettes.
Raskar and Cohen [RaCo99] and Raskar [Ra01] used
this criterion for real-time silhouette rendering. Their
system is capable of illustrating silhouettes of
predefined width by enlarging back-facing triangles
by a depth-dependent factor. Although other
techniques, like e.g. the shell (or halo) method
[HaDa01] exist to render silhouettes in real-time,
Raskar and Cohens method is currently regarded as
being best concerning speed and robustness. As
mentioned above, this criterion cannot be used
directly for volumetric representations; however, we
shall exploit the robustness of the front/backface
property in our approach in a different way.

2.2 Surface Angle Silhouetting
For surface representations, where the criterion above
cannot be applied, often the right-angle criterion is
used: a point is called silhouette point, if the
inequality |<v,g>| < ε holds, where 0<ε<1 denotes a
threshold value and v and g are the normalized local
viewing direction and the gradient on the surface,
respectively [GoSl99]. Despite its applicability for
arbitrary shape representations, a drawback is that
silhouette lines are drawn with variable width,
depending on the curvature of the surface [MöHa02].
Csébfalvi et al. [CsMr01] and Rheingans and Ebert
[RhEb01] improved this formula by introducing a
constant k and checking the relation (1- |<v,g>|) k < ε,
where k serves the purpose of controlling the contour
sharpness. By this means, above mentioned effects
get lessened, but not removed, since the curvature of
the surface still influences the silhouette width.
Kindlmann et al. [KiWh03] try to incorporate
curvature information in their model, but their
method is still not robust in general, e.g. in regions
where curvature is too low to be measured accurately.

2.3 Silhouettes by Image Processing
The methods mentioned so far operate on object
level, i.e. the object geometry is used for silhouette
detection. Discontinuities in screen-space, however,
can also be used for detecting boundaries. Saito and

Takahashi [SaTa90] first picked up this idea,
followed by Decaudins [De96] extension towards
toon rendering. Based on the simple idea that
silhouettes tend to be located rather at pixels where
discontinuities in the neighborhood in the Z-buffer
occur, the method works fairly well, even for non-
polygonal representations. Card and Mitchell
[CaMi02] and Mitchell [Mi02] improved this method
by taking normal discontinuities in image space into
account. There are some flaws with this technique
making it disadvantageous for volume rendering.
First, for nearly edge-on surfaces, the z-depth
comparison-filter can falsely detect silhouette edge
pixels. Second, if the differences in z-depth
comparison are minimal, then silhouette edges can be
missed [MöHa02]; in other words, the depth-
comparison is sensitive to the resolution of the depth-
buffer. Deussen and Strothotte [DeSt00] use the same
z-buffer trick to generate pen-and-ink trees, therefore
it is related to our silhouette extraction technique.
Their algorithm however, uses a fixed threshold to
determine discontinuities in z-space. Our algorithm
is not restricted to an arbitrarily chosen value, but
uses object-precision information to adaptively locate
the outlines.

2.4 Volumetric Models
Surface angle silhouetting has been approved in
volume rendering in various applications. Csébfalvi
et al. [CsMr01] used it for visualizing contours,
Rheingans and Ebert [RhEb01] for volume
illustrations, Lu et al. [LuMo02] for point-stippling
techniques, Svakhine and Ebert [SvEb03] for feature
halos, Nagy et al. [NaSc02] for hatching and Lum
and Ma [LuMa02] in parallel applications.
A very elegant method for extracting silhouettes,
tailored to volumes, was proposed by Schein and
Elber [ScEl02], who used a trivariate tensor product
B-spline representation of their data to obtain highly
accurate boundary renderings. Their method
however, demands tremendous amounts of memory
and disk space, with preprocessing times of more
than 20 minutes and about 10 seconds for a particular
view on a 800 MHz Pentium III for a dataset with
about 315.000 voxels. Our approach, in contrast,
requires no significant preprocessing, and allows for
interactivity.

3. ALGORITHM OUTLINE
Our algorithm takes the regular volumetric dataset as
input, without any additional information, like e.g.
gradients. The rendering of the dataset is
accomplished by using 3D texturing under the
constraint of slicing the polygons in front-to-back
fashion using iso-surface extraction.
Figure 1 summarizes the rendering process. In the
first stage the program renders the single slices,

detects the contours and propagates them through the
slices in order to capture silhouettes. This is
explained in the following subsections. Afterwards,
the content of framebuffer is read back to main
memory to broaden silhouettes. This is an optional
stage explained in section 4. Finally, the result is
output to the framebuffer.

Figure 1: Survey of the rendering pipeline. G
denotes the Fourier-transformed Gaussian kernel.

In the following subsection, we describe the idea of
the first stage of our algorithm first for the 2D case,
afterwards we elevate the method to 3D.

3.1 Basic Idea
The main trick of our silhouette detection mechanism
is depicted in figure 2. First, we fix two terms. We
define a pixel to be a contour pixel, if the fragment
survives the α-test during rasterization, but not all
pixels in the 8-neighbourhood. A contour pixel is
called propagated, if a contour pixel was already
detected on the previous slice at the same screen
position.

Suppose we have a single visible contour pixel ck on
slice si+1 detected at a particular screen position (fig.
2, top left). To decide, whether ck is a silhouette
pixel, we check whether a pixel is rendered for slice
si+2 at the same screen position. If this is not the case,
we can assume to have a silhouette pixel detected. If
multiple contour pixels are found on successive slices
at the same screen position (i.e. we have propagated
contour pixels), the local viewer direction is
orthogonal to the iso-surface normal and we come to
a decision by means of the contour pixel found
farthest from the viewer at the same screen position
(fig 2, top right and bottom left). If a survived
fragment is found on the next slice at the

corresponding position, we do not have a silhouette,
otherwise we do.

Figure 2: Examples for silhouette pixel
determination. si, si+1 and si+2 are screen-parallel slices
after surviving the α-test. f, ck and i denote the
framebuffer, the regarded contour pixel and the iso-
surface, respectively. We color code passed
fragments bright grey, contour pixels grey and
silhouette pixels black. Top left: ck in si+1 is detected
as silhouette pixel, since it is visible and the
successor fragment in si+2 does not pass the α-test.
Top right: similar situation, where ck is a propagated
(see text for definition) contour pixel. Bottom left: ck
is not recognized as silhouette pixel, since the
subsequent fragment in si+2 passes the α-test. Bottom
right: importance for the decision of the definition on
the bottom left: if we would define a contour pixel to
be a silhouette pixel only because it is propagated, we
would get multiple silhouettes on the boundary of
highly curved surfaces (here: 2nd and 3rd row).

Premature classification of two successive contour
pixels at the same screen position as silhouette pixel
would lead to multiple silhouettes near to boundaries
of curved objects, which we want to prevent (fig. 2,
bottom right). This special case is not properly caught
by conventional methods, like by the z-buffer trick
(sec. 2.3) or the right-angle criterion (see figs. 7 left
and 8 and sec. 6). Figure 3 shows a simple example
for silhouette tracking in 3D. It remains now to
clarify the tracking of contour pixels through the
single slices.

3.2 Contour Propagation
The algorithm itself works like a standard front-to-
back iso-surface extraction pipeline, with extended
operations applied on a single slice. Since these rules
require an access to temporarily obtained results, we
keep three textures in the texture units (TU) of the
graphics board containing copies of the framebuffer
(see table 1).

 f

s1

sn

Figure 3: Silhouette determination in 3D. An object
(here: two melted spheres) is rendered in a front-to-
back (here: from top-to-bottom) fashion. Fragments
surviving the α-test are opaque and shown in gray.
When rendering the active slice, we assure not to
alter passed pixels in the framebuffer f. If a contour
pixel in slice si corresponds to an empty pixel in the
subsequent slice si+1 (at the same window position),
then it is considered a potential silhouette pixel (bold
outline). Due to this construction, only two
silhouettes appear in the framebuffer after rendering
all slices in the shown example.

TU Content Dim.

0 Volume Data 3D

1 Footprint 2D

2 Contour 2D

3 Intermediate Result 2D

Table1: Texture setup.

Initially, we clear texture units 1-3 with the
background color. We thereafter perform the
following steps, each associated with its own
fragment program, in a front-to-back manner (during
rendering we have depth-testing and depth-writing
disabled):

1. Render the active volume slice with the α-test
enabled. Store the content of the framebuffer in TU 1
and call it footprint. This way, we naturally obtain
two classes of pixels, defined here as empty () and

filled ().

2. Render a screen-filling quad, textured with the
footprint in TU 1. A filled pixel is altered here to a

contour pixel (), if not all pixels in the 8-
neighbourhood are filled. We store the result in TU 2
and call it contour.

3. Finally, we render a screen-filling quad, textured
with the contour in TU 2 and the intermediate result
in TU 3. The decision table shown in table 2, with
denoting a silhouette pixel, tells us how to combine
two pixels at the same texture (here: (yet) screen)
coordinate from TU 2 and TU 3 to a new one, using
the operator (see fig. 4 for an example).

Table 2: Decision table defining how single color
values in TU 2 and TU 3 are combined to a new one,
stored as a new intermediate result in TU 3. The color
coding used here is defined in the text.

Figure 4: Example for tracking of silhouettes.

The idea behind the decision table (tab. 2) is the
following:

• 1st column: Since empty pixels in si are
transparent, they are always overdrawn by pixels
in si+1.

• 2nd column: Since filled pixels in si are opaque,
they are never overdrawn by pixels in si+1.

• 3rd column: Here we actually detect silhouette
pixels the first time, if existent. 1st row: detection,
as explained on top of fig. 2. 2nd row: no
silhouette pixel, as explained on bottom of fig. 2.
3rd row: contour pixel propagation.

• 4th column: Silhouette pixels determined on si are
unconditionally propagated to all subsequent
slices.

The new result after step 3 is stored in TU 3 as the
new intermediate result t’. We repeat steps 1-3 until
all slices are processed. We may render an additional
empty slice, if the iso-surface of the object cuts the
parametric domain of the volume to ensure that
contours on the last slice are discovered as
silhouettes, if necessary. Due to the decision table
(see first row), the final result in TU 3 contains only
empty, filled and silhouette pixels, which are finally
swapped into the front buffer.

Using this procedure, artifacts can occur if the
interslice distance is chosen too high, emanating from
places, where the slope of the surface over the image
plane is too high. These artifacts can be removed by
increasing the slicing density completely or
adaptively; latter issue is not integrated in our
framework yet.

We might also shorten the rendering cycle by using
fewer steps than the described three. This would
result in much longer fragment programs, which we
wanted to circumvent in our current implementation
for reasons of clarity and implementation ease. Even
more, fewer fragment programs would not guarantee
better performance, since a workaround would lead to
a massive increase of fragment instructions executed
per pixel.

So far we have discussed how we can precisely locate
and extract silhouettes with a thickness of exactly one
pixel. With a slight modification in the fragment
program and by extending the rendering pipeline on
the CPU, this method can be expanded to process
more sophisticated silhouettes.

4. SILHOUETTE BROADENING
In the previous section, we have generated silhouettes
with a guaranteed width of exactly one pixel. For
many types of illustrations, especially in stylization, it
is required to have silhouettes with a thickness either
predefined, or depending on the distance to the
viewer, to create exact controllable depth-cues or
atmospheric effects [StSc02]. In this section, we
insert a post-processing filtering step into the
rendering pipeline, which accomplishes this task.

After rendering steps 1-3 in the previous section, the
content of the framebuffer is low-pass filtered. This
leads to a diffusion of silhouette lines by a clearly

defined amount, in direction of the image-space
gradients of the silhouettes. This can be done simply
by applying a Gaussian filter on the source image
using convolution:

'(,) : (,) (,)f x y f x y g x y= ⊗ (2),

where f’ is the new smoothed version of f using the
two-dimensional Gaussian kernel

2 21 ()
21(,)

2
x y

g x y e
π

+
= (3).

The resulting image f’ is not a bi-level image any
more. By carefully converting the grayscale image f’
back into a bi-level one, we can exploit the
continuous run of the co-domain in f’ to query the
width of the silhouette at a particular pixel position.
Since (3) is radial symmetric, we can rewrite it in
polar coordinate representation as

21 ()
21()

2
r

g r e
π

= (4).

Furthermore, g(r) is monotonically decreasing (and
thus invertible with inverse function g-1) in the
respective intervals (0,±∞), so we can retrieve the
distance r of a pixel with gray tone h from the center
of a silhouette by testing the relation

1= () < thr g h r− (5),

where rth is half of the width of the silhouette. This
solution is appealing for two reasons.

First, due to the convolution, we can accomplish the
filtering process fast, and independently of the size of
the convolution kernel using the well-known identity

1(() ())f g f g−⊗ = iF F F (6),

where F and F –1 denote the Fourier transform and
its inverse, respectively. In this way, we can low-
pass-filter the image with a performance independent
of the size of the (discretized) Gaussian kernel. This
proceeding clearly outperforms the
glConvolutionFilter2D function of OpenGL,
which permits interactivity for yet small kernel sizes.
For small kernel sizes (like e.g. 8x8), however,
hardware-based filters -as described e.g. in [ViKa03]
or [HaBe03] - might perform better.

Second, we can control the thickness of the
silhouettes adaptively, depending on the distance of
the fragment to the viewer, producing the desired
atmospheric effects. Thus, we abandon the idea that
f(x,y) is bi-level and code the aforementioned
distance of a fragment to the viewer in grayscale. The
convolution process therefore induces a faster

decrease of intensity in direction of the screen-space
gradient in f’(x,y), where the original silhouette pixel
color in f(x,y) resembles more the background color.
Applying a constant threshold over the whole image
f’(x,y) gives the desired atmospheric effect.

5. IMPLEMENTATION DETAILS
Our implementation is based on the OpenGL, GLUT
and FFTW [FFTW98] libraries in C/C++.

Since rasterization remains the main bottleneck in our
application (see also table 3), we do not lay special
emphasis on experimenting with a hardware
implementation of the FFT, as e.g. done in
[MoAn03], but use FFTW instead, which is a
convenient and sophisticated substitute. By
comparing our approach with [MoAn03], we found
that a pure hardware implementation is not
necessarily a gain, especially if a powerful CPU used
in combination with large screen sizes. The
performance measurements below show further, that
post-processing plays only a negligible role in
rendering speed. Furthermore, we can smoothly
integrate zero-padding [PrTe92] in the filtering
process without special implementation efforts. Zero-
padding is required to prevent wrap-around and thus
periodic filtering of the image signal using Fourier-
based, fast convolution. This is especially important
when the rendered result of the object with its
broadened silhouettes is not fully contained in the
window.

6. RESULTS AND DISCUSSION
We have tested typical datasets (most of them
available from [VoRe]) on our target platform, a
Windows XP PC with a 3 GHz Pentium P4, 1 GByte
RAM and an ATI Fire GL X1 graphics card. Table 3
shows performance evaluations of our method,
comparing traditional right-angle criterion (RA) with
our method for one-pixel width (OPS) and with post-
processed, broadened silhouettes (BS). We can
observe a performance loss of factor >6 on average,
compared to the traditional method (last column).
We recall that our goal is to extract and visualize the
exact position of the silhouettes on a given object and
viewpoint. We do not intend to include additional
clues into the rendition, like e.g. half-toned shading,
etc. The bonsai tree in the left of figure 7 might
convey the curvature of the local surface in a superior
manner, but it does not have an exact controlled
width.
Figures 5 and 6 show the Engine and the NegHip
datasets, respectively, rendered (i) with the
conventional right-angle criterion, (ii) with our
method and (iii) with additional silhouette
enhancement. Figure 7 shows the Bonsai and Skull

datasets, rendered using the right-angle criterion and
our method, respectively.

Dataset Size Win.
Size

RA

(fps)

OPS

(fps)

BS

(fps)

RA/
OPS

2562 39.37 5.82 3.24 6.76
Bonsai 2563

5122 10.00 1.60 1.04 6.25

2562 54.13 8.47 4.27 6.39
Engine 2562·

128 5122 13.78 2.30 1.27 5.99

2562 39.37 5.98 3.51 6.58 Hydrog.
Atom 1283

5122 9.84 1.60 1.02 6.15

2562 19.95 3.05 2.26 6.54
NegHip 643

5122 9.85 1.58 1.07 6.23

2562 39.41 5.82 3.61 6.77
Skull 2563

5122 9.85 1.58 1.06 6.23

2562 44.0 5.41 3.37 8.13
Teddy 1282·

64 5122 11.12 1.47 0.94 7.56

Table 3: Performance measurements for various
datasets.

The results for the conventional method show also
that undesired effects (non-silhouette areas) appear in
the images. These artifacts appear as we are not able
to determine the exact position of silhouettes due to
the limitations of discrete gradient representation.
This is especially perceivable in figure 8, where the
gradient-method fails at near-silhouette positions on
the nose of the teddy. The arrows on the right of
figure 8 indicate the viewing direction and show that
silhouettes must not be drawn around the nose of the
teddy. The example also demonstrates the resistance
of our method against inaccuracy due to coarse
discretization of the dataset. The examples confirm
the robustness of the special case explained in fig. 2
bottom right.
Based on the results we found our method to be more
appealing as the silhouettes appear exactly at the
positions we expect them to be. Furthermore, since
the silhouettes initially have a width of one pixel,
with the extension presented in section 4 the user can
exactly control the thickness. In figure 9 we show
how the widths of the silhouettes of the Hydrogen
Atom dataset alter as the viewer moves closer to the
object. Since broadening of silhouettes works in
image-space, silhouettes can be washed out, as their
density increases, e.g. when the distance of the object
to the viewer becomes high.

7. CONCLUSIONS
In this paper, we have introduced a new methodology
of silhouette extraction for texture-based volume
rendering. It serves the purpose of visualizing
silhouettes with an accurate width of one pixel. In a
subsequent step, we can optionally broaden

silhouettes, either by a fixed pixel width, or
depending on screen-space depth using image-
processing. Our algorithm is in particular insensitive
to coarse discretization in the dataset.
Silhouette detection is solved using a new paradigm,
which combines accuracy at object- and screen-space
resolution. We can perform silhouette enhancement
in a subsequent image processing step and illustrate
even exaggerated thick silhouettes –independently of
their width at constant, interactive framerates.
The proposed method helps to illustrate iso-surfaces
of scientific datasets in a fast fashion, allowing high
degree of interactivity in rendering and modification
of iso-values.

8. REFERENCES
[CaMi02] Card, D. and Mitchell, J. Non-

Photorealistic Rendering with Pixel and Vertex
Shaders. In Engel, Wolfgang, ed. ShaderX,
Wordware, 2002.

[CsMr01] Csébfalvi, B. and Mroz, L. and Hauser, H.
and König, A. and Gröller, E. Fast visualization
of object contours by non-photorealistic volume
rendering. Computer Graphics Forum 20(3), pp.
452-460, 2001.

[De96] Decaudin, P. Cartoon-Looking Rendering of
3D-Scenes. TR INRIA 2919 Université de
Technologie de Compiègne, France, 1996.

[DeSt00] Deussen, O. and Strothotte, T. Computer-
Generated Pen-and-Ink Illustration of Trees.
Computer Graphics (SIGGRAPH ’00
Proceedings), pp. 13-18, 2000.

[FFTW98] Frigo, M. and Johnson, S.G. FFTW: An
Adaptive Software Architecture for FFT. ICASSP
conference proceedings (vol. 3, pp. 1381-1384),
1998. http://www.fftw.org

[GoGo01] Gooch, B. and Gooch, A. Non-
Photorealistic Rendering. A K Peters, 2001.

[GoSl99] Gooch, B. and Sloan, P.-P. and Gooch, A.
and Shirley, P. and Riesenfeld, R. Interactive
Technical Illustration. Symposium on Interactive
3D Graphics. pp. 31-38, 1999

[HaBe03] Hadwiger, M. and Berger, C. and Hauser,
H. High-Quality Two-Level Volume Rendering of
Segmented Data Sets on Consumer Graphics
Hardware. IEEE Visualization 2003.

[HaDa01] Hart, E. and Gosselin, D. and Isidoro, J.
Vertex Shading with Direct3D and OpenGL.
Game Developers Conference. 2001.

[KiWh03] Kindlmann, G. and Whitaker, R. and
Tasdizen, T. and Möller, T. Curvature-Based
Transfer Functions for Direct Volume Rendering:
Methods and Applications. IEEE Visualization
2003.

[LuMo02] Lu, A. and Morris, J. and Ebert, D. and
Rheingans, P. and Hansen, C. Non-photorealistic
rendering using stippling techniques. IEEE
Visualization, pp. 211-217, 2002.

[LuMa02] Lum, E. and Ma, K.-L. Hardware-
accelerated parallel nonphotorealistic volume
rendering. International Symposium on
Nonphotorealistic Rendering and Animation
(NPAR 02’), 2002.

[MoAn03] Moreland, K. and Angel, E. The FFT on a
GPU. Graphics Hardware 2003.

[Mi02] Mitchell, J. Image Processing with Pixel
Shaders in Direct3D. In Engel, Wolfgang, ed.
ShaderX, Wordware, 2002.

[MöHa02] Akenine-Möller, T. and Haines, E. Real-
Time Rendering, 2nd Ed. A K Peters, pp. 289-
312, 2002.

[NaSc02] Nagy, Z. and Schneider, J. and
Westermann, R. Interactive Volume Illustration.
Vision, Modeling and Visualization 2003, pp.
497-504, 2002.

[PrTe92] Press, W.H. and Teukolsky, S.A. and
Vetterling, W.T. and Flannery, B.P. Numerical
Recipes in C, 2nd ed. pp. 496-608, 1992.

[Ra01] Raskar, R. Hardware Support for Non-
Photorealistic Rendering. ACM SIGGRAPH/
Eurographics Workshop on Graphics Hardware,
pp. 41-46, 2001.

[RaCo99] Raskar, R. and Cohen, M. Image Precision
Silhouette Edges. Symposium in Interactive 3D
Graphics, pp. 135-140, 1999.

[RhEb01] Rheingans, P. and Ebert, D. Volume
illustration: Nonphotorealistic rendering of
volume models. IEEE Transactions on
Visualization and Computer Graphics, 7(2), pp.
109-119, 2001.

[SaTa90] Saito, T. and Takahashi, T.
Comprehensible Rendering of 3-D Shapes.
Computer Graphics (SIGGRAPH ’90
Proceedings), pp. 197-206, 1990.

[ScEl03] Schein, S. and Elber, G. Extraction of
Silhouette Curves from Volumetric Data Sets. The
4th Israel-Korea Bi-National Conference on
Geometric Modeling and Computer Graphics, pp.
100-104, 2003.

[SvEb03] Svakhine, N.A. and Ebert, D.S. Interactive
Volume Illustration and Feature Halos. Pacific
Graphics 2003.

[StSc02] Strothotte, T. and Schlechtweg, S. Non-
Photorealistic Computer Graphics: Modeling,
Rendering and Animation. Morgan Kaufman.

[ViKa03] Viola, I. and Kanitsar, A. and Gröller, E.
Hardware-Based Nonlinear Filtering and
Segmentation using High-Level Shading
Languages. IEEE Visualization 2003.

[VoRe] www.volren.org

Figure 5: Engine dataset. Left: Right-angle method. Middle: our method. Right: our method with silhouette enhancement

Figure 6:NegHip dataset. Left: Right-angle method. Middle: our method. Right: our method with silhouette enhancement

Figure 7: From left to right: bonsai tree with right-angle- and our method, same comparison for the skull dataset. We recall
that the thick silhouette on the lower portion on the bonsai tree on the left is an unintended feature here (see text above).

Figure 8: From left to right: teddy with right-angle- and our method; side view illustrating that silhouettes around the nose
must not be drawn when the teddy is viewed from front.

Figure 9: Effect of depth-cueing on close-up, exemplified on the Hydrogen Atom dataset. Note the silhouettes becoming
thicker as the object gets magnified.

