
Hardware Accelerated Point Rendering of Isosurfaces

J. Andreas Bærentzen Niels Jørgen Christensen
Informatics and Mathematical Modelling

Technical University of Denmark
DK–2800, Lyngby, Denmark

{jab|njc}@imm.dtu.dk

ABSTRACT

Interactive volume sculpting and volume editing often employ surface based visualization techniques, and in-
teractive applications require fast generation and rendering of surface primitives. In this paper, we revisit point
primitives as an alternative to triangle primitives.

We propose an approximate technique for point scaling using distance attenuation which makes it possible to
render points stored in display lists or vertex arrays. This enables us to render points quickly using OpenGL. Our
comparisons show that point generation is significantly faster than triangle generation and that the advantage of
rendering points as opposed to triangles increases with the size and complexity of the volumes. To gauge the
visual quality of future hardware accelerated point rendering schemes, we have implemented a software based
point rendering method and compare the quality to both MC and our OpenGL based technique.

Keywords
voxel, point rendering, graphics hardware

1. INTRODUCTION
Techniques for volume visualization have traditionally
been divided into two groups: Surface rendering tech-
niques and direct volume rendering techniques. In sur-
face rendering, an intermediate representation of an
isosurface is extracted and represented using surface
primitives (often triangles); these primitives are then
rendered. A major advantage of surface rendering is
that once the primitives are generated they can often
be rendered at interactive frame rates. On the other
hand, if the isovalue is changed, the primitives must
be regenerated which is costly. The same is true if the
volume is edited. This means that the cost of primitive
generation is very important to interactive applications
that (a) use surface visualization and (b) allow editing
of the volume or changes to visualization parameters.

Our main hypothesis is that it is significantly faster to
generate point primitives from volume data than tri-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Journal of WSCG, Vol.11, No.1, ISSN 1213-6972
WSCG’2003, February 3-7, 2003, Plzen, Czech Republic.
Copyright UNION Agency – Science Press

angles, because connectivity is not computed. To ver-
ify this hypothesis, we have implemented a point gen-
eration scheme and compare the performance of point
generation to that of triangle generation using March-
ing Cubes (MC).

However, the primitive generation performance is only
interesting, if rendering speed and quality are both ac-
ceptable. Therefore, we have implemented a hard-
ware accelerated point rendering technique based on
OpenGL. Our results show that in many cases, es-
pecially when the number of primitives is very high,
the speed of point rendering is superior even to opti-
mized triangle rendering. Unfortunately, OpenGL is
not designed for point rendering of surfaces. While
very good speed is achievable, the image quality is
generally not superior to that of MC. However, po-
tentially, point rendering can produce images of very
good quality. To demonstrate this, we have imple-
mented a point rendering technique. We assume that
either programmable or special purpose hardware will
soon make hardware accelerated implementations of
(something similar to) our software technique feasible.

In the next section, we discuss related work and our
own contribution. In Section 3 we discuss the soft-
ware framework used to test the implemented meth-
ods. In Section 4 our point generation and rendering
methods are discussed. In Section 5 our implementa-
tion of Marching Cubes is related. Results and some
details on the test platforms are found in Section 6. Fi-

nally, we draw conclusions and discuss future work in
Section 6.

2. RELATED WORK
In this paper, we compare point rendering and March-
ing Cubes both with respect to quality, the time it takes
to generate primitives (points or triangles) and the time
it takes to render these primitives.

There are many schemes to improve the efficiency of
MC and to reduce the number of generated triangles.
For instance, it is possible to generate an octree rep-
resentation of the volume and use this octree to iden-
tify regions of the volume that do not contain parts of
the isosurface [Wilhe92]. It is also possible to track
the isosurface instead of marching through the entire
volume [Shekh96]. However, these methods could
equally well be applied to point generation. In fact,
point generation can be seen as sub–problem of trian-
gle generation.

Triangles produced using Marching Cubes can often
be aggressively decimated [Schro92] but decimation
increases primitive generation time. Since we are in-
terested in interactive applications, this is a problem.
The method proposed by Shekhar et al. [Shekh96] is
interesting since it is faster than MC and at the same
time it generates a decimated output. However, the
method is not entirely generic since it tracks a sin-
gle isosurface and probably derives its speed from this
fact.

On the other hand, while we do not consider algorith-
mic improvements, we find that it is important to ren-
der the triangles produced by MC in a way that pro-
motes efficiency on modern hardware. In particular,
this means drawing triangles using indexed vertices or,
even better, triangle strips [Mölle99]. Both techniques
have been tested in combination with vertex arrays and
display lists [Segal02].

Point rendering was originally proposed by Levoy and
Whitted [Levoy85] and, recently, novel approaches to
point rendering have received a great deal of inter-
est. Probably this interest was spawned by Grossman
and Dally who proposed a fast block warping scheme
[Gross98] to efficiently project points and a hole fill-
ing scheme using hierarchical z–buffers. More recent
work is due to Pfister et al. [Pfist00] who introduced
visibility splatted surfels and later, in Zwicker et al
[Zwick01b], the EWA splatting framework which is
also extensible to direct volume rendering using splat-
ting [Zwick01a]. Recently, a hardware accelerated
version of EWA splatting has been proposed by Ren
et al. [Ren02]. Ren et al. render the points as textured
quads and use a preliminary pass to resolve visibility.

Point rendering of isosurfaces in volume data is not
new. In fact, the fourteen years old dividing cubes
[HlllC88] technique does precisely that. However, di-

viding cubes is aimed at the situation where hardware
accelerated polygon rendering is not available. In that
case, it is attractive to avoid generating polygons and
subdivide cells till they are pixel size. Since the pro-
jected size of a cell may change, this entails regenerat-
ing points every frame. We are investigating a different
situation where hardware acceleration is available for
both point and polygon rendering. In that case, it is
best to generate a set of points that can be rendered
multiple times and then solve the visibility problem
either by rendering the points using scaled discs or el-
lipsoids [Rusin00, Zwick01b], by employing a screen
space method to fill holes [Gross98], or by resampling
the point set to match output resolution [Alexa01].

Our approach is to scale the points, and we use the
OpenGL point primitive for rendering. The first con-
tribution of this work is that we propose a technique
for scaling points according to the distance between
the point and the image plane. Doing this manually
by calling the glPointSize function is not practi-
cal since the point sizes are viewpoint dependent and
cannot be precomputed. Thus manually setting point
sizes precludes the use of vertex arrays and/or display
lists, techniques that are essential for obtaining high
performance.

The second contribution of this paper is a compre-
hensive comparison of point rendering and Marching
Cubes. Since MC is the de facto standard for sur-
face visualization of volume data, it is interesting to
see how point rendering compares to this method. We
compare the methods both with regard to primitive
generation and primitive rendering.

Finally, we compare the quality of both MC and hard-
ware point rendering to software point rendering.

3. FRAMEWORK
Volume data may be stored using many, diverse types
of data structures. Here, we shall focus on two simple
data structures.

A linear array is the simplest and the most useful rep-
resentation for many types of volume data. In the fol-
lowing we will denote a linear array of voxels a regular
grid (rgrid).

Synthetic volumes representing solids of homoge-
neous material almost invariably contain large regions
of voxels that are uniformly inside or outside of the
solid. To save space, a simple two–level hierarchical
grid can be used. A hierarchical grid (hgrid) is just an
N×N×N grid (represented as a linear array) called the
top–level grid. Each cell of the top–level grid is either
empty or itself an M×M×M sub–grid containing vox-
els. throughout this paper, we use a value of M = 16.

The advantages of the hierarchical grid are simplicity
and speed of access (constant time compared to e.g.

log time of an octree).

A single byte is often used to represent voxels in med-
ical/acquired volumes. However, in volume graphics
it is frequently desirable to manipulate volume data
using floating point operations, and it makes sense to
store a voxel as a standard floating point value.

These considerations have led to the selection of the
following two data structures for the tests in this pa-
per:

• rgridb – a regular grid containing one byte per
voxel. This data structure is used for acquired
volume data.

• hgridf – a hierarchical grid containing a floating
point value per voxel. We use this data struc-
ture for synthetic volume data produced during
volume sculpting sessions.

It is important to mention that our sculpting system
[Baere02] maintains a clamped, signed distance field
volume (DFV) representation. In a distance field vol-
ume, the value of a voxel is the signed shortest distance
to the surface of the represented solid. In our tests us-
ing the hgridf representation, we always assume that
the volume is a DFV. Only distances up to a certain
threshold are stored. If a grid–cell does not contain
any voxels closer to the surface than this threshold, the
cell is empty and not represented by a sub–grid.

To be able to compare the novel point generation and
rendering schemes to MC, we have developed an ob-
jected oriented framework. The main component is a
renderer which may be either an hgridf renderer or an
rgridb renderer. Likewise, we have a polygon engine
and two different point engines.

The behaviour of the renderers depends on the asso-
ciated engines. The same polygon engine is used for
both hgridfs and rgridbs, but there are separate point
engines for hgridfs and rgridbs. All told, we have four
renderers, one for each combination of grid type and
primitive type.

The rgridb and hgridf renderers differ in important
ways. The rgridb renderer divides primitive generation
and rendering into two separate steps. Primitives are
generated in one pass and can be rendered any number
of times. If the volume is changed, all primitives are
regenerated.

In contrast, the hgridf renderer combines generation
and rendering. Each time the volume is rendered, the
hgridf renderer traverses the top–level grid and visits
each grid–cell unless it is empty. For each non–empty
grid–cell we check whether the cell is dirty. Dirty
means that the voxels in the cell have been changed
since the last visit. If the cell is dirty, the (polygon or
point) engine is used to regenerate the local isosurface
representation. Finally, the cell is marked as clean.

This partial updating of primitives is important in in-
teractive applications where the latency would be too
great if the entire volume was updated.

4. GENERATION AND RENDERING
Points are generated differently depending on whether
the volume is a DFV or an acquired volume. Distance
fields are very simple, because we know that the sur-
face point closest to a given point p can be found using

pf = p − dg (1)

where d is the distance (i.e. a distance field voxel
value), g is the gradient of the distance field, and pf is
the closest surface point. pf will be denoted the foot
point of p. (1) is illustrated in Figure 1. Clearly, (1) re-
quires that the g is well defined. This is the case every-
where except at points where there is an equal shortest
distance to two or more surface points (i.e. for points
belonging to the medial surface). See also [Bæren01].

g

d
p

f

p

Figure 1: A point p and its foot point pf

This leads to an extremely simple algorithm for find-
ing foot points. For each subdivided cell of an hgridf
we traverse all voxels of the cell, and for each voxel,
we test if the distance is in the interval [0,

√
3[. Differ-

ent intervals could be used resulting in more or fewer
points being generated. However, generating fewer
points could easily cause holes to appear.

For voxels in the [0,
√

3[band, the gradient is com-
puted using central differences, and the result is nor-
malized to yield g. The gradient of a distance field is
unit length (except on the medial surface), but since
central differences does not give an exact result (for
non–trivial cases), normalization is beneficial. Having
obtained the gradient, we find the foot point is found
using (1).

The interval [0,
√

3[was selected because it ensures
that all voxels on the positive side of the isosurface are
used, if they belong to cells that are intersected by the
isosurface.

The implementation of this method is the core part of
the point engine for synthetic volume. As mentioned,
the hgridf renderer generates points during the render-
ing phase, and a grid-cell is visited only if the cell is
non–empty. What happens next depends on whether
the cell is dirty.

If the cell is dirty, the above algorithm is used to gener-
ate the points which are subsequently stored in a vertex

array along with the gradients. Finally, the vertex ar-
ray is used to generate a display list, and the display
list is rendered.

If the cell is clean, the associated display list is ren-
dered and we move on to the next cell.

The above algorithm is only adequate for distance
fields. In the more general case, we can estimate foot
points on an isosurface of a scalar field using

pf = p− d − τ

‖g‖
g

‖g‖ (2)

where τ is the isovalue and d is now the value of the
scalar field. However, in general, (2) does not yield a
point on the isosurface in one step. Hence, repeated
application becomes necessary. Unfortunately, this
leads to an iterative algorithm which is sometimes just
as expensive as Marching Cubes. Instead we have cho-
sen to find foot points by running a vastly simplified
version of Marching Cubes which finds only vertices
and does not compute triangles.

For each voxel in the volume we perform the follow-
ing:

Let the position of the voxel be p. We look up the vox-
els at positions q = p + (1, 0, 0), r = p + (0, 1, 0),
and s = p + (0, 0, 1). If the edge pq is inside the vol-
ume, we check whether p and q are on different sides
of the iso–surface. If that is the case, we find the in-
tersection point using the MC scheme and interpolate
the gradient to that point. The point and interpolated
gradient are added to our list of points. The procedure
is repeated for r and s.

Notice that for each cell, we only visit three edges, and
no table look up is required. Also, there is no book–
keeping to keep track of shared vertices.

This algorithm forms the core part of the point engine
utilized by the rgridb renderer. Since an rgridb is not
composed of cells, all points are stored in a single list
in the case of rgridbs.

4.1 Point Scaling
OpenGL provides a point primitive. This primitive is
far from ideal for point rendering since the points are
always drawn as squares or disks. Moreover, standard
OpenGL does not provide a way to perform perspec-
tive scaling of the points. In fact, the only standard
way to scale points is to call glPointSize for each
point. Clearly, it is possible to overcome these limi-
tations by drawing points as small discs perpendicular
to the point normal. This is one of the techniques im-
plemented in QSplat, but it involves drawing a quadri-
lateral which entails sending four times more vertices
than if the point primitive is used.

It is not currently possible to overcome both limi-
tations, but we have found the error introduced by
drawing points as viewport–parallel discs to be tol-

erable. The scaling issue is worse, but, fortunately,
the OpenGL function glPointParameter (which
is no longer an extension as of version 1.4 of the API)
[Segal02] provides us with a way to scale points auto-
matically according to the distance from the eye point.

Before we consider perspective scaling, we will con-
sider what size points should have if all points lie
in plane that is parallel to the image plane. Con-
sider, therefore, a volumetric wall parallel to the image
plane. The points generated from this wall will map to
the vertices of a 2D grid whose cells are squares. Thus,
the diameter of each point should be

√
2 times the grid

spacing to ensure that they cover the plane. In a sense
it is clear that a wall parallel to the image plane is a
worst–case scenario; if we retain the area of the wall
but make it curved, crumbled or seen at an angle, its
projected area can only become smaller. For this rea-
son we have chosen

√
2 as the base diameter of point

splats when using OpenGL. It is possible to construct
cases where

√
2 is not sufficient, but under reasonable

circumstances holes never appear.

Taking perspective into account, but assuming a square
image, we compute the diameter of the drawn point us-
ing

D =
√

2
H

h
(3)

where H is the height of the viewport rectangle and h

is the height of a slice of the viewing frustum. h and
H are illustrated in Figure 2.

h H

Figure 2: A square in the viewport (right) and the cor-
responding slice of the view frustum.

h depends on the position of the frustum slice along
the z axis. This relationship is given by

h = z2 tan(
θ

2
) (4)

which is illustrated in Figure 3. Unfortunately, the
point parameter extension scales according to the dis-
tance to eye, d, and not the z coordinate of the point.
Our plan is to find a lower bound on the z coordinate
and use this as our estimate of the true z coordinate.
Because the estimate is either smaller than or equal to
the true z value, the estimate will never lead to a point
size that is smaller than the true point size. Observe
that

d2 ≤ z2 + 2(z tan
θ

2
)2 = z2(1 + 2 tan2 θ

2
) (5)

and, consequently,

z2 ≥ d2(1 + 2 tan2 θ

2
)−1 = d2k (6)

where k = (1 + 2 tan2 θ
2)−1. If we substitute

√
kd2

for z in (4) and plug (4) into (3), we get a conservative
choice of point diameter as a function of the distance
to eye

D =
H√

2d2k tan(θ
2)

. (7)

The point size extension computes the point size s us-
ing

D = D0

√

1

a + bd + cd2
(8)

where D0 is the user defined point diameter set using
glPointSize. a, b, and c are user defined constants,
and d is the distance from the point to the eye. If we

set D0 = 1, a = b = 0 and c =
2k tan2(θ

2
)

H2 , we obtain
(7).

d

z

z tan(θ/2)

z tan(θ/2)

θ/2

p

Figure 3: Frustum illustrating the relationship between
z and the distance to the eye d.

The OpenGL implementation is now straightforward.
After a call to gluPerspective the cotangent of θ

can be obtained from the projection matrix. The code
required to set up point attenuation is shown in Ap-
pendix A.

4.2 Software Rendering
Our results show that hardware accelerated point ren-
dering using OpenGL is often faster than Marching
Cubes but rarely of higher quality. We do not see
this as a major problem since the quality is likely to
get far better with increased hardware support. How-
ever, to be able to gauge the quality of future hardware
accelerated implementations, we have implemented a
software point rendering technique that is inspired by
Zwicker et al [Zwick01b]. The basic idea is to render
each point as an ellipsis approximating the perspective
projection on a disc perpendicular to the point normal.
The elliptic splat is textured using a 2D Gaußian. If

the z value of an incoming fragment is close to the z
value stored in the destination pixel, the fragment and
the pixel are merged. Otherwise the fragment is either
rejected or replaces the pixel.

5. MARCHING CUBES
The well–known Marching Cubes [Loren87] algo-
rithm operates by marching through the volume one
cell (a cube whose corners are voxels) at a time. One
problem with MC is that since each cell is processed
independently, simple implementations compute ver-
tex positions for each triangle. Thus, vertices are not
shared between triangles resulting in redundant infor-
mation being sent to the graphics card. However, us-
ing some additional bookkeeping our implementation
of MC produces a list of vertices (where each vertex
is stored only once) and a list of triangles where each
triangle is represented by three vertex indices.

With regard to performance, indexed vertices are an
improvement, but it is still not the best representation.
To get the best performance, triangles should be stored
in triangle strips [Mölle99].

While it is possible to build triangle strips as a part of
the MC processing [Engel99], we have chosen to use
NVIDIAs NvTriStrip 1.1 library. Thus for each layer
in the volume, we pass the indices of the generated
polygons to NvTriStrip and receive a set of triangle
strips.

The polygon engine can be used to generate both
indexed vertex triangle meshes and indexed triangle
strips. As mentioned, the engine is used for both the
hgridf and the rgridb renderers.

6. RESULTS
The primary platform for tests in this paper is an 800
MHz Intel Pentium III based PC equipped with an
NVIDIA Geforce3 graphics card. An AMD Athlon
based system equipped with a Geforce2 card has also
been used. Details regarding the two platforms are
shown in Table 1

name GPU CPU RAM Compiler
Intel Geforce3 64 Mb 800 256 Intel 5.0.1
AMD Geforce2 32 Mb 900 256 gcc 3.0.1

Table 1: Platforms used for testing. Memory indicates
video RAM, whereas RAM means system memory.

All tests were performed on the Intel platform unless
otherwise stated. Where frame–rate is measured, a
random rotation has been applied to spin the volume
each frame. All timings are best out of three runs.

The aim of the first test is to compare the speed of point
generation to MC triangle generation and to com-
pare the speed when rendering these primitives using

OpenGL. Four volumes were used. Two distance field
volumes stored in hierarchical grids and two CT vol-
umes stored in regular grids. The two distance field
volumes (bear and head) were created using our vol-
ume sculpting system [Baere02]. A detail from the
head model is shown in Figure 5. For all four vol-
umes, we count the number of primitives and measure
the time it takes to generate these primitives and ren-
der 200 frames. From these measurements, the speed
in frames per second was computed, and the results are
shown in Table 2.

Volume Bear (hgridf: 2563)
Primitive no prims. generation fps
points 274896 1.22 22.93
triangles 464940 20.22 22.94
tristrips 52 % 79.11 31.52

Volume Head (athlon) (hgridf: 10243)
Primitive no prims. generation fps
points 728970 5.95 7.38
triangles 1242784 50.53 4.06
tristrips 51% 162.55 4.09

Volume Head (pentium) (hgridf: 10243)
Primitive no prims. generation fps
points 728970 3.415 6.95
triangles 1242784 30.32 3.68

Volume CT Skull (rgridb: 2563)
Primitive no prims. generation fps
points 762303 14.79 8.67
triangles 1478130 125.81 1.51
tristrips 52% 3062.44 3.93

Volume CT Engine (rgridb: 2563)
Primitive no prims. generation fps
points 300108 6.45 21.25
triangles 599256 34.82 3.70
tristrips 45% 729.42 16.33

Table 2: Primitive generation and primitive rendering
times. The second column shows the number of prim-
itives. In the case of triangle strips, the percentage
shown represents the per cent of the number of indices
in the triangle strips to the number of indices in the full
triangle mesh.

We observe that the primitive generation phase is in-
variably faster in the case of point generation than MC.
In particular, the point engine used for the synthetic
volumes is faster by almost an order of magnitude.
We can also conclude that point rendering is faster for
large data sets. The CT volumes produce more prim-
itives than the synthetic volumes, and this causes the
frame rate to drop. However, the frame-rate drops
much more for triangle rendering than point render-
ing. The use of triangle stripping clearly boosts perfor-

mance, except in the case of the Head volume. On the
pentium platform, triangle stripping of the head vol-
ume caused massive swapping and was aborted. Strip-
ping was also very slow for other volumes, but this was
to be expected, since the NvTriStrip API does not use
any information about the MC mesh.

Some of the numbers are quite surprising. In particu-
lar, the polygon performance is surprisingly bad when
rendering rgridb volumes without using triangle strip-
ping. We believe that the superior performance of the
hgridf renderer may be caused by the fact that geom-
etry is divided into several display lists and not just
one. This might enable the OpenGL implementation
to store some of the data in faster memory.

Thus far, we have tested the primitive generation and
rendering separately. This does not fully illustrate
the performance difference between point and polygon
rendering in an interactive application using the hgridf
representation. We recall that the hgridf renderer re-
generates primitives in non–empty cells if they have
been changed since the last frame. To test how this
impacts performance, we have changed the hgridf ren-
derer to mark a number of cells as being dirty during
each frame. The results are shown in Table 3.

Volume dirty non–empty fps fps
cells cells tri pnt

bear 20 914 of 4096 9.89 17.67
head 400 2743 of 262144 3.08 6.49

Table 3: This table illustrates the performance when
some grid cells of an hgridf are regenerated each
frame. The second column shows how many cells are
being marked as dirty for each frame, the second col-
umn shows the ratio of non–empty cells to the total
number of cells.

The number of cells that are made dirty (and whose
primitives are regenerated) each frame is selected so
that primitives must be recomputed for roughly four
cells on average for each frame. When comparing the
result to Table 2 it is clear that MC is affected most by
the regeneration.

When it comes to speed the main problem with
OpenGL point rendering is that the method is more
prone to become fill–rate limited than triangle render-
ing. This is clear because the points necessarily over-
lap to cover the surface. In addition, OpenGL does
backface culling based on the orientation of the pro-
jected vertices of a polygon [Segal02]. Since a point
is a single vertex there is no orientation and we can-
not cull points. Hence, it is clear that, in general,
much more filling is performed for points than poly-
gons. Moreover, since less geometry is produced,

point rendering has lower bandwidth and geometry
pipeline requirements. It follows that point render-
ing is only slower than triangle rendering if it is fill–
limited. Clearly, the likelihood of being fill–limited is
greatest if few, large primitives are rendered. To test
whether point rendering becomes fill–limited in this
case, we generated both points and triangles from a
small volume containing a cube. Both types of prim-
itives were rendered using both a small and a large
viewport. It is known that when reducing the size of a
viewport significantly improves performance, the ap-
plication is fill–limited. The results are shown in Ta-
ble 4. We observe that the performance of the triangle
rendering is almost unchanged while the performance
of point rendering increased by an order of magnitude
when the viewport size was decreased.

Volume cube (32× 32 × 32)
Primitive Viewport size no prims. fps
points 800× 800 3726 76
triangles 800× 800 7448 146
points 100× 100 3726 773
triangles 100× 100 7448 161

Table 4: This table illustrates the proneness of point
rendering to become fill–rate limited.

Figure 4: Top to bottom: points (software), points
(OpenGL), and Marching Cubes

Figure 5: Detail from the head model. OpenGL point
rendering is shown on top and OpenGL triangle ren-
dering is shown below. Dilation artefact is only visible
in areas of high curvature.

Regarding quality, Figure 4 shows a comparison of
both hardware and software point rendering to triangle
rendering. The dilation of the cylinder shown in the
middle image illustrates the main artefact associated
with OpenGL point rendering. This dilation is caused
by the fact that points are rendered as discs even if
they lie on the silhouette. The software method draws
points as ellipses whose main axes depend on the nor-
mal, and this greatly alleviates the problem. The extent
to which the dilation is objectionable depends on the
scale and smoothness of features as well as the resolu-
tion of the volume. A detail from the head volume is
shown in Figure 5. Here the dilation artefact is visible
but only in areas of high curvature.

7. DISCUSSION AND CONCLUSIONS
In this paper, we have compared techniques for point
generation and both OpenGL and software point ren-
dering to triangle generation using Marching Cubes
and triangle rendering using OpenGL.

Our tests show that the advantage of point generation
and OpenGL point rendering increases with the size
and complexity of the volumes. At a certain point (On
the test hardware it seems that this point is around 500k
polygons), the performance of our implementation of
OpenGL point rendering overtakes even triangle strips.
Moreover, for large volumes, OpenGL point rendering
produces quality that is very similar to that of March-

ing Cubes. Primitive generation is faster for any vol-
ume size.

Unfortunately, when zooming in or using small data
sets, the visual quality of OpenGL point rendering is
inferior to that of MC. When using small data sets,
MC is also expected to perform best. On the other
hand, it might soon be possible to implement a hard-
ware based point rendering technique that is similar
to the software technique: Recent hardware (Radeon
9700 and soon NV30) is able to compute reciprocal
values. This might leverage the division that becomes
necessary when an unknown number of points overlap
the same pixel. Also point sprites (a recent NVIDIA
OpenGL extension) might facilitate rendering points
as ellipses. Finally, it is likely that specialized point
rendering features might be added to future graphics
hardware.

These thoughts lead to our main conclusion, namely
that points are an attractive primitive for isosurface vi-
sualization of volume data, and that this is especially
true for large volumes and in the case of interactive
applications where the volume is edited.

References
[Alexa01] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman,

D. Levin, and C.T. Silva. Point set surfaces. Proceed-
ings of the IEEE Visualization Conference, pages
21–28, 2001.

[Baere02] J. Andreas Baerentzen and Niels Jørgen Chris-
tensen. Volume sculpting using the level-set method.
In Shape Modeling International, 2002. Proceed-
ings, pages 175–182. IEEE, 2002.

[Bæren01] J. Andreas Bærentzen. Volumetric Manipula-
tions with Applications to Sculpting. PhD thesis,
IMM, Technical University of Denmark, 2001.

[Engel99] K. Engel, R. Westermann, and T. Ertl. Isosurface
extraction techniques for web-based volume visual-
ization. Visualization ’99. Proceedings, pages 139–
519, 1999.

[Gross98] J.P. Grossman. Point sample rendering. Master’s
thesis, MIT, 1998.

[HlllC88] W.E. Lorensen H.E. Cline and S. Ludke. Two
algorithms for the three-dimensional reconstruction
of tomograms. Medical Physiscs, 15(3), May/June
1988.

[Levoy85] Marc Levoy and Turner Whitted. The use of
points as a display primitive. Technical Report 85-
022, UNC-Chapel Hill Computer Science Technical
Report, January 1985.

[Loren87] W. E. Lorensen and H. E. Cline. Marching cubes:
A high resolution 3D surface construction algorithm.
ACM Computer Graphics, July 1987.

[Mölle99] Tomas Möller and Eric Haines. Real–Time Ren-
dering, chapter 7, pages 231–240. A K Peters, 1999.

[Pfist00] Hans Peter Pfister, Matthias Zwicker, Jeoren Van
Baar, and Markus Gross. Surfels: Surface elements
as rendering primitives. In Proceedings of SIG-
GRAPH 2000, 2000.

[Ren02] Liu Ren, Hanspeter Pfister, and Matthias Zwicker.
Object space ewa surface splatting: A hardware ac-
celerated approach to high quality point rendering.
Computer Graphics Forum, 21(3):461–470, 2002.

[Rusin00] Szymon Rusinkiewicz and Marc Levoy. Qsplat:
A multiresolution point rendering system for large
meshes. In Proceedings of SIGGRAPH 2000, 2000.

[Schro92] W.J. Schroeder, J.A. Zarge, and W.E. Lorensen.
Decimation of triangle meshes. Computer Graphics,
26(2):65–70, 1992.

[Segal02] Mark Segal and Kurt Akeley. The OpenGL
Graphics System: A Specification (Version 1.4). SGI,
2002.

[Shekh96] R. Shekhar, E. Fayyad, R. Yagel, and J.F. Corn-
hill. Octree-based decimation of marching cubes sur-
faces. Visualization ’96. Proceedings., pages 335–
342, 499, 1996.

[Wilhe92] J. Wilhelms and A. Van Gelder. Octrees for faster
isosurface generation. ACM Transactions on Graph-
ics, 11(3):201–27, 1992.

[Zwick01a] M. Zwicker, H. Pfister, J. van Baar, and
M. Gross. Ewa volume splatting. Proceedings of
IEEE Visualization 2001, pages 29–36, 2001.

[Zwick01b] M. Zwicker, H. Pfister, J. van Baar, and
M. Gross. Surface splatting. SIGGRAPH 2001. Con-
ference Proceedings, 2001.

A. APPENDIX
The code below is used to set up OpenGL distance at-
tenuation of points for perspective scaling of points as
discussed in Section 4.1.

i n t v i e w p o r t [4] ;
f l o a t mat [1 6] ;
g l G e t F l o a t v (GL PROJECTION MATRIX ,

mat) ;
g l G e t I n t e g e r v (GL VIEWPORT ,

v i e w p o r t) ;
f l o a t H = v i e w p o r t [2] ;
f l o a t h = 2 . 0 f / mat [0] ;
f l o a t D0 = s q r t (2 . 0 f)∗H/ h ;
f l o a t k =

1 . 0 f / (1 . 0 f + 2 ∗ s q r (1 / mat [0])) ;
f l o a t a t t e n [3] = {

0 , 0 , s q r (1 / D0)∗ k } ;
g l P o i n t P a r a m e t e r f v E X T (

GL DISTANCE ATTENUATION EXT ,
a t t e n) ;

g l P o i n t S i z e (1 . 0 f) ;
g l E n a b l e (GL POINT SMOOTH) ;

