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ABSTRACT 

Spirals are surprisingly common in science, nature, physics, astronomy, flora and fauna, and the arts. In 
Cartesian coordinates they are typically transcendental functions, which makes the evaluation on Cartesian 
grids an inefficient process. We propose a construction scheme for piecewise circular approximations. 
The algorithm is convergent and consists of generating center coordinates and radii for quarter circles 
given an arbitrary monotone polynomial, exponential, or logarithmic function in polar coordinates. 
Evaluating quarter circles as well as generating the parameters can be done incrementally with few integer 
operations, thus, the algorithm is fast and stable. 
Keywords 
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1. INTRODUCTION 
Drawing straight lines and curved primitives is an 
important part of computer graphics. 
Most methods are similar in spirit to Bresenham’s 
approach [Brese65] - this is due to the speed and 
simplicity of implementation of the algorithm. 
More complicated curve primitives, as in our case 
spirals, could be scan converted using general 
purpose graphing techniques, and have been less 
considered as objects for direct scan conversion. 
Nevertheless, spiral forms are common in science, 
physics, biology, and other disciplines; the 
functions are also used for curve approximation in 
CAD and CAGD. 
As most spirals are transcendental functions in 
Cartesian coordinates, simple drawing 
implementations are difficult to realize and 
incremental algorithms are likely to suffer from 
drift, as scan conversion of high-degree polynomials 
is cumbersome and error-prone [VANAK85]. A 
piecewise approximation using a simple primitive in 
polar coordinates is more promising. Thus, we 
propose to use circular arcs with displaced centers. 
The main contributions of this work are strategies to 
efficiently compute the centers and radii of circular 
segments, and the generalization of the algorithm to 
any type of spiral. 
 

2. MOTIVATION 
It is interesting to study the omnipresence of spiral 
forms: they are found especially in the fields of 
 

• Mathematics/Geometry 
• Physics/Magnetism 
• Astronomy 
• Self similarity in fractals 
• Flora & fauna, growing structures  
• Art 

 
Note the figures at the bottom of the pages: every 
image is dominated by spiraling patterns. 
In scientific applications, further examples of 
spirals are current distribution, radiation patterns, 
power transmissions, centrifugal power of rotating 
objects, fluid movements, etc. 
A major reason for spirals to be common in nature 
and the arts is the efficient use of space. Growing 
processes of several organisms have always been 
studied and exhibit spiral patterns. The spiral has 
been named “the curve of life” [COOK79], as 
exponential functions model reproduction processes 
in biology, explosions in chemistry, evolution 
processes in economy, etc. 
Furthermore it is also being employed for visual 
data mining: [RIEGE02], [WEBER01], because it 
effectively uses screen real estate and allows to 
identify cyclic behavior in the data. 



 

 
Figure 1: Archimedean spirals ( 41=m , 21=m  
“Fermat”, 3=m , 1=m  “Archimedes”), 
Logarithmic spiral (singularity in the origin due 
to the range [ ]1,0∈ϕ ), Exponential spiral 
 
3. RELATED WORK: ARCHIMEDES 

SPIRAL 
The basic idea of the algorithm is a piecewise 
approximation in displaced polar coordinates (i.e. 
circular arcs with off-zero centers) and has been 
investigated for linear spirals [TAPON02]. 
Consider the expression 
 

bmr +⋅= ϕϕ)(  
(1)  

where b  is the offset. Assuming 4π⋅= md  and 
defining four points ),( ddC i ±±=  in the four 
quadrants of the coordinate system, circular quarter 
arcs having such centers are successively drawn 
with constantly (by the quantity d2 ) increasing 
radius nA : 

ndAdAA nn ⋅+=+=+ 22 11  
(2)  

with bdA += 21 , +∈ Nn . Let Ni ∈  be the cycle 
number and [ ]4,3,2,1∈q  the index of the first arc 
radius in each quadrants: in a general step 

iqn 4+= : 
diAA qiq ⋅+=+ 84  

(3)  
Briefly: the arc’s center points define the four edges 
of a square. As the spiral grows, the consecutive 
center points iteratively move through the squares 
vertices, shifting every time by a fixed distance (the 

squares edge length), as the Archimedes spiral 
linearly increases.  
Every arc starting point is simply derived from the 
previous arc ending point. 
It has been demonstrated that the approximation 
algorithm for an Archimedes spiral converges to the 
exact formula (1) with an upper bounded error.  
 
4. ARBITRARY NUMBER OF 

SEGMENTS 
We generalize now the algorithm to any number of 
segments: that is using a regular gonn −  (Fig. 2) in 
place of squares and drawing n  circular arcs (Fig. 
3) instead of four quarter circles. Thus, the arc 

length (in radians) is given by 
n

x
rad

π2
= . 

 

 
Figure 2 Arc centers’ position on regular 

polygon vertexes ( 2=n , 3=n , 4=n , 5=n ) 
 

 
Figure 3 Construction steps ( 3=n , 6=n ) 
 
Note that one can trade approximation quality for 
speed by increasing the number of segments. 
However, we proceed here with the quarter 
approach (four arcs) as we believe it is the most 
practical: for the implementation it guarantees 
alignment of arc centers with screen coordinates 
and only one coordinate has to be changed per step. 
 

 

 
Spiral’s patterns: spider web; fruits & vegetables: succulenta, pinecone, caulis, flowers´ core (the parastichies of different 
families can be identified), the last image shows the growth curves according which petals in flowers or leaves in plants are 
sequentially produced. This study is known in botanic research as “Phyllotaxis”. 



5. ARBITRARY SPIRAL 
FUNCTIONS 

In general, a spiral is a curve with )()( ss κτ  equal 
to a constant for all s, where τ  is the torsion and κ  
is the curvature. We can express the whole class of 
curves as 

)()( ϕϕ fr =  
(4)  

where f  is a monotonic function of the angle 

variable ϕ , i.e. 0>
ϕd

df
. 

One can distinguish several classes of spirals, i.e. 
polynomial, exponential, logarithmic functions in 
polar coordinates. Polynomial spirals are analyzed 
in Section 6. Exponential/logarithmic spirals are 
represented by the “expansion function” 
 

baer +⋅= ϕϕ)(  
(5)  

where the relation with the angle ϕ  is non-linear. In 
principal, all spirals could be approximated using 
same approach: center points for circle quadrants 
are defined to lie on a set of lines through the 
origin. One has to compute only the distance to the 
origin on that line. Note that this distance is easy to 
determine from the radius of the spiral at the 
respective angle: Since we know the endpoint from 
the previous circular segment, the radius of the 
spiral at that point immediately yields the distance 
of the next center to the origin. 
While this procedure works for all spirals it requires 
to evaluate the defining equation at regular 
intervals. As we show next, for polynomial spirals 
this could be avoided at all. 
 
6. ARBITRARY ARCHIMEDEAN 

SPIRALS 
Polynomial spirals are characterized by the 
following expression 
 

bmr p +⋅= ϕϕ)(  
(6)  

where Rp ∈ ; and are sometimes called 
Archimedean. The “Spiral of Archimedes” (1) is 

 one of the spirals that belong to this family (if 
1=p ) and we can also say that this class is as a 

generalization of Archimedes’ spiral. 
Since the behavior of the spiral curve is dictated by 
the exponent p  we distinguish three cases: 

1. Linear case: 1=p  
2. Power case: 1>p  
3. Root case: 10 << p  

Case 3. is the complementary of case 2. 
Even for 0<p  one obtains spiraling functions, e.g. 
particular cases are the “Hyperbolic” ( 1−=p ) or 
“Lituus” ( 2/1−=p ) spirals. 
Figure 4 describes the iterative sequential position 
of the quarter circles’ centers: constant movements 
provide linear growth of the spiral, while an 
increasing step produces spiraling-out curves, 
depending on the parameter p . Figure 5 shows the 
resulting construction steps for different spirals, by 
means of circular arcs. 
 

 
Figure 4 : Quarter circles center points and 

their sequence for 1=p , 2=p , 2>p  
 

 
Figure 5 : Spiral construction by means of 

circle quarter arcs ( 1=p , 2=p , 2>p ) 
 
Algorithm 
We demonstrate here the algorithm for 2=p : case 
of quadratic growth in radius. 
 

 

 
Spiral’s structures in nature (Nautilus seashell), phenomena (hurricane), astronomy (galaxies M51 “Perfect spiral” and 
Hubble galaxies classification), art (volute), architecture (spiral stairs). 



For the linear spiral (see Section 3) the distance 
between two successive windings was fixed to be 

m⋅π2 ; now, the radius of the Archimedean spiral 
varies as a non-linear function. Let this time 
 

22π⋅= mc  
(7)  

define the new set of quarter circle centers iC  as 
follows: beside the constant increment of the linear 
spiral we sum, for each step n , an additional term 
c . The points iC , instead of staying on the four 
positions ),( dd ±± , move spiraling out. Note that 
the radius increases in each step by d2  plus a non-
constant term.  
The expression for the quarter circles radii is: 
 

2
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(8)  
with cbdA ++= 21  and +∈ Nn . 
We extended and validated the method also for any 
exponent p , so that we can freely choose the 
monotonic polynomial function that models the 
increment of the quarter circles radius in our spiral. 
Note that the calculations allow an integer 
implementation of the approximation algorithm. 
 
7. CONCLUSIONS 
We produce spirals by joining quarters of circles of 
increasing radii: given the radius and the starting 
point, for every step a quarter of circle is drawn. 
The main features of our algorithm are the 
following:  

• The approximation is characterized by a 
constrained error [TAPON02], which 
rapidly decreases with increasing cycle 
number. Therefore, the convergence of our 
generalized algorithm to the exact function 
is )1( ϕΦ . 

• The generated curve is 1G . 
• The algorithm construction is based on 

symmetry, which is not the case of other 
algorithms (e.g. Paduan or polygonal 
approximations). Here it is possible to 
implement an efficient algorithm for just a 
quarter circle and then to iteratively apply 
it to every quadrant of the coordinate 
system. 

• The algorithm permits the use of pure 
integer arithmetic, avoiding the complexity 
of trigonometric functions; in fact quarter 
circles should be drawn using the midpoint 
algorithm.  

• The method is valid for the whole family 
of Archimedean spirals and also for 
exponential and logarithmic spirals of any 
base. In general, the algorithm can be 
applied to any kind of spiral and the code 
stays simple even if the spiral expression 
becomes more complicated. 

 
8. FUTURE WORK 
The generalization of the algorithm provides the 
possibility of approximating other functions, just by 
means of circular or ellipsoidal arcs.  
We are interested in extending the method to polar 
curves of any complexity. 
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