

Efficient Collision Detection between 2D Polygons

Juan José Jiménez, Rafael J. Segura, Francisco R. Feito
Departamento de Informática. E.P.S.J. Universidad de Jaén

Av. Madrid, 35
 Spain (23071), Jaén, Jaén

{juanjo, rsegura, ffeito}@ujaen.es

ABSTRACT
Collision detection between moving objects is an open question which raises major problems concerning its
algorithmic complexity. In this paper we present a polygon collision detection algorithm which uses polygon
decomposition through triangle coverings and polygon influence areas (implemented by signs of barycentric
coordinates). By using influence areas and the temporal and spatial coherence property, the amount of time
needed to detect a collision between objects is reduced. By means of these techniques, a valid representation for
any kind of polygon is obtained, whether concave or convex, manifold or non-manifold, with or without holes, as
well as a collision detection algorithm for this type of figures. This detection algorithm has been compared with
the well-known PIVOT2D [Hof01] one and better results have been achieved in most situations. This
improvement together with its possible extension to 3D makes it an attractive method because pre-processing of
the polygons is no longer necessary. Besides, since this method uses sign operations, it proves to be a simple,
more efficient and robust method.

Keywords
Animation, Barycentric Coordinates, Coherence, Collision Detection, Triangle Cover.

1. INTRODUCTION
The problem of collision detection among objects in
motion is essential in several application fields, such
as in simulations of the physical world, robotics,
animation, manufacturing, navigation in virtual
worlds, etc. Apart from giving scenes a more realistic
appearance, it is necessary for the objects belonging
to it to interact, so that they do not collide, and if they
do, a suitable response is obtained.

Due to this, collision detection is studied intensively
by the scientific community. Most of the algorithms
developed are based in heuristics that aim to reduce
collision determination time, but they are not usually
valid for some types of figure, such as non-convex
polygons, non-manifold polygons or polygons with
holes. At worst, given two polygons, it is necessary to
check the intersection between all pairs of edges, with
O(n·m) time, n and m being the number of edges of

each figure.

In this work, on the one hand, we try to use a formal
3D solid representation system, and on the other one,
to use it for the collision detection among rigid solids
(first among 2D polygons). This formal system is
based on polygons coverings by means of triangles
(in 2D) and operations with signs. This provides
more efficient and robust operations according to
Feito [Fei98].

On the other hand, the barycentric coordinates of a
point regarding a triangle are used in order to
determine the point or polygon inclusion [Bad90].
The use of barycentric coordinates can be seen
computationally more intensive, but after the initial
step, and once the sign is calculated, it is only needed
to recalculate the coordinates sign when the point
changes from some spatial zones to others. In
addition, it provides a measure of the distance of the
point to each triangle, and of course to the polygon,
so that we can verify if a point or a polygon is to a
given distance from the static polygon.

In order to check its efficiency, this algorithms have
been compared with other ones, such us inclusion
algorithms, and 2D collision detection ones,
obtaining satisfactory results that induce us to
develop and implement these techniques in 3D in the
future.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Journal of WSCG, Vol.12, No.1-3, ISSN 1213-6972
WSCG’2004, February 2-6, 2003, Plzen, Czech Republic.
Copyright UNION Agency – Science Press

There follows a brief scheme of the contents that are
going to discussed in this paper: after the introduction
we will define the collision detection term used by
the authors, as well as its possible applications,
especially in 2D. Then, we shall present a summary
of the authors’ previous work on which the
development of this new algorithm of collision
detection between 2D polygons is based. Next, we
provide definitions of the basic concepts necessary to
understand this algorithm. Then we present the new
algorithm and its implementation. Later, a temporal
study will be carried out, in which the new algorithm
is compared with the one developed by Hoffman
[Hof01] in the PIVOT2D library. Finally, in the
conclusions section, we summarise the features of the
new algorithm and future work to be undertaken by
the authors.

2. COLLISION DETECTION
DEFINITION AND APPLICATIONS
Collision detection is the interference or intersection
determination between two moving objects. We can
determine just whether collision occurs or not or else
we can calculate the features of the objects involved
in the collision. The response to the collision may
imply distortion or a change in the trajectory of the
objects, but this lies outside the scope of our study.
We define collision detection at several levels. At the
first level, we deal with collision detection between
two objects. The complexity is O(n·m). At the second
level, we deal with collision detection of several
moving objects. In this case, the complexity is O(k2),
where k is the number of objects in the scene. In this
paper we deal with collision detection between two
objects.
We can see that collision detection is a problem
similar to inclusion detection, so that we can regard
collision detection as a problem of inclusion
detection in consecutive time intervals. Nevertheless,
we can somehow exploit the space and temporal
coherence of the movement of the objects in order
not to repeat calculations, or we may simply eliminate
features of the objects on which the collision test is
not to be made. This coherence is going to be used in
the new algorithm.
On the other hand, we can see that a great number of
applications which need collision detection may be
reduced to objects moving on a flat surface, for
example, a vehicle travelling around a city, a machine
that must carry loads in an warehouse, or in virtual
reality applications, in which an avatar moves about a
scene in which it must avoid certain obstacles, etc.
Other applications make use of collision detection
between objects on a plane. For example, the design
of integrated circuits may require determining
"paths" for the various tracks connecting chips and

electronic components; the automatic design of roads
may require the determination of the best way of
avoiding certain obstacles, etc.

3. PREVIOUS WORK
Previous work has carried out a characterisation of
the collision detection problem and the strategies
used to solve it [Jim02a]. Other authors have also
made a revision of this problem [Jim01] [Lin98].
In this paper we present several techniques in order to
solve the collision detection problem in 2D, so that if
it proves to be effective, it may be extended to 3D in
a future.
Then, we present some of the developed works by the
authors; they will be a reference for the understanding
of the collision detection algorithm between polygons
presented in this paper.
To study the inclusion of a point in a polygon we
used the algorithm proposed in [Fei95] adapted to use
barycentric coordinates. In Algorithm 1 the result of
this adaptation is shown.
int Polygon::inclusionTest(point p) {
 sum = 0
 i = 0
 while (i < triangleNumber) {
 is_in = Triangle[i]->inclusionTest(p)
 if (is_in==EDGE_EXTERNAL OR
 is_in==VERTEX_V1 OR is_in==VERTEX_V2)
 return IN
 else
 if (is_in==IN)
 sum += 2*Triangle[i]->sign()
 else
 if (is_in==EDGE_RIGHT OR
 is_in==EDGE_LEFT)
 sum += Triangle[i]->sign()
 i++
 }
 if (sum==2) return IN
 else return OUT //No inclusion
}

Algorithm 1. Point-Polygon inclusion test.
In [Jim02b] we can see different algorithms for the
collision detection between a point and several types
of figures (convex and non-convex -such as starred
figures, random contour maps and totally irregular
figures-). These algorithms are optimised according
to the type of figure. Besides, the non-convex
collision detection algorithm adapts to all the
situations and offers quite good times.
We have compared the point-polygon collision
detection algorithm with the crossings test inclusion
[Hai94] [Las96] and the signed area [Fei95] [Hof89]
ones. This algorithm is efficient in most situations,
with higher execution times than crossings test
algorithm, but quite near to it. Also, the times
obtained are better than those ones in signed area
algorithm.

The present work is based on the point - non-convex
polygon algorithm [Jim02b], which has been
extended so that it works with two polygons. Like its
predecessor, time and space coherence is used to
reduce the number of necessary calculations in
collision determination. The summarised point-
polygon collision detection algorithm (Algorithm 2),
and an operation example (Figure 1) may be seen
underneath.

Algorit

Position
Order
Sign
s coord.
t coord.
u coord.
state

Figure
collisi
polyg

4. MA
GEOM
Basic
Definiti
sign fun

Definition 2 : Let three points be A,B,C ∈ Rn, for
n=2, the coordinates of which on the plane are
A(xA,yA), B(xB,yB), C(xC,yC), the signed area of these
three points is defined as [Hof89] :
 xA xB xC

|ABC| = ½ * yA yB yC
 1 1 1

The signed area of these three points can be negative,
depending on the points order. For counter-clockwise
order the signed area is positive and it is zero if the
three points are aligned.
Definition 3 : A triangle T is positive if sign (|T|)=1,
and negative if sign (|T|)= -1.
Theorem : Let points be A,B,C ∈ R2, and let’s
suppose they are not collinear. Let another point be P
∈ R2. Then, there are unique s,t,u ∈ R, so that s + t +
u = 1 and P = sA + tB + uC, which means:
 s = |BCP| / |ABC|

t = |CAP| / |ABC|
 u = |ABP| / |ABC|
The numbers s,t,u defined in the above theorem are
the barycentric coordinates of P with regard to points
A, B and C.
Lemma : Let a point be P ∈ R2 with barycentric
coordinates (s, t, u) in relation to points A, B, C ∈ Rn.
It is said that point P is inside the triangle defined by

Point in p
changes fr

1. M
th

2. M
co
to

3. C
ea
m
on

4. M
5. R

co
6. If

E
7. If

ne
7.

7.

8. C
us

9. R
ake a triangles covering of the polygon with origin in
e centroid of the figure.
ake a space division through the sign of barycentric
ordinate associated to the triangle edge that belongs
 the polygon (see section 4.3.)
alculate the sign of the moving point with respect
ch zone, keep it in a bit mask (in which value 1
eans that the point is on the inner side, and value 0
 the outer side)
ove the point
ecalculate the sign with respect to each zone and
mpare it with the previous mask

 new mask is equal to the old mask return
QUAL_STATE. Go to step 3.
 one bit changes from 0 in the old mask to 1 in the
w mask:
1. Calculate barycentric coordinates t and u, only

when the bit of the mask is 1
2. If this change has not taken place, the point is in

the same zone. Return OUT and go to step 3.
heck whether the point is inside each triangle. By
ing Algorithm 1
eturn IN or OUT accordingly, and go to step 3.
hm 2. 2D Point-polygon collision detection.

 P0 P1 P2 P3
 123456 123456 123456 123456
 +-++++ +-++++ +-++++ +-++++
mask 110111 110011 110011 111111
mask 11-000 10--01 ------ 100100
mask 11---- 1----0 0--100
 OUT OUT EQUAL IN

 1. Sample operation of 2D point-polygon
on detection algorithm. A covering of the
on by triangles has been carried out and

shows a division on zones.

THEMATICAL AND
ETRIC FOUNDATIONS

Definitions
on 1: Let x be a real number. We define the
ction, sign (x), as follows :
sign(x) = (1, if x>0; 0, if x=0; -1, if x<0)

points A, B, C, if and only if [Bad90] :
 0 ≤ s, t, u ≤ 1
Corollary : Likewise, we define point P as outside the
triangle ABC, if and only if :
 s < 0 ∨ t < 0 ∨ u < 0

Geometric Interpretation of Barycentric
Coordinates of a Point with Regard to a
Triangle
If barycentric coordinates of a point P in relation to
S,T,U are s,t,u, then a point with sign(s)=+1 will be
placed on the same side as S, with respect to the
infinite line that goes through U and T. If sign(s)=-1,
it will be on the opposite side; if sign(s)=0, it will be
on the line (Figure 2).

Figure 2. Geometric interpretation of barycentric
coordinates of a point with regard to a triangle.

osition P1 is in the same zone as in P2. If the point
om P2 to P3, it changes zones.

P0

P1
P2

P3

1

6

2
3

4
5

+

U

T

S

P = sS + tT + uU

s < 0

u< 0

t < 0

s>=0
t>=0
u>=0

Coverings of the Polygons and Zones
Division
A preliminary step in all algorithms consists in a
covering of the polygon by triangles with origin at
the centroid of the polygon (Figure 3). This covering
is a generator system that is valid for every type of
2D polygon (as well as for its extension to 3D
polyhedral solids), manifold or non-manifold, with or
without holes, convex or non-convex [Fei95] [Fei97].
Let the centroid be S, and let T,U be the vertices of a
triangle of the covering, the space can be divided into
two zones, one for the points with barycentric
coordinate s<=0, and another one for points with
barycentric coordinate s>0 (Figure 2). When a point
changes the sign of its barycentric coordinate s with
regard to some triangle of the covering, we say that it
has moved from one zone to another (Figure 1).

Influence Area of an Edge
Given a 2D polygon, the influence area with length
“n” of an edge “e” is defined as a 2D space zone
which is external to the triangle formed by the
centroid of the polygon and the edge “e”, and
bounded by two infinite and parallel lines, the first
one going through the vertices of the edge and the
second one at a distance of “n” units from the first
one (Figure 3). This influence area can be limited by
the barycentric coordinate s.

Figure 3. Influence area of an edge
Given a 2D polygon, the influence area with length
“n” of the polygon is defined as the addition of the
influence areas with length “n” of each of the edges
forming the polygon.

Extended Influence Area of an Edge
Given a 2D polygon, the extended influence area
with length “n” of an edge “e” is defined as a 2D
space zone relative to the triangle formed by the
centroid of the polygon and the edge “e”, and
bounded by two infinite lines which are parallel to the
line which passes through the vertices of the edge,
both at a distance of “n” units from the last one
(Figure 4). This influence area can be limited by
barycentric coordinate s.
Given a 2D polygon, the extended influence area
with length “n” of the polygon is defined as the
addition of extended influence areas with length “n”
of each of the edges forming the polygon.

Figure 4. Extended influence area of an edge

5. DEVELOPED ALGORITHMS
Let’s see the development of the 2D polygons
collision detection algorithm step by step. Firstly we
will see the most simple (but least efficient) collision
detection algorithm, so that we may gradually
optimise it.

Point-Triangle Inclusion Test
In order to determine whether a point is included in a
triangle or not, we just have to check whether the
barycentric coordinates of the point with regard to the
coordinates forming the triangle are all within the
interval [0,1] or, we may just check whether any of
the barycentric coordinates is negative.

Two 2D Segments Intersection Test
In order to check whether two segments intersect in
2D space, the barycentric coordinates of a point P
with respect to the other three S,T,U are calculated
(the points are the extremes of the two extreme
segments) and the sign of these coordinates is
calculated too. If an intersection occurs, then
barycentric coordinates must be s<=0, t>=0 and
u>=0, as can be seen in Figure 5:

Figure 5. Edges intersection

2D Polygon-Polygon Intersection Test
Static polygon-polygon intersection test consists in
calculating whether intersection occurs between two
edges, one from each polygon. The segment-polygon
inclusion test can be repeated for all the edges of both
polygons. The run time of this algorithm is O(n·m), n
and m being the number of edges of each one of the
polygons involved in the test. In order to reduce these
times, an influence area with respect to one of the
polygons can be created, outside which it is known
that the polygons are not going to collide. The second
polygon is surrounded by a circumference, whose
centre is the centroid or common point of the
covering and whose radius is the maximum length
from that point to each one of the vertices of the
polygon.

6

1
2 3

4

5

Influence
area of the
edge 4 and
length “n”

n

6

1

2
3

4
5

Extended
influence area
of the edge 4
and length “n”

2 n

U

T

S –

–

–

+

+

+

P

Firstly, a polygon influence area with length equal to
the circumference radius is used. For a collision to
take place, the centroid of the second polygon must
be inside the influence area of the first one. If it is
not, collision will certainly not take place. The
problem has been reduced to detecting the collision
between a point and a polygon greater than the first
one, bounded by its area of influence. When the
centroid enters this area, a detailed collision
detection test is applied (Figure 6).

In 1, the centroid is inside the influence area: collision does not take place.
In 2, the centroid is at the limit of the influence area, the influence area
length is equal to the radius of the circumference. In 3, the centroid is inside
the influence area: the detailed collision test is conducted. Collision does
not take place. In 4, the centroid is inside the influence area: the detailed
collision test is conducted. Collision takes place.
Figure 6. Influence areas with length equal to the

radius of the bounding circumference of the
polygon.

2D Polygon-Polygon Collision Detection
Test
We have seen how to check the intersection between
two static polygons. Let us suppose a fixed polygon
and a moving polygon (this scheme is also valid for
two polygons in movement). We can use a
combination of the point-polygon collision detection
algorithm and the polygons intersection test by
means of influence areas. The purpose is to verify at
initial time whether collision between the polygons
takes place or not (by means of the static test of
intersection) and, if it does not take place, to apply
the temporal coherence together with influence areas
to detect whether the moving polygon is inside the
influence area of another polygon, so that the detailed
collision detection test may be applied in that case.
Firstly, both polygons are surrounded by a
circumference centered in the centroid. This way, if
there is no intersection between the circumferences, a
collision between polygons may be discarded. If a
collision between circumferences should occur, we
must check whether the moving polygon is inside the
influence area or not (if the centroid is in the area). If
it is not inside the influence area, the procedure is the
same as for point-polygon collision detection but,
instead of considering the side of the polygon, we
must consider its extension, that is to say, the side of

the corresponding influence area. If the point is inside
the influence area, the polygon detailed collision
detection is used (Figure 7).

In 1, we check whether intersection between circumferences occurs; no
collision takes place. In 2, there is intersection between circumferences, but
the centroid is not in the influence area; intersection does not take place.
This situation allows making use of temporal coherence. In 3, there is
intersection between circumferences, and the centroid is in the influence
area. A detailed collision test between polygons is carried out.

Figure 7. Collision detection with bounding
circumferences and influence areas.

The number of intersection tests between the edges of
both polygons may be reduced by calculating where
the centroid of the moving polygon is situated, that is,
under what edges’ areas of influence. If the centroid
is in one of these areas, it is likely to collide with the
edge of that area (and probably with another one).
In Figure 8.a) we can see the centroid of the polygon
in the influence area of an edge. It can only collide
with this edge (if it were in more influence areas, it
could collide with each of the edges involved with
those areas).

Figure 8. a) Influence area. In red, edges which
can collide. b) Extended influence area.

In Figure 8.b) we can see that this reasoning is not
altogether correct for, although it is still inside the
same influence area (just one), edge 2 is also
involved (and in fact it does collide with the
polygon). This problem may arise in the vicinity of
the vertices. In order to solve this, we have used the
extended influence area of the polygon. If the
centroid is in the extended influence area of an edge,
that edge can collide with the polygon. Only the
edges meeting this condition can collide with other
edges of the polygon.
In addition, it is possible to reduce the number of
edges of the polygon in movement that may be

1

2

3

4

2

3

1

Influence
area

Surrounding
circumferenc

External radius

1

a)

b) 2

+

–

++
+

–

involved in the collision. We need only check, with
respect to each edge of the static polygon that can
take part in the collision, the sign of first barycentric
coordinate s of each one of the vertices of the
polygon in movement. The edges that can collide will
be those in which a change of sign in these
barycentric coordinates takes place in the vertices
(Figure 8.a). This algorithm is shown underneath
(Algorithm 3).

Practical Implementation of Influence
Areas
The influence areas are open zones, of infinite
extension. They are somehow bounded by the
circumference formed by the sum of the radiuses of
the two bounding circumferences of both polygons
(Figure 7). This bounding may not be suitable in
certain circumstances, such as figures with edges far
removed from the bounding circumference (in
concavities or holes).

I
a
s
i
M
r
A
t
n
i
d
a
b

to axis X or Y (according to the slope), and at a
distance n from the vertices (Figure 9.b).

Figure 9. a) Ideal extended influence area with
length n of an edge. b) Extended influence area

implementation for –1<slope<1.

6. TIME STUDY
The 2D collision detection module has been
implemented as part of a C++ 3D graphic library,
with an object-oriented approach. The graphics
standard that has been used is OpenGL in a Linux
platform.
In order to verify the efficiency of this algorithm, the
times for different types of trajectories and polygons
have been measured. These times have been
compared with those from the PIVOT2D library
[Hof01]. This library is one of the few that have been
developed specifically for 2D objects. It uses Voronoi
regions for its calculations of collision detection and
makes use of graphical hardware in order to
determine whether collision between polygons does
take place or not and in order to obtain the pairs of
features involved in it. This option has been
deactivated for the calculations, so that it only detects
whether collision takes place or not.
If necessary, the new algorithm developed allows
directly obtaining the features involved in the
collision in approximately the same time as the
measured time. This measurement will be the object
of a future study. The characteristics of the
algorithms are shown underneath (Table 1).

Characteristic PIVOT 2D NEW
Uses graphic hardware Yes No
Uses Voronoi regions Yes No
Uses barycentric coordinates &

a) b)

n

n
Make a triangles covering of the polygon with origin in the
centroid of the figure.
Calculate the radius of the bounding circumferences
r = radius of the moving polygon bounding circumference
p = point that is the centroid of moving polygon
First step:

- Move the polygon
- If there is no intersection between bounding
circumferences:

- Return OUT
- Go to the first step

Second step:
- Calculate the influence mask
- Compare with the previous influence mask
- If p moves out of some influence area, then go to the
third step
- Else return OUT. Go to the first step

Third step:
- If p is in the influence area of length r of the polygon

- Obtain the edges that may take part in the collision,
using extended influence area of the polygon.
- Make and return the polygon-polygon detailed
intersecting test with edges calculated previously.
- Go to the first step

- Else return OUT
- Go to the first step
Algorithm 3. 2D polygons collision detection test.
deally, the extended influence area with length n of
n edge would be that with a distance to the edge
maller or equal to n (Figure 9.a). This ideal extended
nfluence area is bounded by the definition of

inkowski sum of a segment and a circumference of
adius n.[Lar00]
 point (the centroid of the moving polygon) outside

his area ensures that the polygon it represents does
ot intersect with the static polygon. This space zone
s difficult to implement. For this reason, we shall
eal with a slightly greater zone and with a very small
nd efficient calculation time. This zone is bounded
y the extended influence area and two lines parallel

coverings No Yes

Valid for non-convex polygons Yes Yes

Pre-processing No In construc-
tion time

Uses hierarchical structures When needed No
Uses bounding volumes Yes No*
Tessellation No No
Returns involved features Yes** Yes**

Algorithm based in space of: Hybrid geometry
and image based

Geometry-
based

Calculus error
Yes, it depends
on resolution.

Bounded

Yes, it
depends on
precision

* They have not been used for the tests.
** These options have been deactivated in the tests.

Table 1. Main characteristics of PIVOT2D and
the NEW algorithm.

For both algorithms the collision detection time has
been studied, whether collision takes place or not. In
order to measure these times, a 360 MHz Pentium-II
processor has been used. The times of two types of
trajectories have been measured, a circular one close
to the static figure, composed of 90,000 movements,
so that the moving figure returns to its starting point
(Figure 10.a), and a linear one, composed of 9,000
movements, so that it draws near to the static polygon
and collides with it (Figure 10.b).

Figure 10. Trajectory types: a) circular. b) linear.
In order to perform the tests, different types of
polygons have been used (Figure 11): convex and
non-convex (the latter including starred, contour,
irregular, and with-holes polygons). The times have
been measured on the basis of the number of vertices
of both figures. The following table (Table 2)
summarises the characteristics measured.

Figure 11. Types of polygons: Convex, starred,

irregular, irregular contour, with hole.

Circular trajectory
(Figure 10.a)

Rotatory movement of the moving
polygon around the center of the static
polygon. The movement is very close
between the polygons and is made up of
90,000 positions, returning to the
starting point. No collision takes place
along the whole trajectory .

Linear trajectory
(Figure 10.b)

Linear movement towards the static
figure, composed of 9,000 positions.
Collision takes place.

Number of Vertices Vertices in both polygons between 8 &
1024 (powers of 2)

Type of polygons
(Figure 11)

Variation of the type of static and
moving polygon: Convex and non-
convex (starred, contour, irregular)

Table 2. Main characteristics measured.
Different tests and time measurements in collision
detection have been made. The reason why we have
used circular trajectories and contour polygons in
most cases is the difficulty the new algorithm faces in
these situations, because the polygon in movement is
continuously moving from one influence area to
another and most of the time it is very near to the
static polygon. We are considering one of the worst
cases or situations; in this case, all the areas are
crossed and the moving polygon is nearly always
inside some influence area. We have chosen an initial
distance between polygons of 9 units, because we did
not want to penalize to the PIVOT2D algorithm,
which offers worse results when the polygons are
closer to one another.

Influence of the Number of Vertices
This test aims to measure the influence of the number
of edges in both polygons. A circular trajectory is
used and the starting situation positions the polygons
are very close but not touching one another.
It can be seen (Figure 12) that the new algorithm uses
less time in most situations, it being only slightly
worse with very big static polygons (512-1024
vertices) and very small moving polygons (8-16
vertices).

 8
16

32
64

128
256

512
1024

8

32

128

512

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00
100.00

seconds

vertices of static polygon

vertices of
moving polygon

New Algorithm

8

16
32

64
128

256
512

1024

8

32

128

512

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00
100.00

seconds

vertices of static polygon

vertices of
moving polygon

PIVOT2D

Figure 12. Times obtained in tests with a) the new algorithm and b) PIVOT2D. X and Z axes show the

number of vertices of the static and moving polygons respectively.

a) b)

a) b)

This is due to the size of the influence areas (which
depend on the radius of the bounding circumference
of the moving polygon) and to the size of the edges of
the static polygon. The greater the number of edges
of the static polygon, the smaller the edges, because
the figure is enclosed within the same volume.
Therefore, both the size of the different influence
areas and the degree of spatial coherence diminish,
because a point moves from one area to others with
greater frequency, thereby reducing the effectiveness
of the algorithm.
The PIVOT2D behaviour becomes worse in the case
of static polygons with few vertices (8-32 vertices)
and of polygons in movement with many vertices
(128-512 vertices), whereas the new algorithm
achieves quite low times. In all the remaining
performed tests (different types of polygons and
linear trajectory), the results are similar or better to
the obtained with contour polygons and circular
trajectory.

7. CONCLUSIONS AND FUTURE
WORK
We have obtained a 2D polygon-polygon collision
detection algorithm with better times than those
provided by the PIVOT2D library in most situations.
This algorithm is simple, more efficient and robust.
Besides, it is suitable for any type of polygon, convex
or non-convex, manifold or non-manifold, with or
without holes, and, above all, it may be extended to
3D, which makes it especially attractive.
It uses a triangles covering of the polygons as pre-
processing. This covering is made in a linear time
based on the number of vertices, no type of complex
data structure being necessary. The algorithm also
uses the geometric and temporal coherence. Besides,
once the collision is detected, we can obtain the edges
taking part in it, almost at the same time. One final
advantage is that it allows specifying a distance
between objects.
The algorithm is being improved as far as its
implementation is concerned. These improvements
can offer us still better times than those reflected in
this study. Some of these improvements would be: the
efficient implementation of the operations between
bit masks; the use of graphical hardware speeding up
the operations; the use of techniques of space
subdivision, invariants with rigid transformations; the
use of the geometric coherence to calculate the edges
that cross influence areas, so that it is not necessary to
re-calculate them in the following movement; the
extension of these techniques to several moving
objects; and, finally, the use of bounding volumes
hierarchies at different levels of detail. Extension to
3D is the most important work to be developed. It is
also necessary to make a mathematical study of the

speed of the algorithm based on the size of the
influence areas and to obtain the times of effective
calculation of the edges involved in the collision.

8. ACKNOWLEDGEMENTS
This work has been partially granted by the Ministry
of Science and Technology of Spain and the
European Union by means of the ERDF funds, under
the research project TIC2001-2099-C03-03

9. REFERENCES
[Bad90] Badouel, F. An efficient Ray-Polygon

intersection. Graphics Gems. Academic Press,
390-393, 1990

[Fei95] Feito, F; Torres, J.C.; et al; Orientation,
Simplicity and Inclusion Test for Planar
Polygons. Computer & Graphics, 19:4, 1995

[Fei97]Feito, F; Torres, J.C. Boundary representation
of polyhedral heterogeneous solids in the context
of a graphic object algebra. The Visual Computer,
13, pp. 64-77, Springer-Velag, 1997

[Fei98] Feito, F.R.; Segura, R.J.; Torres, J.C.
Representing Polyhedral Solids by Simplicial
Coverings. Set-Theoretic Solid Modelling,
Techniques and Applications, CSG’98
Information Geometers, 203-219, 1998

[Hai94] Haines, E. Point in Polygon Strategies.
Graphics Gems IV. Academic Press, 1994.

[Hof01] Hoff III, Kenneth E.; Zaferakis, A.; Lin M.;
Manocha, D.; Fast and Simple 2D Geometric
Proximity Queries Using Graphics Hardware.
Symposium on Interactive 3D Graphics (I3D),
2001. http://www.cs.unc.edu/~geom/PIVOT/

[Hof89] Hoffmann, C. Geometric and Solid
Modelling. An Introduction. Morgan Kaufmann
Publishers, 1989.

[Jim01] Jiménez, P.; Thomas, F.; Torras, C. 3D
collision detection: a survey. Computer &
Graphics 25 (2001) 269-285

[Jim02a] Jiménez, J.J.; Segura, R.J.; Feito, F.R.
Tutorial sobre Detección de Colisiones en
Informática Gráfica. Novatica, Nº 157. May-June
2002, pp 55-58

[Jim02b] Jiménez, J.J., Segura, R.J., Feito, F.R..
Algorithms for Point-Polygon Collision Detection
in 2D. 1st Ibero-American Symposium on
Computer Graphics, Guimaraes-Portugal, pp.
253-261, 2002

[Lar00]Larsen, E.; Gottschalk, S.; Lin, M.; Manocha,
D.; Fast distance queries with rectangular swept
sphere volumes. IEEE International Conference
on Robotics and Automation, 2000

[Las96] Laszlo, M. Computational Geometry and
Computer Graphics in C++. Prentice Hall, 1996.

[Lin98] Lin, M; Gottschalk, S. Collision Detection
between Geometric Models: A Survey. IMA
Conference on Mathematics of Surfaces, 1998.

