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ABSTRACT
This paper introduces a new technique for modeling signal and nutrient propagation in plant models to counteract
the main disadvantages of current methods: the difficulty of setting the velocity of the propagation and the com-
plexity of models with many signals. This technique uses implicit parameters and global propagation functions,
offering a better control over the velocity of propagation, making the modeling of many independent signals an
easy task, and keeping the model simple and objective. Furthermore, our approach is easy to be aggregated into
existing models and makes the modeling of signal and nutrient propagation a more intuitive task.
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1 INTRODUCTION

The modeling and simulation of plant development
play an important role in computer graphics and in
biology. Beyond the rendering of realtime [Die97a,
Tra97a] and realistic [Deu98a, Ger96a] nature scenes,
plant modeling is useful for helping scientists to have
both a better understanding of the plant develop-
ment [Pru93b] and the interaction between its or-
gans [Pru96a]. It is also an excellent tool for test-
ing mathematical models of biology, like the effect of
pruning [Pru94c] or the reaction of plants to changes
in the water concentration in the soil [Mec96b].

Current techniques made it possible to describe
the development of plants by defining the rules of
its internal processes, like the water, nutrient and
photosynthesis flow, as long as its interaction with
the external environment. Our approach to the
modeling of plants is the well known Lindenmayer
Systems (L-Systems) which provides a procedural
method to model almost any kind of branching struc-
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tures [Fow92a, Par01a].
In section 2 we briefly describe the L-System

structure and, in section 3, we present current methods
used to simulate signal propagation in plant models. In
section 4, we introduce a new technique for modeling
signal propagation which offers a better control over
the velocity of the propagation, makes the modeling of
many independent signals an easy task, and keeps the
model simple and objective. The presented technique
is also easy to be aggregated into existing models and
makes the modeling of signal and nutrient propaga-
tion a more intuitive task. In section 5, we present
three examples to illustrate the benefits brought by this
new technique and in section 6 we briefly describe the
modeling environment used. Finally, in section 7, we
comment the results obtained and show some topics
that are open for further research.

2 LINDENMAYER SYSTEMS

In this section, we summarize the main features of
L-Systems pertinent to this paper. A more exten-
sive exposition of L-Systems can be found in [Pru96a,
Pru90d].

We call modulesthe most basic structures of a
plant. The modules usually represent repeating struc-
tures of the plant, like flowers, leaves and branch seg-
ments. The modules may be followed by parameters
that quantify some characteristics of the modules, like
its size, age or the concentration of certain substances.
The modules are written as a letter (or a word) fol-
lowed by the parameters inside parentheses. A plant



is then described as a sequence of modules with each
ramification delimited by a matched pair of brackets.
This representation is calledbracketed string.

The visualization of the structure is done using
turtle interpretation[Pru96a]: the bracketed string is
scanned from left to right and some selected modules
are considered as commands that maneuver a LOGO-
style turtle. The main selected modules used in this
paper are listed below:

F (s) draws a line segment of lengths.
!(w) sets the current line width tow.
+(α),−(α) rotates±α around the up vector~U .
/(α), \(α) rotates±α around the heading vector~H.
&(α),∧(α) rotates±α around the left vector~L.
∼S draws the predefined bezier surfaceS.
@O(d) draws a sphere of diameterd.

If the parameters of the reserved modules are
omitted, the modules use a default value. This is the
most common notation used to describe L-Systems
and was introduced by Prusinkiewicz [Pru90d]. Fig-
ure 1 shows an example of the turtle interpretation of
the following bracketed string:

F (1)[−(45) ∼leaf ]F (1)[+(45) ∼leaf ]F (2) ∼flower

An L-System describes

Figure 1: a flower.

the development of a plant
model with a set of rewriting
rules calledproductions, that
replaces each module with a
set of successor modules repre-
senting the next stage in the de-
velopment of that specific part
of the plant. The L-Systems
differ from other rewriting sys-

tems by the fact that the rules are applied in parallel
to all modules of the plant. This is motivated by the
biological fact that the cellular division occurs simul-
taneously in many cells.

An L-System is composed by oneaxiomthat de-
fines the initial state of the plant and a set ofproduc-
tions. The productions are described using the follow-
ing syntax:

lc < pred > rc : cond → succ

A production replaces the predecessor modulepred
with zero, one or more successor modulessucc, as
long as the predecessor is preceded by the left con-
text lc and succeeded by the right contextrc, and the
conditioncond evaluates totrue. Only the predeces-
sor and the successor are mandatory fields. Actually,
L-Systems with no left or right contexts are calledcon-
text free, while L-Systems with one or two contexts
are calledcontext sensitiveL-Systems. The process
of substitution of all modules of a plant model by its
successors is calledderivation.

3 SIGNAL PROPAGATION IN
PLANT MODELS

One important aspect of plant development is the com-
munication between the plant organs. The signal prop-
agation is among the most important features that in-
crease the expressive power of the L-Systems. It rep-
resents the information flow through the plant, like the
flow of the nutrients extracted from the soil and carried
up towards the branches, or the photosynthesis flow
from the leaves down towards the base of the tree. The
signal propagation is calledacropetalwhen the signal
is carried up towards the top of the tree, and is called
basipetalwhen the signal is carried down towards the
base of the tree.

As described in [Pru96a, Pru90d], there are two
ways to represent a signal in a plant model: with a
module, and with a parameter. The first approach is
used when we want to model a discrete signal, like the
presence of a hormone that triggers the transformation
of a bud to a flower. The following L-System shows
an example of an acropetal signal propagation where
the signal is represented by the module@O:

w : @O FF [+FF ]FF [−FF ]FFFF

p1 : @O < F → F @O
p2 : @O → ε

Figure 2: Acropetal signal propagation.

The initial state of the plant is set by the axiom
w as a branching structure with the signal module@O
in its base. Productionp1 replaces and internodeF
preceded by a signal@O with an internode followed
by a signal. Productionp2 removes the signal modules
from the previous derivation.

The following L-System shows a similar model
simulating the propagation of a basipetal signal:

w : FF [+FF @O]FF [−FF @O]FFFF @O

p1 : F > @O → @O F
p2 : @O → ε

Figure 3: Basipetal signal propagation.

The axiomw sets the initial state of the plant as a
branching structure with the signal module@O in its



apices. Productionp1 replaces and internodeF fol-
lowed by a signal@O with an internode preceded by
a signal. Productionp2 removes the signal modules
from the previous derivation.

The second approach to simulate a signal in a
plant model is to represent the signal as a parameter of
the modules. This technique is used to model quantifi-
able values, like the concentration of nutrients in each
module. The following L-System shows a tree model
that grows according to the nutrient concentration in
its branches.

w : R F (1, 0) A

p1 : R < F (d, n) → F (d + 1, n + 1)
p2 : F (d1, n1) < F (d, n) : n1 > n

→ F (d + 1, n+n1
2

)
p3 : F (d, n) < A : n ≥ 5

→ /(134)[+(38)F (1, 0)A][−(27)F (1, 0)A]

Figure 4: Tree model simulating the acropetal nu-
trient flow from the root of the tree towards its
branches. The figure shows the structure after 10,
15, 20, 25 and 30 derivations.

The axiomw sets the initial state of the plant as
an internodeF followed by an apexA and preceded
by a moduleR representing the tree root. The second
parameter of the moduleF represents the nutrient con-
centration in that module. Productionp1 describes the
nutrient flow from the root towards the first internode
of the tree, and productionp2 describes the nutrient
flow between two internodes. When the nutrient con-
centration near an apex reaches the value5, production
p3 bifurcates the apex into two new branches.

The techniques to model signal and nutrient prop-
agation presented in this section have some disadvan-
tages:

• It is difficult to set the velocity of the propaga-
tion: in the first technique, the signal propagates
in discrete steps making it difficult, for example,
to model a signal that traverses 7 modules in 11
derivations. Furthermore, it is difficult to model
a signal that traverses more than one module in
each derivation.

• It is hard to add a new signal into an existing
model: this happens because a new parameter
may have to be added to all occurrences of cer-
tain modules, and because some productions may
need to propagate the signal while doing their
previous tasks.

• L-Systems with many signals are hard to under-
stand because the propagations may be described
in the same productions where important features
of the model are specified. Furthermore, its easy
to get confused when working with modules with
many parameters.

4 GLOBAL SIGNAL PROPAGATION
TECHNIQUE

In this section we introduce a new technique for mod-
eling signal and nutrient propagation in L-Systems.
In this technique, the information flow is described
by a global propagation function and the L-System
describes only the reaction of the modules that are
reached by the signal. Each signal is defined by four
main elements:

• a source module, which is a special module that
initiates the flow of the signal through the plant,

• an implicit parameter, that contains the current
value of the signal in each module,

• a propagation function, that defines how the in-
tensity of the signal varies as it flows through the
plant, and

• a direction, that defines if the signal flow is
acropetal (from the base towards the apices)
or basipetal (from the apices down towards the
root).

The signal propagation is given by the solution of
the wave equation of the formu(x, t) = F (x − vt),
wherex is the position of the signal source,t is time,
andv is the velocity of the propagation [Fol95a]. The
shape of the wave is given by thepropagation func-
tion, which is the functionF (x) (at timet = 0). The
positionx of the signal source and the velocityv of
the signal propagation are defined by the parameters
of the source module: the first parameter is the value
of the expressionx − vt, and the second parameter is
the value of the velocityv. In the initial state of the
plant, the timet is equal to zero, so the first parameter
x− vt is equal tox. After each L-Systems derivation,
the timet is incremented by one unit and the value of
the first parameter of the source module is updated au-
tomatically. Figure 5 illustrates the propagation of a
wave given by the functionF (x) = 2−x2

and shows
the values of the parameters of the source module in
each derivation.

The distance from the signal source is measured
along the branches of the plant (the first parameter of
theF (s) modules), and the value of the signal in each
module is given by theimplicit parameter. After each
derivation, the value of the implicit parameter of all
modules is automatically updated to the correct value
of the propagation function for that module.



Figure 5: The propagation of the function
F (x− vt) = 2−x2

, with the source moduleS at po-
sition x = 0.

The implicit parameters are calledimplicit be-
cause they do not appear in every occurrence of the
modules. They appear only in the productions where
their values are used. All implicit parameters are de-
noted by the symbol$ followed by an identifier. The
following example gives a typical production that uses
the value of an implicit parameter:

A(v, c, s = $s) : s == 1 → ∼flower

In this example, the apexA has two regular pa-
rametersv andc and an implicit parameter$s which is
loaded into variables. When the implicit parameter$s
reaches the value1, this production replaces the apex
A with a flower∼flower.

It is possible to have more than one signal source
module in the same plant. In this case, each source
module propagates one function independently. The
implicit parameter of each module is calculated by tak-
ing the sum of the values of all signals that reach the
module. The Example 3 in the following section il-
lustrates the use of more than one source module to
simulate the photosynthesis flow from the leaves down
toward the plant root. An L-System may also include
more than one type of signal with its own source mod-
ule and implicit parameter. In this case, the signals are
completely independent.

5 EXAMPLES

In this section we present some examples of L-
Systems with the introduced signal propagation tech-
nique to demonstrate the benefits of this new approach.
The first example illustrates the use of different propa-
gation functions in a plant model. The second example
shows how the velocity of the propagation can be eas-
ily changed and how it affects the model. The third
and last example illustrates the use of many different
signals in the same model.

Example 1

This example shows how different propagation func-
tions can change the appearance of a plant model.
The following L-System describes a model of a tree
with an acropetal signal representing the nutrient flow
through the plant. The thickness of each segment of a
branch will be given by the nutrient concentration in
that segment.

signal:{
source: S
parameter: $s
function: F (x)
direction: up

}
w : S(0, 1)A(10)

p1 : A(x) : x > 0 → !(1)FA(x− 1)
p2 : A(x) : x = 0 → /(121)[+(38)!(1)FA(10)]

[−(17)!(1)FA(10)]
p3 : !(x, s = $s) → !(s)

The initial state of the plant is defined by the ax-
iom w as an apex preceded by the signal source mod-
ule S with propagation velocity set to1. Productions
p1 and p2 defines the growth of the apex: the apex
grows linearly for ten derivations and then splits into
two new branches. As the apex grows one unit in each
derivation, the signal propagates at the same speed of
the plant growth. Productionp3 adjusts the width of
each internode of the tree by setting the first parameter
of the set-width modules!(x) to the value of the nutri-
ent concentration ($s) in that module. Figure 6 shows
the development of this model for different propaga-
tion functions.

F (x) =
{

0 if x ≥ 0
2
√−x if x < 0

F (x) = −x
2

F (x) = |10 sin(x
6 )|

Figure 6: Tree models with the thickness of the
branches specified by an acropetal signal given by
function F (x) and the structures after 20, 30, 40,
50 and 60 derivations.



Example 2

In this example we illustrate the effect of changes in
the velocity of a signal propagation. The following L-
System describes the model of a tree with an acropetal
signal that defines the growth rate of the branches. The
growth rate will be defined by the following propaga-
tion function:

Figure 7: F (x− vt) = 2−( x
100 )2 .

This function simulates a tree that grows slowly
in its early ages, then accelerates in the middle of its
development and level off when it comes close to its
final size.

signal:{
source: S
parameter: $s

function: 2−( x
100 )2

direction: up
}

w : S(300, v)F (1)A(9)

p1 : A(x) : x > 0 → A(x− 1)
p2 : A(x) : x = 0 → /(121)[+(38)F (1)A(9)]

[−(17)F (1)A(9)]
p3 : F (d, s = $s) → F (d + s)

The axiomw defines an internodeF followed by
an apexA and preceded by the signal source moduleS
with initial x value set to−300 and propagation veloc-
ity set to the constant valuev. The growth of the apex
is defined by productionsp1 andp2: after nine deriva-
tions the apex splits into two new branches. Produc-
tion p3 increases the length of each internode by the
intensity of signal$s. Figure 8 shows the development
of the model for three different velocities.

In the first model of Figure 8 (v = 3), the
branches of the tree develop early when the tree is still
small and, when the tree grows, it keeps the same ap-
pearance as when it was young. In the second model
(v = 7), the tree starts to grow with few branches and
the crown of the tree is formed in the middle of its
development. In the third model (v = 10) the tree
reaches its full size with very few branches and then
the tree crown is formed by many short branches that
did not have time to grow.

v = 3

v = 7

v = 10

Figure 8: Tree models with the growth rate defined
by an acropetal signal given by the propagation
function F (x − vt) = 2−( x

100 )2 for different prop-
agation velocities and the structures after 40, 60,
80, 100 and 120 derivations.

Example 3
This example illustrates the use of more than one sig-
nal in the same model. It describes a tree model with
four different signals:

• The first one ($n) is similar to the signal pre-
sented in the previous example: it is an acropetal
signal that represents the nutrient flow through
the plant and defines the growth rate of the
branches. The model simulates a tree that grows
slowly in its early ages, then accelerates in the
middle of its development and then level off when
it comes close to its final size.

• The second one ($p) is a basipetal signal sim-
ulating the photosynthesis flow from the leaves
of the tree down toward its root. This signal is
used to set the thickness of the internodes, so that
branches with more leaves are allowed to grow
stronger than branches with fewer leaves.

• The third one ($s) is an acropetal signal that in-
forms the tree the current season. The tree reacts
to season changes in the following way: in the
fall, the leaves become orange and then fall; in
the winter, the tree remains with no leaves; in the
spring, the leaves reappear together with flowers;
and, in the summer, the flowers disappear and the
tree remains only with the leaves.

• The fourth one ($t) is an acropetal signal that in-
forms all modules the age of the tree. It is used to
define when the flowers first appear and to define
the size of the leaves.



signal:{ /* Nutrient Concentration */
source: N
parameter: $n

function: (2−( x
100 )2)/5

direction: up
}

signal:{ /* Photosynthesis */
source: ∼leaf
parameter: $p
function: 1
direction: down

}

signal:{ /* Season */
source: S
parameter: $s
function: ( x

100
) mod 20

direction: up
}

signal:{ /* Tree Age */
source: T
parameter: $t
function: x

2000

direction: up
}

#define fall(s) (s < 5)
#define winter(s) (s ≥ 5 ands < 10)
#define spring(s) (s ≥ 10 ands < 15)
#define summer(s) (s ≥ 15)
#define leaves(s) (s ≥ 8)

#define v 1.4 /* growth velocity */
#define a 30 /* apex bifurcation rate */
#define ld 6 /* leaf duration */
#define fd 4 /* flower duration */

w : T (0,−100)S(0,−100)N(300, v)!(0)F (1)A(a)

p1 : F (x, n = $n) → F (x + n)

p2 : !(x, p = $p) : x ≤
√

p

4
→ !(x + 0.2)

p3 : A(x) : x = 0 → [+(38)!(0)F (1)A(a)]
[−(17)!(0)F (1)A(a− 1)]

p4 : A(x, s = $s, t = $t) :
(t > 5) and(x mod 2 = 0) andspring(s)
→ /(123)[Fl(fd)]A(x− 1)

p5 : A(x, s = $s) : (x mod 2 = 1) andleaves(s)
→ /(123)[Lf(ld)]A(x− 1)

p6 : A(x) → A(x− 1)

p7 : Fl(x) : x = fd

→ Fl(x− 1) @v , (2) ∼flower
p8 : Fl(x) : x > 0 → Fl(x− 1)
p9 : Fl(x) : x = 0 → %

p10 : Lf(x, t = $t) : x = ld
→ Lf(x−1) @v @D(

√
t) , (1) ∼leaf(0, 0)

p11 : Lf(x) : x > 0 → Lf(x− 1)
p12 : Lf(x) : x = 0 → %

p13 : , (x, s = $s) : x ≤ 6 andfall(s) → , (s + 3)

The axiomw sets the initial state of the plant to an
internodeF of width zero followed by an apexA and
preceded by the signal source modules of the acropetal
signals (T, S, N ). The growth of the internodes is de-
fined by productionp1 and is given by the nutrient con-
centration$n in each internode. Productionp2 defines
the thickness of each branch according to the photo-
synthesis produced by its leaves. Each leaf is a source
module of the photosynthesis signal$p and propagates
a constant function of value1. In a branch with more
than one leaf the signals are summed and the value of
the photosynthesis in the branch will be given by the
number of leaves above it.

Productionsp3 throughp6 define the behavior of
the apex. The first parameter of the moduleA is a
counter that defines the bifurcation rate of the apex. It
is used also to switch between leaf and flower produc-
tion. When the counter reaches zero, productionp3

bifurcates the apex into two new branches. Production
p4 generates a flower if the tree has more than5 years
(t > 5), if the apex counter is even (x mod 2 = 0) and
if it is spring. Productionp5 generates a leaf if the apex
counter is odd (x mod 2 = 1) and if we are between
the end of the winter and the end of the summer. Pro-
ductionp6 takes place if none of the above productions
were matched and decreases the apex counter.

The growth of the flowers is defined by produc-
tions p7 throughp9. The flower is generated in pro-
duction p7: the module@v rolls the drawing turtle
so that the flower is drawn in the correct angle, the
module, (1) sets the current color to purple, and the
module∼flower draws the flower. Productionp8

decreases the flower counter and productionp9 uses
the special module% that crops the flower when the
counter reaches zero.

Productionsp10 throughp13 defines the growth
of the leaves. The leaf is generated in productionp10:
the module@v rolls the drawing turtle so that the leaf
is drawn in the correct angle, the module@D(

√
t) sets

the size of the leaf according to the age of the tree, the
module , (2) sets the current color to green, and the
module∼leaf(0, 0) draws the leaf. The leaf module
has two parameters because it is the source module of
the photosynthesis signal. Productionp11 decreases
the leaf counter and productionp12 removes the leaf
when the counter reaches zero. Productionp13 is re-
sponsible for changing the color of the leaves in the
fall. The color map of this model is set so that the col-
ors 3 through 6 change gradually from green to orange.



Figure 9 shows the development of this model.
The internodes were drawn using generalized cylin-
ders [Pru96a] instead of line segments so that the im-
age generated is more realistic.

This example demonstrates how easy it is to build
a complex model with many signals using the pre-
sented technique. As the L-System captures only the
reaction of the modules reached by a relevant signal,
the productions are simple and objective. For exam-
ple, the nutrient concentration signal is used only in
productionp1 where the internode length is set, and
the photosynthesis signal is used only in productionp2

to define the internode width. In a model build without
the presented technique, productionp1 would have to
describe the signals propagation together with the in-
ternode elongation. Furthermore, the photosynthesis
model utilized would have to be adapted because it is
almost impossible to model a signal that is generated
in the top of the tree and reaches the base of the tree in
the next derivation.

This example also illustrates the independence of
the signals. The model has four different signals, each
one with its own velocity and propagation function.
The propagation of one signal does not affect the other
signals.

The photosynthesis signal shows a signal with
many source modules. The value of the implicit pa-
rameter of a module reached by more than one sig-
nal of the same type is given by the sum of the signal
functions calculated for that module. In this example,
the implicit parameter will be equal to the number of
leaves above the module. One interesting aspect of the
this signal is that the velocity of the propagation is set
to zero (∼leaf(0, 0)). As the propagation function is a
constant value (does not depend on thex coordinate),
all the modules in the straight path from the source
module to the root will have the same signal’s value,
independently of the velocity of propagation.

Another interesting aspect of this model is that it
is a context free L-System. The presented technique
makes the context sensitive L-Systems more rare be-
cause the contexts were used mainly to simulate the
signal flow. In spite of that, the context sensitiveness
is still useful to describe the reaction of the modules
subject to their neighbors.

6 MODELING ENVIRONMENT

The technique presented in this paper was imple-
mented in a software called LSLab which we devel-
oped using C++ with OpenGL for the Windows oper-
ating system. This software is available for download
at:

http://cgcap.ime.usp.br/lslab

The LSLab was inspired on the cpfg software de-
veloped by Prusinkiewicz [Mec98a] which is currently
the most complete and reliable L-System modeler soft-
ware. We have decided to mimic the cpfg modeling
language to make it possible to use the same model in
both programs and because this is the most common
notation for L-Systems.

7 CONCLUSION AND
FUTURE WORK

In this paper we illustrated the benefits of the global
signal propagation technique with relation to the pre-
vious methods for modeling signal and nutrient prop-
agation in plant models. This new technique made the
signal modeling a much easier and intuitive task. The
improvements observed are:

• Full control over the velocity of the signal propa-
gation: the velocity of the propagation is defined
by a parameter of the signal source module.

• The signal respects the length of the modules tra-
versed: the propagation of the signal is given by a
function that sets the value of the signal for each
module according to its distance from the source
module.

• The signal can propagate through many modules
in one derivation.

• It is easy to aggregate new signals into existing
models: as the productions do not need to de-
scribe the propagation of the signal, it is easy to
add a new signal to an existing model and then
add or change some productions to describe the
modules reaction to the new signal.

• A model can have many different signals and
their propagations are completely independent.

• The L-System is clear and objective: as the pro-
ductions only describe the behavior of modules
reached by a signal, they are simple and objec-
tive.

Further research could be done to add stochas-
tic rules to the signal description: the velocity and
the propagation function could be randomly altered
to capture specimen variation. This technique should
also be tested in open L-Systems [Mec96b] where the
propagation function could be set and changed by the
environment to simulate the change in the supply of
some nutrients. Another improvement of this tech-
nique could be done by making the velocity of the
propagation vary depending on the module it traverses.
The intensity of the signal could also vary this way.

In summary, we believe that the proposed signal
modeling technique will prove useful in many aspects
of plant development simulation.
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Figure 9: Two years of the development of the tree from Example 3. The images begin in the winter. The
flowers appear in the spring and disappear in the middle of the summer. In the fall, the leaves become
orange and fall, and, until near the end of the winter, the tree remains with no leaves. The figure shows some
stages of the development from derivation 166 to 204.


