
Real-Time Rendering of 3D Magic Lenses
having arbitrary convex Shapes

Timo Ropinski
Institut für Informatik, WWU Münster

Einsteinstrasse 62
D-48149 Münster, Germany

ropinski@math.uni-muenster.de

Klaus Hinrichs
Institut für Informatik, WWU Münster

Einsteinstrasse 62
D-48149 Münster, Germany
khh@uni-muenster.de

ABSTRACT
We present a real-time algorithm for rendering volumetric 3D Magic Lenses™ having arbitrary convex shapes.
During fragment processing the algorithm performs a second depth test using a shadow map. Exploiting the
second depth test we are able to classify each fragment, with respect to its position relative to the lens volume.
Using this classification we first render the geometry behind the lens volume, then the geometry intersecting the
lens volume using a different visual appearance and finally the parts in front of the lens volume. Regardless of
the shape of the lens volume just two additional rendering passes are needed. Furthermore there are no limita-
tions to the choice of visual appearance used to enhance expressiveness of the virtual world. We will describe
theoretical and practical aspects of the algorithm and our implementation, which is accelerated by current
graphics hardware.

Keywords
3D Magic Lenses, 3D Exploration, Toolglass, See-Through Tools

1. INTRODUCTION
User centered exploration of 3D environments be-
comes more and more important with the advancing
development of 3D graphics processing units (GPU).
Due to the availability of current graphics hardware
at low prices, such hardware is now widely installed
in desktop computers giving more and more users
access to 3D graphics applications. Therefore user
centered visualization techniques are needed, which
can be implemented on off-the-shelf graphics hard-
ware.

The magic lens metaphor has been proved to be a
powerful tool for exploring the virtual world [Sto02].
But up to now mostly the 2D through-the-lens meta-
phor is used to explore and manipulate 2D datasets in
2D graphics applications, because no technique is
known which is capable of rendering arbitrary volu-
metric magic lenses in real-time (i.e. with interactive

frame rates). In this paper we present an algorithm
for rendering volumetric magic lenses having arbi-
trary convex shapes, taking advantage of the features
provided by off-the-shelf graphics hardware. Our
algorithm is a multipass-rendering algorithm which
performs a second depth test using a shadow map.
The algorithm needs only two additional rendering
passes and can therefore be used easily in existing 3D
graphics applications.

Most of the concepts developed for 2D magic lenses
can be applied to our representation of a volumetric
magic lens. Integrating our approach into a high-level
rendering toolkit gives the application programmer
the ability to modify the visualization as well as the
interaction techniques associated with parts of a 3D
scene, and hence allows the end user to change the
region of interest interactively. Therefore we believe
that applying the magic lens metaphor in 3D im-
proves usability while exploring a virtual world.

In our approach the magic lens, which is visually
represented by an arbitrary convex glass volume, can
be positioned and resized interactively to change the
region of interest. This region is visually emphasized
by the filter functionality of the lens which can be
altered interactively as well. New lenses with new
filter functionality can be derived from existing sam-
ple implementations.

The idea of applying the magic lens metaphor to
virtual environments has been proposed before
([Cig94], [Vie96]), but existing approaches lack

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Journal of WSCG, Vol.12, No.1-3, ISSN 1213-6972
WSCG’2004, February 2-6, 2004, Plzen, Czech Republic.
Copyright UNION Agency – Science Press

performance and flexibility regarding the shape of
the lens. Our algorithm has the following advantages
over currently known techniques:

 capability of rendering magic lenses having
arbitrary convex shapes,

 the implementation of our algorithm is hardware-
accelerated and therefore permits interactive frame
rates while rendering arbitrary 3D scenes,

 it can be easily extended to support rendering of
more then one magic lens per scene and

 due to its simple structure, the algorithm can be
easily embedded in existing graphics applications
and toolkits.

This paper proceeds in discussing related works in
Section 2. Section 3 introduces the basic idea under-
lying the algorithm. Section 4 describes our imple-
mentation exploiting a second depth test which uses a
shadow map. Section 5 discusses some application
areas potentially benefiting from the use of magic
lenses in 3D. Section 6 gives performance measure-
ments and a brief discussion of our results, and
Section 7 concludes the paper with a short outline of
future work concerning 3D magic lenses.

2. RELATED WORK

Magic Lenses
The magic lens metaphor has been introduced in
1994 by Bier et al. [Bie94a]. In their work they de-
scribe Toolglass™ widgets as new interface tools that
can appear, as though on a transparent sheet of glass,
between an application and a traditional cursor.
Toolglass widgets can be positioned with one hand
while the other positions the cursor. They may incor-
porate visual filters, known as magic lenses, which
modify the visual appearance of application objects,
enhance data of interest or suppress distracting in-
formation in the region of interest, which is deter-
mined by the shape of the lens. Besides the use in 2D
graphics applications Bier et al. describe how to ap-
ply the concept of magic lenses and toolglasses for
text editing. They also give an example how to apply
the concept of 2D planar lenses to 3D virtual envi-
ronments. Inspired by the initial idea of the magic
lens metaphor [Bie94a] several papers followed, cov-
ering a taxonomy [Bie94b] and composition of magic
lenses [Fox98] as well as several applications of the
concept ([Bie97], [Stn94], [Sto02]).

Cignoni et al. [Cig94] were the first to transfer the
magic lens metaphor to volumetric lenses. In their
work they describe the MagicSphere metaphor repre-
senting an insight tool for 3D data visualization. As
the name implies, the metaphor is limited to a spheri-
cal lens volume. Besides this restriction to one usable
lens shape the visual appearance lacks due to their

analytical approach: In a preprocessing step geomet-
rical elements are classified based on their position
relative to the border of the magicsphere. Subsequent
rendering requires two passes; one for the geometri-
cal elements lying outside the magicsphere and one
for those inside the magicsphere. The elements lying
on the border, classified as border elements, are ren-
dered in both of the two passes. When using the
magicsphere with a MultiRes filter Cignoni et al. ob-
tain a satisfactory visual appearance even for the
border elements, which are rendered twice. However,
the visual appearances used in the two rendering
passes of their EdgesEmphasizer filter differ too
much and therefore cause visual artifacts near the
border of the magicsphere. Similar artifacts have to
be expected with other visualization techniques used
by the magicsphere metaphor.

Another more general extension of the magic lens
metaphor to 3D virtual environments has been pre-
sented by Viega et al. [Vie96]. They introduced an
algorithm for visualizing volumetric lenses as well as
flat lenses in a 3D environment. Their implementa-
tion of these concepts exploits SGI Reality Engine
hardware support for clipping planes. Since only in-
finite clipping planes are supported, it takes an extra
rendering pass for almost every face of the lens vol-
ume. Thus it would be computationally very expen-
sive to render magic lenses having arbitrary shapes.
Another disadvantage results from the limited num-
ber of clipping planes supported by current graphics
devices increasing the number of necessary rendering
passes.

A different analytical approach of a similar concept
has been used by Idelix Software Inc. [Ide02]. Their
Pliable Display Technology 3D (PDT3D) avoids ob-
ject occlusions in 3D virtual environments by ana-
lyzing camera and lens parameters and applying cor-
responding geometric transformations to occluding
objects. Thus it is possible to select a region of inter-
est, to which the system provides an occlusion-free
view. The major disadvantage of this concept is the
modification of the scene structure lying outside the
region of interest through geometrical transforma-
tions, which leads to a loss of contextual information.

The powerful concept of magic lenses has been de-
ployed in many fields. But due to the computation-
ally expensive realization of volumetric magic lenses,
leading to a limitation of lens shapes and overhead in
rendering time, mostly 2D magic lenses have been
applied so far. The concept has been used for exam-
ple in Kai’s Power Tools [Vie96], a collection of
innovative filters for 2D image processing, as well as
in Macromedia Freehand™, a tool for creating illus-
trations. But also users of 3D applications can benefit
from the concept of magic lenses. For example in
figure 1 the underlying geometry is revealed by the

applied wireframe lens, giving a better overview
of object composition without loss of contextual
information.

(a) (b)

Figure 1: Sample scene without magic lens (a).
Magic lens reveals the inside structure (b).

Shadow Mapping
Shadow mapping has been introduced by Williams
[Wil78] in 1978. To display shadows in real-time, the
scene is rendered in a preprocessing step using the
position of the light source as a viewpoint. The re-
sulting depth buffer information, which represents
the surfaces visible from the light source, is stored in
a shadow map sometimes referred to as depth texture.
During the main rendering pass, each point is
transformed into the camera coordinate system. This
way it is possible to compare the distance of any
point to the light source with that of the closest point
to the light source. Points that are farther from the
light source than the closest one lie in shadow and
are therefore rendered less illuminated.

Because shadow mapping is a widely accepted real-
time shadowing technique, it is accelerated by cur-
rent graphics hardware.

Depth Peeling
In this subsection we will give a brief description of
the depth peeling technique [Eve02], which uses
shadow maps to enable a second depth test and there-
fore benefits from hardware-acceleration.

Everitt describes the use of depth peeling to achieve
order independent transparency. The idea is to peel
away layers of the scene from front to back on a
fragment level and render those layers in inverted
order. To obtain a specific fragment layer it is neces-
sary to utilize an additional depth test to get all frag-
ments contained in that layer.

Considered as a multipass rendering technique depth
peeling works as follows. The first pass uses the
standard depth test and therefore writes the depth-
and RGBA-values of the nearest fragment to the re-
spective buffers. The depth buffer information gener-
ated by this pass is copied to a shadow map, which
serves as the depth buffer for the second depth test
performed in the subsequent rendering pass. Iterating

this process over the necessary n passes gives the
ability to peel away and obtain the n-th nearest
fragment layers.

Using this technique it is possible to get n layers
deeper into a scene with n passes, whereby in each
pass the shadow map, generated in the preceding
pass, serves as the depth buffer for the second depth
test. Projective texture mapping [Eve01] is used to
project the shadow map onto the scene aligned along
the eye view image plane. This projection makes sure
that fragments of the shadow map overlay corre-
sponding fragments (i.e. with same window coordi-
nates) of the depth buffer. To compare the depth
values of the corresponding fragments the shadow
comparison function is used [Pau02b], which assigns
an alpha value to the resulting fragment based on its
depth value. Finally the alpha test discards fragments
as a result of their alpha values.

The read-only limitation of the shadow map is no
restriction, because the depth information for the n-th
pass is created in the (n-1)-th pass and therefore it is
not necessary to write into both depth buffers in one
rendering pass.

3. ALGORITHM
Our image-based algorithm utilizes functionality
similar to shadow mapping to achieve an effect
similar to depth peeling while fragment processing.

For explaining the basic idea of the algorithm con-
sider the following classification (see figure 2) into
fragments lying

(a) behind the lens,
(b) inside the lens,
(c) in front of the lens and
(d) the remaining fragments.

Figure 2. Subdivision of the view frustum into
three sections (behind, inside, in front of)

depending on camera parameters.

The first rendering pass uses two depth tests to ex-
clude fragments lying inside (b) and in front of (c)
the lens from rendering. The second rendering pass
also uses two depth tests to exclude fragments lying
outside the lens ((a), (c), (d)) whereas the third pass
only needs one depth test to exclude fragments inside
(b) and behind (a) the lens.

Visible fragments belonging to (d) are rendered in
the first and third pass.

The order of the three rendering passes is relevant
because some parts of the scene lying inside or in
front of the magic lens could be semi-transparent.
Therefore it is important to render the parts ((a), (b),
(c)) in a back to front order to preserve a correct
image in case of semi-transparency, like it is done
during depth peeling.

Since the algorithm works on fragment level regard-
less of the shape of the lens only two additional ren-
dering passes are needed. So unlike the approach of
Viega et al. [Vie96] the complexity of the lens shape
does not affect the rendering complexity.

4. IMPLEMENTATION
The presented algorithm has been realized in C++
using OpenGL as rendering library. Furthermore it
has been integrated into a high-level graphics frame-
work called VRS (Virtual Rendering System) [Döl02]
exploiting the integrated scenegraph structure.
Our algorithm is a straight-forward multipass-ren-
dering algorithm. Like in the depth peeling tech-
nique, we use the shadow comparison function
[Pau02b] along with the alpha test to perform the
second depth test. The alternative to use a fragment
program [Lip03] to discard fragments due to their
alpha value has been implemented as well.

Assuming that it is possible to use two depth buffers
with separate configurable depth tests, the complete
algorithm is given by the following pseudo code.

// pass 1: render geometry
// behind the lens
clearDepthBuffer1 (0.0);
setDepthTest1 (GREATER);
clearDepthBuffer2 (1.0);
setDepthTest2 (LESS);
actDepthBuffer (DepthBuffer1);
renderLens ();
actDepthBuffer (DepthBuffer2);
renderScene (NORMAL);
// pass 2: render geometry
// intersecting the lens
clearDepthBuffer1 (1.0);
setDepthTest1 (LESS);
clearDepthBuffer2 (0.0);
setDepthTest2 (GREATER);
actDepthBuffer (DepthBuffer1);

renderLens ();
actDepthBuffer (DepthBuffer2);
setDepthTest1 (ALWAYS);
renderLens ();
setDepthTest1 (GREATER);
setDepthTest2 (LESS);
renderScene (LENS_STYLE);
// pass 3: render geometry
// in front of the lens
clearDepthBuffer1 (1.0);
setDepthTest1 (LESS);
setDepthTest2 (ALWAYS);
actDepthBuffer (DepthBuffer1);
renderLens ();
renderScene (NORMAL);

actDepthBuffer() activates one of the two
depth buffers DepthBuffer1 and Depth-
Buffer2 for writing. setDepthTest1() and
setDepthTest2() configure the corresponding
depth test. clearDepthBuffer1() and clear-
DepthBuffer2() overwrite data in the corre-
sponding depth buffer with the assigned value.

renderScene()executes the instructions for ren-
dering the scene data, renderLens() the instruc-
tions for rendering the lens geometry. render-
Scene() updates both, the color buffer and the
depth buffer, whereas renderLens()writes only
to the depth buffer. renderScene() expects either
the parameter NORMAL or LENS_STYLE to deter-
mine which viusal appearance to use for rendering.

The structure of the algorithm indicated by the
integrated comments corresponds to the three needed
rendering passes. The result of each of the three ren-
dering passes of the algorithm is shown in figure 3
(a-c) in the top row, using a spherical wireframe lens
to reveal insights into the scene geometry. The bot-
tom row shows the accumulated result after each
rendering pass (hence the two images shown in fig-
ure 3 (a) are the same). Figure 3 (d) shows the visu-
alization of the lens by a semi-transparent lens vol-
ume. In order to prevent the lens from occluding
scene geometry this requires an additional fourth
rendering pass to update depth buffer information
before rendering the lens.

So far we have assumed the existence of a second
depth buffer with an independently configurable
depth test. Unfortunately current graphics systems do
not support a second depth test. However, it is possi-
ble to simulate a second depth buffer with a sepa-
rately configurable depth test using a shadow map.
Although this simulated depth buffer does not allow
writing, this poses no limitation to our algorithm
because the lens geometry is rendered in a separate
rendering pass.

(a) (b) (c) (d)

Figure 3. Content of the color buffer after each of the four rendering passes (a-d).
Top row: resulting color information after each pass; bottom row: accumulated images.

To perform the second depth test in the first and sec-
ond rendering pass, two different shadow maps are
needed. The shadow map in the first pass represents
the back facing polygons of the lens volume, and the
map in the second pass the front facing polygons.
Each of these shadow maps stores the depth buffer
information obtained by rendering the lens geometry
to an offscreen canvas.

Two examples of generated shadow maps are shown
in figure 4, where brighter pixels represent greater
depth values. The shadow map in figure 4 (a) which
contains the depth information obtained by rendering
the back of a spherical lens is used in the first pass to
render the fragments lying behind the lens volume
(a). The map in figure 4 (b) which corresponds to the
front of the same lens is used in the second pass for
rendering the fragments inside the lens volume (b).

(a) (b)

Figure 4. Depth information of
(a) the back and (b) the front of the lens.

Each of the two shadow maps generated in the first
and second rendering pass is aligned with the scene
by projective texture mapping [Eve01]. This ensures
that the depth value of the current fragment can be
compared by the shadow comparison function

[Pau02b] to the depth value of the corresponding
shadow map texel. The alpha value of the current
fragment is set depending on the result of this com-
parison. After evaluating the shadow comparison
function the alpha test is used to discard fragments
not needed in the current rendering pass. Thus we
can assure that only fragments needed in the current
rendering pass are written to the frame buffer.

5. APPLICATION
We have implemented two kinds of volumetric magic
lenses: The position of a camera lens is fixed relative
to the camera, i.e. when the camera moves then the
lens also moves. In contrast a scene lens can be posi-
tioned anywhere in the virtual environment. Camera
lenses can be used similar to the PDT3D [Ide02] to
explore a scene with mostly dense data. A potential
application area would be the exploration of subsur-
faces where magic lenses can reveal a better insight
by displaying data next to the camera differently, for
example semi-transparently. Scene lenses can be
used to assist 3D modeling. Many other application
areas can benefit by exploiting the metaphor of
volumetric magic lenses:

 wireframe lenses are capable of displaying vertex
details for parts of the scene without modifying
the global view, which would lead to a loss of
context information (figure 5),

 eraser lenses (figure 8) can reveal occluded parts
of the scene by removing partial or complete in-
formation from regions intersecting the lens,

 texture lenses can assist in exploring terrain data,
by replacing or modifying the texture of objects.
These 3D lenses are a generalization of the 2D
texture lenses introduced in [Döl00].

Furthermore the concept of volumetric magic lenses
has been used to show different levels of detail for a
model [Cig94] and enhance flow visualization
[Fuh98].

Our technique for rendering volumetric magic lenses
can benefit from the scenegraph concept used in most
recent high-level rendering systems ([Str92],
[Döl02], [Rei02], [Sel02]). The algorithm as de-
scribed above evaluates the whole scene geometry in
each of the three rendering passes. However, by
combining a scenegraph with space partitioning the
amount of data to be processed in each rendering
pass can be reduced. If bounding box extensions are
provided in each scene node as in Java3D [Sel02]
intersections with the lens volume can be detected
more efficiently. This leads to a reduction of
rendering data, which is significant for the second
rendering pass since usually magic lenses are very
small related to the virtual environment.

6. DISCUSSION
Our algorithm has many advantages compared to the
clipping plane based approach introduced by Viega et
al. [Vie96]. Since the algorithm works on a fragment
level the number of rendering passes does not in-
crease with the complexity of the lens volume, which
makes it possible to use arbitrary convex shapes as
lenses. Thus it is possible to use e.g. quadric shaped
lenses as shown in figure 5 without generating visual
artifacts, which arise for example when combining
the magicsphere metaphor [Cig94] with common
rendering styles.

shadow map
resolution

fps

no lens used 106,50

128x128 44,72

256x256 44,39

512x512 44,10

1024x1024 43,12

Table 1. Frame rates achieved by rendering the
scene shown in figure 5.

Unlike Viega’s [Vie96] approach the performance of
our technique does not depend on the shape of the
lens volume. Even the offscreen rendering to obtain
the shadow maps does not result in a noteworthy ren-
dering overhead since a hardware-accelerated pixel
buffer is used and only the lens geometry has to be
rendered without shading. Furthermore it would be
possible to use render-to-texture functionality to ac-
celerate offscreen rendering.

In order to determine the rendering performance of
our algorithm, we used the scene in figure 5 for
measuring frame rates. Table 1 contains the frame

rates achieved by rendering the scene with no lens
and with the application of a spherical wireframe lens
using different shadow map resolutions. We used a
Pentium 4 2,66 GHz system, running Windows XP
Professional, equipped with 1 GB RAM and an ATI
Radeon 9800 Pro graphics card with 128 MB RAM.

Figure 5. Application of a quadric wireframe lens
to an arbitrary 3D model.

Figure 6. Definition of two sections (lens, outside)
depending on the camera parameters using a 2D

flat lens.

It is obvious, that our technique is also capable of
rendering convex flat lenses introduced by Viega et
al. [Vie96]. In our approach, a flat lens is just a spe-
cial case of a volumetric 3D lens. It can be placed
anywhere in the scene and its sphere of influence,
called the lens frustum, ranges from its 2D shape to
the far clipping plane. This divides the scene into two
regions and therefore decreases the number of addi-
tional rendering passes to one (see figure 6). Thus it
is possible to render flat lenses with our algorithm

using two passes, similar to the procedure for ren-
dering volumetric lenses.

Another advantage of our approach is its sparse need
of resources. It only uses one texture to perform the
second depth test. Thus it is fairly easy to integrate
the concept of magic lenses with other multipass ren-
dering techniques like shadow or reflection genera-
tion.

A critical aspect is formed by volumetric lenses in-
tersecting the near or the far clipping plane. While
rendering the parts of a scene intersecting the lens
volume our algorithm requires the lens volume to
have a front- and a back-facing region, which form
the lens volume. Lenses intersecting the near or the
far clipping plane do not have an intuitively defined
front- or back-facing region leading to an undefined
lens volume (see figure 7). It is obvious that the
problem is even worse concerning lenses intersecting
both the near and the far-clipping plane. Although
this problem has not been solved yet, it can be
avoided by using camera lenses (see section 5) posi-
tioned between the near and the far clipping plane
without intersecting them.

Figure 7. Lens intersecting the far clipping plane.

7. CONCLUSION AND FUTURE
WORK

We have presented an algorithm for real-time ren-
dering of volumetric magic lenses having arbitrary
convex shapes, which is fully hardware-accelerated.

The concept of magic lenses supports the combina-
tion of different visualization appearances in one
scene, giving the user a better insight regarding his
region of interest. We have presented several appli-
cations of volumetric magic lenses. We will investi-
gate more application areas and develop different
kinds of magic lenses to use in 3D virtual environ-
ments.

Furthermore we are working on an approach for ren-
dering more than one magic lens per scene, which is
closely related to the combination of visualization
techniques associated with overlapping magic lenses.
Due to the nature of volumetric magic lenses their
combination in 3D often leads to non-convex regions
having their own visualization techniques, which we
are implementing right now. Using this extension we
are confident to be able to render more general non-
convex magic lenses as well.

8. ACKNOWLEDGEMENTS
Magic Lenses™ and Toolglasses™ are Trademarks of
the Xerox Corporation.

9. REFERENCES
[Bie94a] E. A. Bier, M. C. Stone, K. Pier, W. Buxton

and T. DeRose: Toolglass and Magic Lenses: The
See-Through Interface. In Proceedings of
SIGGRAPH’93, pages 73–80. ACM Press, 1993.

[Bie94b] E. A. Bier, M. C. Stone, K. Fishkin, W.
Buxton and T. Baudel: A Taxonomy of See-
Through Tools. In Proceedings of CHI’94, pages
358–364, Boston, April 1994.

[Bie97] E. A. Bier, M. C. Stone and K. Pier:
Enhanced Illustration using Magic Lens Filters.
Xerox Palo Alto Research Center 1997.

[Cig94] P. Cignoni, C. Montani, and R. Scopigno:
MagicSphere: An insight tool for 3d data
visualization. In Eurographics’94, pages
317–328, 1994.

[Döl00] J. Döllner, K. Baumann and K. Hinrichs:
Texturing techniques for terrain visualization. In
T. Ertl, B. Hamann, and A. Varshney, editors,
Proceedings Visualization 2000, pages 227--234.
IEEE Computer Society Technical Committee on
Computer Graphics, 2000.

[Döl02] J. Döllner and K. Hinrichs: A Generic
Rendering System, IEEE Transactions on
Visualization and Computer Graphics ‘02, pages
99-118, 2002.

[Eve01] C. Everitt: Projective Texture Mapping.
White paper, NVidia Corporation, 2001.
http://developer.nvidia.com/attach/1455 (PDF
format)

[Eve02] C. Everitt: Interactive Order-Independent
Transparency. White paper, NVidia Corporation,
2002. http://developer.nvidia.com/attach/1451
(PDF format)

[Fox98] D. Fox: Composing Magic Lenses.
Proceedings of ACM CHI’98, pages 519-525,
1998.

[Fuh98] A. Fuhrmann and E. Gröller: Real-time
techniques for 3D flow visualization. IEEE
Visualization ’98, pages 305-312, 1998.

[Ide02] Pliable Display Technology 3D: White paper,
IDELIX Software Incorporation, 2002.

[Lip03] B. Lipchak (Ed.): NVidia OpenGL Extension
Specifications. NVidia Corporation, 2003.
http://www.nvidia.com/dev_content/nvopenglspe
cs/GL_ARB_fragment_program.txt

[Pau02a] B. Paul (Ed.): NVidia OpenGL Extension
Specifications. NVidia Corporation, 2002.
http://www.nvidia.com/dev_content/nvopenglspe
cs/GL_ARB_depth_texture.txt

[Pau02b] B. Paul (Ed.): NVidia OpenGL Extension
Specifications. NVidia Corporation, 2002.
http://www.nvidia.com/dev_content/nvopenglspe
cs/GL_ARB_shadow.txt

[Rei02] D. Reiners, G. Vo and J. Behr. OpenSG:
Basic concepts. In 1. OpenSG Symposium
OpenSG 2002, 2002.

[Sel02] D. Selman: Java 3D Programming. Manning
Greenwich, 2002.

[Sto02] S. Stoev, D. Schmalstieg and W. Straßer:
The Through-The-Lens Metaphor: Taxonomy and
Application. Proceedings of the IEEE VR’02,
pages 285-286, 2002.

[Stn94] M. C. Stone, K. Fishkin and E. A. Bier, "The
Movable Filter as a User Interface Tool." In
Human Factors in Computing Systems:
Proceedings of the CHI '94 Conference. New
York: ACM, 1994.

[Str92] P. Strauss and R. Carey: An object oriented
3D graphics toolkit. In Proceedings SIGGRAPH
’92, pages 341–347, 1992.

[Vie96] J. Viega, M. Conway, G. Williams and R.
Pausch: 3D Magic Lenses. Proceedings of ACM
UIST’96, pages 51-58, 1996.

[Wil78] L. Williams: Casting curved shadows on
curved surfaces. Proceedings of SIGGRAPH’78,
pages 270-274, 1978.

Figure 8: Applications of eraser lenses.

