
A Hybrid Approach to Rendering Handwritten Characters 
 

Sara L. Su 
Massachusetts Institute of 

Technology 
Computer Science and Artificial 

Intelligence Laboratory 
200 Technology Square 

 Cambridge, MA, 02139, USA 

sarasu@mit.edu 

Chenyu Wu 
Carnegie Mellon University 

Robotics Institute 
5000 Forbes Avenue 

Pittsburgh, PA 15213, USA 

chenyuwu@cmu.edu 
 

Ying-Qing Xu, 
Heung-Yeung Shum 
Microsoft Research Asia 
5/F, Beijing Sigma Center 

No.49 Zhichun Road, Hai Dian 
Beijing, China 100080 

{yqxu,hshum}@microsoft.com 

 
ABSTRACT 

With the growing popularity of pen-based computers comes the need to display clear handwritten characters at 
small sizes on low-resolution displays. This paper describes a method for automatically constructing hinted 
TrueType fonts from on-line handwriting data. Hints add extra information to glyph outlines in the form of 
imperative constraints overriding side effects of the rasterization process. We use an aggressive matching 
strategy to find correspondences between an input glyph and a previously-hinted template, considering both 
global and local features to allow hinting even when they differ in shape and topology. Recognizing that stroke 
width statistics are among features that characterize a person’s handwriting, we recalculate global values in the 
control value table (CVT) before transfer to preserve the characteristics of the original handwriting. 

Keywords 
Handwriting, automatic hinting, digital typography, shape matching, pen-based interaction. 

 

1. INTRODUCTION 
Handwriting plays an integral role in our thought 
processes, functional tasks, and communication with 
peers, and perhaps even offers some insight into 
personality traits [Bra91].  How we write, along with 
what we write, defines who we are. 

With all that we rely on handwriting for, it is perhaps 
unsurprising that pen-based computers are growing 
in popularity.  Appearing as small handheld devices, 
personal tablet computers, and large whiteboard 
displays, numerous systems since Sketchpad [Sut63] 
have demonstrated stylus-based interaction to be a 
concise, effective means of user input. 

While many handhelds accept character-by-character 
input as stylized “graffiti” [Mac97], as the popularity 
of pen-based computing continues to grow, an 
increasing number of people will rely on applications 
with freehand input.  Advertisements for tablet 

computers, targeting users who work away from the 
desk, tout them as being as natural to write on as a 
pad of paper. 

Much work has been done in the areas of recognition 
[Mac94], simulation [Dev95], and learning-based 
synthesis of handwriting [Guy96, Wan02], but less 
attention has been paid to the problem of rendering 
the resulting characters on screen.  Whether they 
were synthesized, scanned, or written directly onto a 
tablet screen, digital handwriting must at some point 
be rendered legibly and without loss of quality. 

Recognizing the demand for onscreen text that is 
both readable and unique to the user, digital type 
foundries have begun offering “personal handwriting 
fonts”, typefaces designed based on a customer’s 
signature or writing samples.  Like other typefaces, 
some of these fonts contain essential gridfitting 
instructions, hints, that specify the appearance of 
characters at varying point sizes and display 
resolutions.  While some handwriting fonts are 
manually hinted (an extremely time-consuming task), 
most are either hinted automatically by a typeface 
authoring system such as Macromedia Inc.’s 
Fontographer or contain no hints at all.  While 
Fontographer’s auto-hinting system is effective for 
traditional typefaces of size 24 pt or larger, 
handwritten glyphs are a special case that most 
existing auto-hinters do not handle well. 

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute 
to lists, requires prior specific permission and/or a fee.  
 

Journal of WSCG, Vol.12, No.1-3, ISSN 1213-6972 
WSCG’2004, February 2-6, 2003, Plzen, Czech Republic. 
Copyright UNION Agency – Science Press 



We propose a hybrid method for automatically 
hinting handwriting by considering global and local 
features of each glyph against knowledge of already-
hinted templates.  Though in this paper we discuss 
these techniques in the terms of TrueType template 
fonts and hint instructions, we see them as applicable 
in the more general context of intelligent rendering 
of handwriting.  Here we implement the specific case 
of converting handwritten characters from a 
polylines on a tablet device to TrueType glyphs.  The 
results are encouraging and suggest an application 
scenario in which the user can create a more legible 
form of his or her own handwriting directly on a 
tablet without having to wait for a company to 
digitize and hint writing samples as a typeface. 

2. BACKGROUND 
Although many alternative representations have been 
proposed [Knu86, Kla93, McG95], outline fonts are 
still the format most widely used today. Outlines 
avoid many of the problems that plagued earlier 
bitmap fonts (every required size must be hand 
designed, they are tuned to a specific printer, and the 
footprint of a font grows quickly with the size of the 
characters), but to be displayed on screen, they must 
eventually be converted to bitmaps [Rub88]. 

Hinting gives a typographic engineer fine control 
over the appearance of glyphs when rasterized. With 
these gridfitting instructions, the typographer 
specifies constraints between knots of a glyph or 
between a knot and a gridline. Though it is a 
laborious task, hinting is essential for legible 
rendering of glyphs. Stroke width uniformity, stroke 
continuity, glyph spacing: all are controlled by 
hinting. The difference in quality between hinted and 
unhinted glyphs is most apparent for small point 
sizes displayed at typical screen resolutions of 72-
120 dpi. Hinting also improves the appearance of 
small text faxed at 200 dpi or printed at 300-600 dpi 
[Sta97]. 

The two major font standards, TrueType and 
Postscript (or Type 1), though both using outline 
representations of characters, incorporate two very 
different hinting philosophies. While Postscript fonts 
leave control of a character’s final appearance to the 
rasterizer [Ado90], a typographer embeds explicit 
gridfitting instructions in the outline description 
when designing a TrueType font [App96, Con97, 
Typ96]. 

2.1 Postscript hinting 
In the description of a Postscript font, semantic 
features of each glyph are marked, and hints contain 
information about vertical and horizontal bands 
across these features. It is up to the rasterizer to use 

this information to optimize the distribution of pixels 
by stretching or compressing glyph outlines within 
the defined bands. Because control of the character’s 
final appearance falls to the rasterizer, the 
typographer cannot specify exactly what it will look 
like when rendered. However, the relative simplicity 
of Postscript hints makes it more straightforward to 
develop automatic hinting systems based on 
recognition of semantic features. 

2.2 TrueType hinting 
In TrueType, there is no concept of bowls, stems, or 
other semantic features of a character; there are only 
knots and splines. The designer of a TrueType font 
can control the precise layout of a glyph’s pixels at a 
particular size by programming explicit gridfitting 
instructions into the description of the font. Tools 
such as Fontographer  and Visual True-Type [Sta98] 
generate hint instructions in high-level, declarative 
languages that are then compiled to the TrueType 
assembly language. Like Zongker et al. [Zon00], we 
discuss hint translation in terms of the VTT Talk 
language provided by Visual TrueType [Mic97]. 

A single VTT Talk instruction specifies a constraint 
between two knots in a glyph, between a knot and a 
gridline, or on a group of knots in a contour. The 
following types of VTT Talk hints are defined: An 
anchor rounds a parent-less knot to the grid or to a 
gridline specified by a CVT entry. A child knot’s 
position is maintained relative to its anchored parent 
with the use of distance and link constraints. A 
distance constraint specifies the absolute distance to 
maintain while a link refers to a CVT entry. Both 
parent and child are rounded to gridlines such that 
there is a minimum distance of 1 pixel between the 
two. A child knot’s position is maintained relative to 
two parents with an interpolate instruction. A shift 
maintains a child’s distance to its parent even if 
hinting has moved the parent. Unlike with a link, the 
child’s position is not rounded to the grid, thereby 
allowing movements of less than a full pixel. Deltas 
and moves, known as exceptions, are used to specify 
the exact number of pixels at a point at a particular 
glyph size. A delta affects a single size while a move 
applies to all sizes of a glyph. 

There has been significant earlier work on automatic 
“tuning” of typefaces including [Her91, Hob93, 
Her94, Zon00, Sha03]. 

Hersch and Bétrisey [Her91] developed model-based 
methods for automatic hinting, transferring 
gridfitting instructions from specially constructed 
intermediate models. The model for each glyph 
includes both an outline description of shape as well 
as a listing of its semantic parts. After matching the 
outlines of the glyph to be hinted to those of the 



model, the semantic features of the target glyph can 
be labeled and hints generated. 

Zongker et al. [Zon00] adapted this work to create a 
production tool for hinting TrueType fonts. Rather 
than using a manually constructed model as a bridge 
between knots on the outline character and the 
semantic features needed for hinting, their method 
uses an already-hinted TrueType font as the 
template. The template can be cleverly chosen to be a 
good match to the target font, resulting in good 
quality hints. The instructions transferred using this 
method retained the hinting techniques particular to 
the individual typographer. 

3. METHOD 
Our hinting method is motivated by earlier work on 
model-based shape matching [Her91] and example-
based hinting of TrueType fonts [Zon00]. These 
automated hinting systems transferred instructions 
from a manually-hinted template to a new input 
glyph. We build on techniques introduced in these 
systems to automatically hint handwritten glyphs that 
often differ from the predefined templates. 
The first step is to determine correspondences 
between template and input knots.  We first calculate 
global correspondences between a glyph and the 
same glyph from the template set and then 
calculating local correspondences through 
comparisons to analogous curves of other template 
glyphs. This hybrid approach allows us to find 
matches even for input/template glyph pairs that are 
topologically very different. 
After knot correspondences have been found, hint 
instructions are translated from template to input in a 
relatively straightforward process.  In addition to 
glyph-specific hints, global data in the control value 
table (CVT) used to unify structural elements across 
glyphs are also translated.  One could argue that the 
CVT is not useful when dealing with the 
irregularities of handwriting. However, though the 
constraints are hardly as rigid as those of traditional 
typefaces, there still exists a degree of uniformity 
across characters in most handwriting.  Indeed, it is 
these patterns and shared features that aid a reader in 
identifying the familiar handwriting of a friend.  We 
recompute values in the CVT based on 
measurements at input glyph knots, creating new 
CVT entries for features not sufficiently captured in 
the template. 

3.1 From strokes to points and curves 
Many fonts originating from brushed or penned 
strokes take their glyph shapes from the physical acts 
of creating them. Unlike many traditional typefaces, 
the appearance of script, calligraphic, or 

“handwriting-like” glyphs has more to do with letter 
formation patterns than with intentional typographic 
form. 
Our goal is to preserve the characteristic stroke 
widths of handwritten characters using hints. In this 
section, we describe the process of extracting outline 
knots of a variable-width handwritten stroke. 

3.1.1 Reconstructing variable-width strokes 
Input strokes could come from a variety of sources: 
scanned from paper, created in a digital painting 
program, or input directly from a tablet device. 
Currently, most pen-input devices render 
handwriting as fixed-width polylines.  However, 
most do record physical information, such as 
direction and speed of pen movement, that can be 
used to reconstruct the variable-width stroke as it 
might appear on paper. 
To simulate pen movement, we use a straightforward 
physical model for rendering the pen strokes with 
variable width.  We assume that the pen's movement 
involves only translation and regard the pen tip as a 
perfect circle at the point of initial contact. As the 
pen moves, extrusion forces in the x- and y-
directions cause the circle to deform into an ellipse of 
constant area as illustrated in Figure 1. 
In addition to the direction and speed of pen 
movement, pen pressure is taken into account in 
calculating the deformation of the virtual pen tip. 
Rendering the changing position and shape of the 
ellipse through time produces the variable-width 
stroke from whose outline knots can be extracted to 
create a TrueType glyph. 
This deformation method works well for 
reconstructing a variable-width, brush-like stroke.  
Arabic language fonts, as well as some Latin 
calligraphic fonts, require a different model. In these 
cases, the pen tip is rigid, and it is the nib angle and 
direction of pen movement that determine the stroke 
thickness. 

 
Figure 1. Extrusion forces deform the pen tip into an 
ellipse as the pen moves. f(tm) indicates the extrusion 
force at tm.



3.1.2 Curve-fitting 
By sub-sampling the outline of a variable-width input 
stroke, we can extract all control points to form the 
point-and-curve description of the TrueType glyph. 
TrueType outlines are defined by on-curve and off-
curve points. Adjacent on-curve points are connected 
with straight line segments while off-curve points, 
along with neighboring on-curve points, define 
Bézier curve segments.  In this case, we only use on-
curve points.  Though their use results in a larger-
footprint outline description, this larger set of on-
curve points preserves more of the topology of the 
input character.  In the future, we may pursue 
alternative curve-fitting techniques capable of also 
approximating off-curve points, resulting in a 
smaller-footprint outline description. The points are 
renumbered according to their location on glyph 
contours before being written to the final font file.  
These points will be used in the outline glyph 
definition in the TrueType font file to be manipulated 
by the auto-hinting processes. 

3.2 Correspondence search 
In order to transfer hints from a template character 
set (an already-hinted font), we must determine the 
correspondence between the template font and input 
glyphs, or more specifically, between the template 
and input knots. 
We first attempt to match the overall topology of an 
input glyph with the corresponding template glyph.  

For reasonably similar template and input character 
sets, this global correspondence search is sufficient.  
However, for glyphs whose shapes differ 
significantly from their templates, more than a global 
topological search is required.  In this case, we also 
perform a local search for correspondences in similar 
curves of different template glyphs. 

3.2.1 Global search 
Suppose we wish to hint an input glyph Gi based on 
its corresponding template glyph Gt.  For each knot 
of Gt, we attempt to find an analogous knot in Gi.  
We first attempt to balance the number of strokes 
with a strategy similar to that employed by [Arv00]. 
We join strokes of Gi that are nearly collinear and 
split those containing sharp corners. Note that this 
step does not physically split or join strokes; rather 
the strokes are merely hinted as though these 
operations have been applied. The rendered 
appearance of the character is not altered. 
In order to maximize the number of hints transferred, 
we find a matching input knot for each on-curve 
template knot. If later a match is deemed 
inappropriate, the related hints can be ignored in the 
translation step.  We consider all permutations of 
correspondences between knots.  While earlier 
attempts to find the best correspondence have been 
primarily heuristic-based, our algorithm calculates 
the optimal correspondence based on the “energy” 
required for morphing the input character to the 
template, calculated as the sum of the squared 
distances between template and input knots.  Though 
simple, this measure of cost is quite effective. In the 
future, it would be worthwhile to consider including 
other factors in the cost such as the energy required 
to distort glyph features during morphing. 
Alternatively, we could apply a physically-based 
shape-blending such as that described in [Sed92]. 
Information about the approximate location of each 
knot is used reduce running time.  As a pre-

proc FindCorrespondences(Glyph Gi, Glyph Gt ) 
 while ( |Gi| > |Gt| and Gi.hasCollinearStrokes( ) ) { 
  //join the most collinear strokes of Gi 
 } 
 while ( |Gi| > |Gt| and Gi.hasCorners( ) ) { 
  //split Gi at the sharpest corner 
 } 
 CorrespondenceSet Cmin 
 Cmin.numKnots ← Gi.numKnots 
 for each knot i in Gi { 
  Cmin.knots[0][i] ← Gi.knots[i] 
 } 
 Cmin.energy ← ∞ 
 //consider all permutations of correspondences 
 for each CorrespondenceSet C  { 
  C.energy ← 0 
  for each (knot J, knot K) in C  { 
   C.energy ← C.energy 
     +(J.x-K.x)2 +(J.y-K.y)2 
  } 
  if ( C.energy < Cmin.energy ) { 
   Cmin ← C 
  } 
 return Cmin 

 
Figure 2.  Global search algorithm. 

Figure 3.  The global correspondence search attempts to 
match each knot on an input glyph with one on the 
corresponding template. 



processing step, each glyph is segmented into four 
geographic regions, each knot being tagged with this 
information. Local energy is only calculated for pairs 
of template and input knots located in the same 
region. 
With fairly uniform handwriting, a single template 
font is usually sufficient.  However, as mentioned 
above, handwriting exhibiting a high degree of 
variance across glyphs cannot be accurately matched 
with a single template. Given a number of possible 
templates, we must choose the one most closely 
matching the input. Comparing each possible 
template against our input, we determine the best 
match to be the one with the least total energy. 

3.2.2 Local search 
Figure 3 shows the results of the global 
correspondence search for two pairs of glyphs.  A 
complete set of correspondences can be found for the 
‘e’ glyphs, with each template knot paired with an 
input knot. The match for the ‘m’ glyphs is less 
successful. A successful global correspondence 
search requires a high degree of similarity between 
two glyphs. When this is not the case, the global 
search will fail to find a complete match.  In addition, 
a number of letters appear in multiple topological 
forms, for example lowercase ‘a’, ‘g’, and ‘r’, and 
uppercase ‘I’ and ‘Q’.  Such cases motivate the need 
for a local correspondence search that considers 
matches with other glyphs of the character set. 
As a pre-processing step, template and input glyphs 
are split into component strokes based on the degree 
of curvature at each on-curve point. To approximate 
letter formation patterns, we determine stroke splits 
at knots with a high degree of curvature. 
Each template we initially consider contains a 
component stroke that could possibly fit a section in 
the input glyph well.  By analyzing the number of 
contours, start and end points, variation in the 
skeleton direction, and glyph region, we determine 
the template most closely matching the input. 
Next, we calculate the feature points of the given 
contour in a three-step process.  Using curvature to 
determine feature points results in many redundant 
points due to the large number of on-curve points in 
the input. Therefore, we consider only the most 
prominent feature points (maxima and minima) and 
map each of these to feature points in the input. Next, 
we map the pairs of feature points (manually labeled 
in the template) that we have found in the first step, 
with pairs extracted from the input. Finally, we map 
the remaining feature points in the template with the 
translated points in the input. Note that these 
translated points are selected from several candidate 
points by preserving most of the topological structure 

among feature points in the template. In this way, we 
maintain the original hinting style and accuracy. 
This algorithm is perhaps most easily discussed in 
the context of an example. Figure 4 illustrates the 
steps to finding the local correspondence between a 
template and input glyph.  

 
Figure 4. Steps in finding a local correspondence. (1) 
Feature points are identified in the x- and y-directions. 
(2) The analogous point to the feature point of interest is 
identified. (3) After matching B’ with B and F’ with F, 
we get the triangle B’C’F’. The sets of points B, C, F, 
and B’, C’, F’, define a unique affine transformation 
leading to a new triangle B”C”F” with side B”F” 
overlapping BF. By selecting a feature point from C, p1, 
p2, p3 and p4, with minimal distance from C”, a 
translated triangle BCF can be found that most closely 
matches the original triangle B’C’F’. 



3.3 Hint translation  
After correspondences between input and template 
knots have been found, hint translation is relatively 
straightforward. Hint programs are copied from the 
templates and attached to the input glyphs, 
substituting corresponding knot numbers in the VTT 
Talk instructions.  Hints involving a knot for which 
only a weak final correspondence was found are 
discarded. 
We translate hint instructions that preserve location, 
distance, and proportions: Distances, links, and shifts 
maintain the width of a stroke and the relationships 
between structural elements of the glyph. Interpolates 
maintain alignment of and proportions between 
structural elements.  While slight deviations of a 
glyph's knots from the grid are acceptable to the 
human eye, anchors help maintain the consistency 
across a string of glyphs. Delta and move exceptions 
are not translated as they are typically applied by the 
typographer on a case-by-case basis. Global-scope 
instructions (Smooth(), for example) are also not 
translated for individual glyphs. As such instructions 
typically apply to all glyphs, they can be applied 
separately in post-processing. 

3.4 Stroke width regularization 
Because each instruction is a local operation, hints 
alone cannot provide a typographer with complete 
control over consistency among glyphs. This 
additional expressive power is provided by the 
control value table (CVT), a shared table of distances 
referenced by hint instructions. References to entries 
in the CVT regularize the appearance of structural 
elements within a single glyph (e.g. when referenced 
by a distance instruction) or across glyphs (e.g. in the 
case of the link instruction) [Ado01]. Use of the CVT 
guarantees that values the typographer intended to be 
equal at design time are rendered as such. 
It could be argued that the CVT is not appropriate for 

use with handwriting fonts because it introduces too 
much uniformity. We limit the restrictiveness of the 
CVT by tailoring it to the features of the input. As 
discussed in [Zon00], the CVT entry numbers of 
template can certainly still be used for our input.  
However, the values in these entries, designed for the 
particular features of the template, are no longer 
appropriate. We must calculate new values for the 
entries based on measured features of the input. We 
consider every instance where a specific CVT entry 
is referenced by template glyphs.  We then average 
the actual values at analogous knots in the input 
glyphs to calculate the new CVT entry. Zongker et 
al. discarded as outliers those cases in which the 
measured value was too different from the average 
value. The reasoning is that the difference suggests 
that it is not appropriate to apply this CVT constraint 
in this case. While for uniform typefaces this 
approach results in relatively little loss of hint data, 
when considering handwriting, the wide variations 
found in measured values for a single CVT entry 
preclude use of this method.  
We note that, due to the cross-letter patterns in a 
person's handwriting, these outliers often appear in 
clusters.  While differing greatly from the average 
values stored in the CVT, these outliers are often 
close enough to each other to be considered a 
separate class of reference.  An example is shown in 
Figure 5. Rather than discarding outliers, we partition 
references to a particular CVT entry into clusters of 
references. Sufficiently different references are 
branched into a new CVT entry.  The averaging and 
branching continues until all entries have been 
categorized.  An entry referenced by a single link 
instruction can safely be discarded and the link 
replaced with a distance instruction. 
This clustering and branching approach allows us to 
identify patterns in the input set, retaining as much 
hint data as possible.  

4 RESULTS AND DISCUSSION 
Figure 6 shows a number of handwritten characters 
automatically hinted with our method.  The input 
characters were manually segmented from complete 
words written on a tablet computer. A manually-
hinted Roman font was used as the template for the 
global correspondence search; the local search used a 
hinted, stroke-like font as the template. We tested the 
results of autohinting glyphs displayed at a typical 
screen resolution of 96 dpi using Visual TrueType's 
internal rasterizer. 

4.1 Hints and dropout control 
A topic of ongoing discussion among typographers is 
whether italic fonts, fancy fonts and handwritten 
fonts need to be hinted or if for these fonts, only 

 
Figure 5. Identifying clusters of CVT references. Red 
lines indicate the templates’ link references to the same 
CVT entry. After the hints are translated to the input 
glyphs, it becomes apparent that a new entry should be 
created for the cluster of green links. 
 



basic hints and a dropout control mechanism are 
needed.  When part of a stroke is thinner than one 
pixel, the resulting hole or “drop” in the raster image 
can be disruptive to perception of the character.  To 
prevent these artifacts, a simple dropout control 
mechanism can be applied at time of rasterization to 
detect the location of drops and to insert an extra 
pixel at the site of the drop.  (For an in depth 
discussion of dropout control, please see [Her93].) 
In Figure 6, we compare glyphs with hints 
automatically applied, those with only dropout 
control applied, and those with both hints and 
dropout control applied. 
As noted in Section 3.1, the handwritten glyphs 
contain no off-curve control points and a much larger 
number of on-curve control points.  Because of this, 
the effect of the dropout control mechanism is to 
simply “connect the dots”, resulting in a single-width 
polyline in many cases. (See, for example, the second 
‘c’ at 18 pt in Figure 6.) 
The automatically hinted glyphs show improvement 
in certain features at the cost of slight distortion of 
other features.  (The ‘m’s in the figure are good 
examples of this.) 
Combining auto-hinting and dropout control 
produces characters that are more legible that those 
using either mechanism alone and that are clearly a 
great improvement over unhinted characters. 
Still, the matching algorithm is far from perfect; in 
some of the glyphs (e.g. the first ‘b’ at 18 pt, the first 
‘e’ at 24 pt), the translation of inappropriate hints 
actually degraded the appearance.  But while this and 
other automatic hinting systems still have a ways to 
go to come close to the hinting accuracy of expert 
typographers, these early results are encouraging. 

4.2 Choosing templates 
The choice of template, as well as the choice of 
whether to hint both globally and locally, depends on 
the purpose the hinted handwriting will serve. If the 
goal is to have consistently readable text, the best 
choice may be a professionally-hinted highly-
uniform font template for global hinting only.  If the 
goal is to provide the user with a “typographically 
nice” form of their writing, use of a large database of 
local templates will increase the likelihood of a close 
match. One could imagine using one automatically-
hinted font as a template for another, but this would 
degrade the results. 

4.3 Applications 
Contextual handwriting fonts. The new OpenType 
standard, developed jointly by Adobe and Microsoft 
[Ado01], provides support for contextual fonts which 
can store multiple definitions of each glyph. Several 

typeface companies have already taken advantage of 
this technology in the handwriting fonts they 
produce.  Typographers at Signature Software, Inc. 
use a semi-automatic system to design multiple forms 
for each cursive character so that each can connect 
naturally to one preceding. While the resulting fonts 
are more regularized than a person's actual 
handwriting, the contextually changing character 
connection locations help give the appearance that 
the person might have written the text. The 
techniques described in this paper make it feasible to 
automatically hint a large number of variations of 
each glyph for very realistic handwriting. 
Hinting of arbitrary curves. Our hybrid 
correspondence search could be applied to discover 
structure in an arbitrary curve.  We are interested in 
pursuing the extension to hinting of logos and vector 
graphics for optimal display on low resolution 
devices. 
General rendering of handwriting. In this paper, 
we discussed example-based methods of improving 
rendering of handwriting in the context of TrueType 
font hinting.  It would be worthwhile to consider the 
application of these techniques in a more general 
context, replacing the font templates and TrueType 
hints with a more general template and additional 
rendering information. 

ACKNOWLEDGEMENTS 
This project was initiated while S. Su and C. Wu 
were interns at Microsoft Research Asia, and we 
acknowledge our colleagues there, at the Microsoft 
Redmond campus, and in the MIT Computer 
Graphics Group for insightful discussions about this 
work.  We also thank the anonymous reviewers for 
their feedback. 

REFERENCES 
[Ado01] Adobe Systems Inc., and Microsoft Corp. 

OpenType Specification, 1.3 ed., April 2001. 
[Ado90] Adobe Systems Inc.. Adobe Type 1 Font Format. 

Addison-Wesley, 1990. 
[App96] Apple Computer Inc. The TrueType Reference 

Manual. October 1996. 
[Arv00] Arvo., J., and Novins, K. Smart Text: A 

synthesis of recognition and morphing. In Proc. of 
AAAI Spring Symposium on Smart Graphics, pp. 140-
147, 2000. 

[Bra91] Branston, B. Graphology Explained. Samuel 
Weiser Inc., 1991. 

[Con97] Connare, V. Basic Hinting Philosophies and 
TrueType Instructions, Microsoft Corporation, 1997. 

[Dev95] Devroye, L., and McDougall, M. Random fonts 
for the simulation of handwriting. Electronic 
Publishing, Vol. 8, pp. 281-294, 1995. 

[Guy96] Guyon, I. Handwriting synthesis from 
handwritten glyphs. In Proc. of the 5th International 



Workshop on Frontiers of Handwriting Recognition, 
1995. 

[Her91] Hersch, R.D., and Bétrisey, C. Model-based 
matching and hinting of fonts. In Proc. of SIGGRAPH 
91, pp. 71-80, 1991. 

[Her93] Hersch, R. Font rasterization: the state of the art. 
In Visual and Technical Aspects of Type, R. Hersch 
(ed.), Cambridge University Press, pp. 78-109, 1993. 

[Her94] Hertz, J., and Hersch, R.D. Towards a universal 
autohinting system for typographic shapes. Electronic 
Publishing, Vol. 7, pp. 251-260, December 1994. 

[Hob93] Hobby, J.D. Generating automatically tuned 
bitmaps from outlines. Journal of the ACM, Vol. 40, 
No. 1, pp. 48-94, 1993. 

[Kla93] Klassen, R.V. Variable width splines: a possible 
font representation? Electronic Publishing, Vol. 6, No. 
3, pp. 183-194, September 1993. 

[Knu86] Knuth, D.E. The METAFONT Book. Addison-
Wesley, 1986. 

[Mac94] MacKenzie, I.S., Nonnecke, B., McQueen, C., 
Riddersma, S., and Meltz. M. Alphanumeric entry on 
pen-based computers. International Journal of Human-
Computer Studies. Vol. 41, pp. 775-792. 

[Mac97] MacKenzie, I.S., and Zhang, S. The immediate 
usability of Graffiti. In Proc. of Graphics Interface ’97. 
pp. 129-137, 1997. 

[McG95] McGraw, G.E. Letter Spirit: Emergent High-
Level Perception of Letters Using Fluid Concepts. PhD 
thesis, Indiana University, 1995. 

[Rub88] Rubinstein, R. Digital Typography: An 
Introduction to Type and Composition for Computer 
System Design.  Addison-Wesley, 1988. 

[Sha03] Shamir, A. Constraint based approach for 
automatic hinting of digital typefaces. ACM 
Transactions on Graphics, Vol. 22, No. 2, April 2003. 

[Sta97] Stamm, B. The Raster Tragedy at Low 
Resolution. Microsoft Corporation, 1997. 

[Sta98] Stamm, B. Visual TrueType: a graphical method 
for authoring font intelligence. In Proc. of Raster 
Imaging and Digital Typography ’98, pp. 77-92, 1998. 

[Sut63] Sutherland, I.E. Sketchpad: A Man-Machine 
Graphical Communication System. PhD thesis, 
Massachusetts Institute of Technology, 1963. 

 [Typ96] TYPE*chimérique Organization. TrueType 
Hinting. 1996. 

[Wan02] Wang, J., Wu., C., Xu, Y.-Q., Shum, H.-Y., and 
Ji., L. Learning-based cursive handwriting synthesis. In 
Proc. of the 8th International Workshop on Frontiers in 
Handwriting Recognition, 2002. 

[Zon00] Zongker, D.E., Wade, G., and Salesin, D.H. 
Example-based hinting of TrueType fonts. In Proc. of 
SIGGRAPH 2000, 2000. 

 

 
Figure 6.  Comparison of glyphs without hints, with hints automatically applied, with only dropout control 
applied, and with both hints and dropout control applied.   Manually-hinted Roman and stroke-like 
glyphs were used as the templates for the global and local correspondence searches, respectively.  Results 
are shown at typical screen resolution of 96 dpi. 


