
Rendering Large (Volume) Datasets: A new Parallel
Visualization System

Sascha Schneider
Fraunhofer IGD
Fraunhoferstr. 5

64283 Darmstadt, Germany

sschneid@igd.fhg.de

Thorsten May
Fraunhofer IGD
Fraunhoferstr. 5

64283 Darmstadt, Germany

tmay@igd.fhg.de

Michael Schmidt
Fraunhofer IGD
Fraunhoferstr. 5

64283 Darmstadt, Germany

mschmidt@igd.fhg.de

ABSTRACT

In this paper we describe a basis for a system that is able to compute actual scientific and realistic visualization
methods in parallel. It is capable to integrate easily in modern VR renderers like for exampleOpen Inventor
[SGIa], Coin [Coi] and OpenSG[Vos02]. Our approach is advantageous for processing large datasets which
usually are the result of physically based simulation algorithms and programs. Using our techniques it is even
more feasible to manage similar visualization problems for other large amounts of data (e.g. medicinal CT-scans
or large geometries) in the context of displaying interactively.

Keywords
Interactive, Parallel Visualization, Computational Fluid Dynamics, Large Volume Data, Visualization System

1. INTRODUCTION

Besides of the simulation of physical phenomena their
performant and professional visualization comes more
and more into the focus of modern scientific applica-
tions. Nowadays there are several powerful physical
based simulation programs available on the software
market (e.g. Fluent [Flu], FemLab [Fem], Flovent
[Flo], CFX [CFX], etc.) which allow the user and de-
veloper to simulate and investigate nearly every kind
of physical problem in high quality and detail. In the
realisation concepts of these products mostly parallel
approaches play an important role in the program ar-
chitecture to gain major increases in perfomance.

Empirically these simulation programs are producing
large amounts of result data which are often displayed
only roughly or inperformant using simple visualiza-
tion tools. These tools are mostly already integrated
within the simulation programs themselves. There are
only few visualization programs available which are
completely independent of the underlying simulation
system and/or data format, grid and glyph types (e.g.
VTK [Mar96]). These independent tools offer a good
general approach for the visualization problem. On
the other hand they often lack in performance to pro-
cess the large amounts of simulation data in reasonable
timeframes.

Very large data sets (> 2563 grid points) mainly cause
problems due to the

• data is too large to load into main storage com-
pletely

• loading data in the hierarchically ordered mem-
ory (hard disk, cache, main memory) takes too
much time for qualitative, quantitative and inter-
active rendering.

• costly calculations for some visualization meth-
ods.

For these reasons, techniques from the areas of

• data compression (e.g. wavelet methods)

• parallelization of program code (e.g. multi
threading, OpenMP [OMP], MPI [MPI])

• hardware accelerated algorithms (e.g. 3D textur-
ing)

• efficient algorithms / software design (e.g. object
oriented programming)

• utilization of efficient software development
tools (e.g. C/C++) and libraries (e.g. OpenSG
[Vos02], OpenGL [SGIb], Qt [Tro])

• development of portable, functional, easy usable
and extendible software

were developed and steadily enhanced up to this day.



2. RELATED WORK
There are many works ([Moo96], [Bar99], [Fre99],
[Rus00]) in computer graphics that use methods from
some of the above areas. But to our knowledge, there
is no comparable and published work that covers all of
them. On the contrary, our approach to this topic ap-
plies most advanced methods from all of these areas in
order to create a visualization tool for very large sci-
entific data that features high rendering quality in real
time, a very good functionality and an easy handling.

On the area of displaying simulation results many vi-
sualization methods have established today, like for
example iso-surfaces, stream- and time-lines and vol-
ume rendering. But compared to the massive parallel
simulation program, the corresponding available vi-
sualization software is still noticable less performant.
The reason for that is that it mostly works either se-
quentially or it is implemented as a post process which
operates on the basis of an offline rendering concept.

The transfer of the principle of parallel programming
from the simulation of physical problems to their in-
teractive visualization lets the end user profit of signif-
icant accelerations. This approach enables the appli-
cations to process even larger amounts of data interac-
tively. Interactive Visualization of scientific data is a
classical area of computer graphics that is steadily and
rapidly developing due to the increasing requirements
on data volume, display quality, program functionality
and usability.

Approaches to interactive visualization in the past
partly based on completely (data pre-processing and
rendering) parallelization of existing visualization al-
gorithms. By utilizing modern graphics hardware
(NVIDIA GeForce [NVI], ATI Radeon [ATI]) it’s pos-
sible to shift the rendering process to them. The ad-
vantage is a faster rendering on standard PCs, that do
not provide many processors for parallel execution.

3. ARCHITECTURE
The main target of the following paper is to present
a general concept for an interactive parallel visualiza-
tion of scientific simulation data making use of the so-
phisticated capabilities of modern graphic cards. In
this concept a generalized description of visualization
methods is defined. Based on this description an ex-
tension of the developed system with further visualiza-
tion methods is easily realizable every time. For that
reason the system can be supplemented rapidly with
new visualization methods as soon as they appear.

Furthermore our approach is realized platform inde-
pendently, to satisfy the need for software portabil-
ity because of different computer system architectures
which are available and in use nowadays. The used in-

Figure 1: Example scenegraph with multiple threads
modifing it.

gredients (C++, OpenGL, OpenSG and QT) allow us
to fullfill this capability.

A rather new method in the field of scientific CFD
visualization is to render scientific CFD data (stream
lines, iso surfaces, ...) combined with detailed and tex-
tured geometrical data. This could be, for instance, a
3D model of the original scene that is used from the
simulation side for generating the simulation mesh.
Blending in original 3D models simplifies navigation
for the user and is basis for another technical inno-
vation, the application of highly realistic visualiza-
tion methods within the area of CFD visualization.
This means that in addition to visualization of ab-
stract physical quantities like temperature, pressure,
etc. with scientific visualization algorithms (cutting
plane, glyphs, iso surface, ...), realistic quantities like
fluid, gas or fire and smoke can be rendered as they ap-
pear in their natural form inside a photo realistic ren-
dered virtual (simulation) environment [Sch02].

4. SCENEGRAPHS FUNDAMENTALS
Scenegraphs APIs (e.g. Open Inventor / Coin,
OpenSG) are immediate APIs in which the objects and
commands that are going to be rendered are not sent
directly to the graphics processor (GPU) but are inte-
grated in a (acyclic directed) tree graph based descrip-
tion of the displayed scene. This tree is then traversed
and rendered separate from the application that pro-
vides the geometry and what shall be rendered. There-
fore the scenegraph implements a kind of abstraction
layer between the application and the GPU. Typical
Objects in a scenegraph are normally derived from
a base object (”‘scene graph tree node”’): Geometry
node, material node, transformation node, group node,
light node.

Modern scenegraphs like OpenSG support parallel
processing (fig. 1) natively so that it possible for the



Figure 2: Visualization method: Iso surfaces.

application to modify parts or nodes of the scenegraph
directly from several threads at the same time. As long
as every application thread addresses a different node
in the graph it is not necessary to lock the whole graph
each time a part of it is accessed. In spite of this it is
possible that every application thread can work exclu-
sively and in parallel on its part of the scenegraph with
no risk of creating an access conflict with other nodes /
threads. These scenegraphs are called ”‘thread safe”’.

In this scenegraph we store the geometry of the sur-
rounding (physical) scene (e.g. a car, an airplane or
a tunnel) together with the data necessary for render-
ing the visualization methods which is after all render
geometry (triangles, textures, colors, etc.) as well.

5. RENDERING
As mentioned in the beginning nowadays many meth-
ods for scientic visualization have established (e.g.
iso-surfaces, stream lines, time lines, etc. - (see
fig. 2, 3 and 4))

As every 3D rendering, these methods can be created
in two ways: through ray tracing/casting on the one
hand and through direct rendering using the capabil-
ities of modern graphic cards (e.g. vertex and pixel
shaders, shadowing, ...). To provide a parallel ap-
proach for the second method it is advisable to make
use of thread safe scenegraphs in the first place. By do-
ing so the application can process the calculation for
each visualization method in parallel. After the calcu-
lation has finished each thread can store its calculated
render information in a separate node in the scene-
graph. Therefore it is easy to have several visualiza-
tion methods at the same time in one displayed scene
and to process each method in parallel. Furthermore
each visualization method itself can be computed in
parallel. By doing so, it only has to be assured, that the
threaded calculations of one parallelized method itself

Figure 3: Visualization method: Stream lines.

Figure 4: Visualization methods combined: iso-
surface and vectors.

is brought together at the same time into the scene-
graph to avoid flickering effects.

Probes

To allow the user to restrict visualization methods to
certain areas of the datafield/scene we implemented
the probe concept [Bar99]. The user can create as
many of these probes (fig. 5) and place them in the
scene as he wants. Each probe is associated with a
cube in VR. In this cube only one certain visualiza-
tion method is calculated. These probes can be placed
arbitrarily and resized within the scene so that it is pos-
sible to let the system render the desired visualization
method at every place in the dataset where the user
wants it to be. To have two or more visualization meth-
ods displayed at the same location at the same time it
is only necessary to place the corresponding probes
together at the same coordinates in VR space.



Figure 5: Iso-surfave probe (small cube) placed in the
scene (big cube).

Figure 6: Basic functions and attributes of the general
visualization module class.

Class Hierarchy

To allow an easy extension of the system after-
wards we implemented a basic class of a visualization
method. Based on this generalized description we im-
plemented all visualization methods we needed. If the
user wants to introduce a new (specialised) visualiza-
tion method to the system, the only thing he has to
do, is to inherit from the base (=”‘root”’ ) class and
implement its basic functions (calculation, node gen-
eration function, ...). Afterwards he only has to make
sure to register his new visualization method within
the system. Then he can start right off using his new
method.

As shown in fig. 6 the basic functions of the general vi-
sualization module class consist of a class constructor,
a coordinate system, the number of threads which will
be used for calculations, a function to create a scene-
graph node for the corresponding VR System, a func-
tion for setting the timestep which is used and a func-
tion to update the node = (re-)start the calculations.
Now every new visualization method which is intro-
duced to the visualization system has to inherit from
this class and implement the derived functions accord-
ing to their functionality.

Additionally each visualization method has to provide
a user interface (”‘panel-window”’) (derived again

from a basic generalized class) to the system together
with a list of corresponding actions / commands. Ev-
ery time a feature of an activated visualization method
is changed (e.g. the user moves a slider in the interface
for the color distribution of a certain method) an action
transporting the changed parameters is sent through a
inter-thread communication framework (by generating
events which are collected in queues) to the central
scheduler (see following section). This scheduler now
interprets the upcoming events and assigns them to the
corresponding active visualization modules. The in-
terpretration of the incoming actions and events is im-
plemented in the visualization module classes and not
in the scheduler. This encapsulation allows the sched-
uler to be as general and flexible as possible. Further-
more it is of course possible to generate these kind of
parameter changes not just by hand but by automated
control over time for example.

6. PARALLEL CONCEPT
In this section the basic system layout (fig. 7) of the
parallel visualization system is introduced showing
how the different central parts of the software work
together. The system is designed so that it is capable
to check the features of the hardware platform it is run-
ning on (e.g. count the number of available CPUs or
the amount of memory). Each visualization method is
implemented fully scalable so that is possible to adjust
the number of used calculation threads automatically
by the system.

System Design
As one can see in fig. 7 user interacts with the scene
and changes the parameters of the visualization. He
has influence on the view of the scene (i.e. which part
of the scene is rendered from which perspective). Ad-
ditionally he can create and modify probes each carry-
ing one certain visualization method. On the other side
we have the kernel - we call it”‘central scheduler”’,
which collects all incoming actions / events and pro-
cesses them (see fig. 8).

Inheritance
As mentioned in section each visualization method is
derived from a basic class which introduces all system
necessary functions for the calculation (and the ren-
dering) as virtual functions. The calculation part of
the visualization method is implemented using multi-
ple threads to support the intended parallel processing
of the system. Every time the calculation part is fin-
ished an event is generated and sent to the kernel.

Kernel
The central scheduler is responsible for processing all
necessary reactions of incoming user and / or calcula-



Figure 7: The basic system layout.

tion events. Every time a parameter change is gener-
ated, by user interaction or by a timer function mod-
ifying it for example, this scheduler receives a cor-
responding event in his incoming event queue. Be-
ing a normal thread it is then activated by the operat-
ing system having a look at his”‘incoming queue”’.
Afterwards the scheduler is responsible for initiat-
ing and controlling the necessary calculations trig-
gered by the corresponding event. At the end the
calculation-threads inform the central scheduler, again
using inter-thread event communication, that the cal-
culations have been finished. The scheduler then initi-
ates a scenegraph node generation of the correspond-
ing visualization method and controls the exchange of
the old node(s) in the current scene description with
the new one(s).

7. DATA REPRESENTATION AND
STORAGE
In order to adapt the data source management to the
resources of the system used, we developed data struc-
tures which allow us to trade off accuracy, quality
and rendering performance: theprogressive grids.
The progressive grids are a special kind ofhier-
archically structured grids[Wil92], which originate
from the field of computer graphics. There they are
used to spatially arrange large amounts of geometry
data. Progressive grids make use of the technology

Figure 8: The central scheduler.



of progressive data formats which are closely related
to digital image processing (e.g.Wavelet-, JPEG-
Compression). In these format the data is ordered
by its level of detail. So the data associated with a
given arbitrary resolution can be extracted efficiently.
As a result the amount of data that has to be trans-
mitted and/or processed can be freely adapted to vari-
able system resources or user requirements. Geometry
data, for example, can be transmitted and displayed
simultanously in incremental granularity levels thus
the viewer gets an impression of the geometry already
with beginning of the transmission [Hop96]. While
using progressive data formats in the context of CFD
simulation data, we take advantage of these properties.
It makes sense to arrange the data with respect to the
information it contains. According to this alignment
we built a hierarchy consisting of a spatial partitioning
scheme [Sam84] that has so far been used in computer
graphics or geometry.

With our work we introduce the principle of progres-
sive data processing to CFD-data. Actually no grid
used in numerical simulation is able to handle its data
progressively. So these grids have to be converted into
the progressive format to make use of them in our vi-
sualization system. For this conversion we are free to
choose which cell types, partitioning schemes or er-
ror estimation schemes are used in concrete. All these
parameters can be selected independently from each
other and this offers a rich repertoire of possibilities.
According to this, the converter is divided in two parts:
A fixed one and a plug-in, which manages cell type
information, its topology, interpolation schemes etc.
The plug-in part can be replaced in order to imple-
ment different progressive grids (i.e. grids which use
different cell types, partitioning schemes etc.).

The conversion itself works in the following way: The
bounding box of the original simulation grid becomes
the root cell of our progressive grid. Using the prede-
fined decomposition scheme, a hierarchy of grid cells
is then built up through spatial partitioning. An ap-
proximation error is computed through comparision of
values interpolated within the current cell and the orig-
inal grid. (This approximation is independent from
the topology of the original grid.) A cell will be fur-
ther partitioned, if its approximation error is the worst
compared to all other currently unpartitioned cells (see
fig. 9). The new cells generated in this way, represent
a ”‘better”’ approximation of the original grid. The
whole partitioning process stops if a certain error tol-
erance has been reached.

The progressive grid generated in this way has a num-
ber of advantages. The maximum error within the
leaf-cells in the hierarchy decreases fast. This mini-
mizes the number of cells to be loaded at a given error

Figure 9: Subdivision: A cell will be partitioned if the
error is worse compared to the error of the other cells.

tolerance. Furthermore these cells constitute a single
block, because they are written in the same order their
parent cells have been partitioned. The hierarchical
structure of the grid can be exploited for compression
in areas where low-frequency portions of the scalar
fields predominate. We converted a number of datasets
of fire simulations and are able to zoom through the
levels of detail in real time, without making conces-
sion to performance. A visualization of streamlines
(involving 200.000 vertices) using the progressive grid
was comparable in speed to the one on the original,
equidistant grid.

8. SUMMARY
We presented a new concept of a visualization system
which is able to make use of the capabilities of mod-
ern graphic cards. This system is scalable and can be
easily adjusted to different hardware conditions. Fur-
thermore it is portable and can be easily extended with
new visualization methods. Together with its capabil-
ity to display scientific visualization methods together
with realistic rendered it is very attractive to the end
user, because he is able to investigate his simualtion
results within a realistic virtual environment. The par-
allel approach of our system makes it very attractive
for processing very large amounts of (simulation) data.
Based on the progressive approach it becomes possi-
ble to visualise even large datasets on machines which
have only little performance only at the cost of losing
details in the loaded and displayed data.

9. REFERENCES

[Tro] Trolltech AS. Qt, c++ toolkit for application de-
velopment. http://www.trolltech.com/products/qt/.

[Moo96] Robert Moorhead Aaron Trott and John
McGinley. Wavelets applied to lossless compres-
sion and progressive transmission of floating point
data in 3-d curvilinear grids. InProceedings IEEE
Visualization ’96, pages 385–388. IEEE, 1996.



[OMP] OpenMP Architecture Review Board.
Openmp - simple, portable, scalable smp pro-
gramming. http://www.openmp.org/.

[CFX] CFX. Cfx, cfd software package.
http://www.software.aeat.com/cfx/.

[Coi] Coin3D. Coin, scenegraph based 3d graphics
library. http://www.coin3d.org/.

[Vos02] Gerrit VoßDirk Reiners and Jo-
hannes Behr. Opensg - basic concepts.
http://www.opensg.org/OpenSGPLUS/
symposium/Papers2002/.

[Fem] Femlab. Femlab, pde solver package.
http://www.femlab.com/femlab/.

[Fre99] Lori A. Freitag and Raymond M. Loy. Adap-
tive, multiresolution visualization of large data sets
using a distributed memory octree. InProceedings
of SC99: High Performance Networking and Com-
puting, 1999.

[Hop96] H. Hoppe. Progressive meshes. InSIG-
GRAPH ’96: Proceedings, 1996.

[ATI] ATI Techonogies Inc. Ati radeon, graphic
board. http://www.ati.com/.

[Flu] Fluent Inc. Fluent, cfd software package.
http://www.fluent.com/software/fluent/.

[Flo] Flomerics Ltd. Flovent, cfd based software.
http://www.flovent.com/.

[MPI] mpi forum.org. Mpi - mes-
sage passing interface. http://www-
unix.mcs.anl.gov/mpi/indexold.html.

[Bar99] W. Bartelheimer M. Schulz, F. Reck and
T. Ertl. Interactive visualization of fluid dynamics
simulations in locally refined cartesian grids. In
Proceedings IEEE Visualization ’99, pages 413–
553. IEEE, 1999.

[NVI] NVIDIA. Geforce, graphic processing unit.
http://www.nvidia.com/.

[Rus00] Szymon Rusinkiewicz and Marc Levoy. Qs-
plat: A multiresolution point rendering system
for large meshes. InSiggraph 2000: Computer
Graphics Proceedings, 2000.

[Sam84] H. Samet. The quadtree and related hierar-
chical data structures.ACM Computing Surveys
(CSUR), 16(2), June 1984.

[SGIa] SGI. Open inventor, object oriented 3d graph-
ics api. http://www.sgi.com/software/inventor/.

[SGIb] SGI. Opengl, 3d rendering api.
http://www.opengl.org/.

[Sch02] Sascha Schneider Thorsten May and Volker
Luckas. Parallel real time fluid simulation and an-
imation with fractal optical refinements. InESM
02: Proceedings of the 16th European Simulation
Multiconference, Modelling and Simulation 2002,
pages 224–228, 2002.

[Mar96] Kenneth M. Martin William J. Schroeder
and William E. Lorensen. The design and im-
plementation of an object-oriented toolkit for 3d
graphics and visualization.IEEE Visualization ’96,
http://public.kitware.com/VTK/:93–100, 1996.

[Wil92] J. Wilhelms and A. van Gelder. Octrees for
faster isosurface generation.ACM Transactions on
Graphics (TOG), 11(3), 1992.


