
Hardware Architecture for
Fast Camera Effects

Gábor Szijártó

Budapest University of Technology and Economics
Magyar Tudósok Krt. 2

H-1117, Budapest, Hungary

szijarto.gabor@freemail.hu

ABSTRACT
Current commercial graphics cards do not offer fast enough special hardware to render camera effects like
motion blur or depth of field. Even the pixel shader, which is useful in many rendering algorithms, is unable to
support these effects. This paper presents a hardware structure, which provides fast rendering capability for
realizing filtering effects, including also depth of field and motion blur.

Keywords
Keywords: camera effects, depth of field, motion blur, image processing, fast hardware filtering, edge detection,
texture filtering, human eyes, real-time rendering, graphics render pipeline.

1. INTRODUCTION
Current graphics cards do not offer good support for
rendering camera effects, such as the motion blur. On
the other hand, the images are results of two
fundamentally different techniques: triangle rendering
and texturing. Triangle rendering is accurate, but
texture filtering is not. This duality appears unnatural
for the human eye [Szi02a], thus everybody can
recognize a real-time rendered image easily. The
result of triangle rendering is a sharp image,
especially without full scene anti-aliasing (FSAA),
thus all objects seem to be in focus. Mipmap based
texture filtering, on the other hand, is based on
averaging four texture pixels, whose size is
proportional to the mipmap level. Thus image
portions calculated this way can be neither sharp nor
accurate. Moreover, texture anisotropic filtering is
not accurate enough on current graphic cards, thus
the texture is more blurred in perspective field than in
other perspectively not distorted areas (see Fig 1).
Therefore textured pixels look as if they were out of
focus. In still images this unnatural blurring results in
incorrect perception of object position. However,
when the picture is in motion, the human eye can
correct this problem. Another problem is posed by
fast moving objects. The human brain cannot
recognize the full process of the motion, thus it seems
that fast moving objects disappear and appear at

another place.

Depth of field (DOF) helps to improve the blurring in
pictures, and motion blur helps to recognize fast
object motion. Thus these camera effects are
important to create more realistic real-time rendered
images. However, these effects decrease information
of images in some aspects. For example, first person
shooter (FPS) gamers like to see the image sharply to
quickly recognize the enemy. Thus many FPS gamers
turn off even the textures. This is an extreme case, in
most of the cases camera effects are useful and
improve visual quality.

Figure 1. Example of blur chaos (screenshot from
an FPS game). Soldier and tank looks like in the

air due to poor texture anisotropic filter and
sharp triangle edges.

In the next section, the camera effects are described
from the aspects of physics. In section 3 a new

WSCG SHORT PAPERS proceedings
WSCG’2003, February 3-7, 2003, Plzen, Czech Republic.
Copyright UNION Agency – Science Press

hardware solution is described. In the section 4 this
hardware solution is analyzed, and some theoretical
performance calculations are presented. In section 5
depth of field is described and previous work is
presented in this field. Finally, a depth of field
algorithm is implemented for the proposed hardware
architecture. Section 6 summarizes the results.

2. CAMERA EFFECTS
A camera is very similar to the human eye. Both have
a lens and an image plane (retina). The lens has finite
area in order to collect light rays from the objects. A
small pinhole cannot collect enough rays to be sensed
by retina of the eye or CCD or film of the camera. An
ideal convex lens has a specified focal distance, and
is able to project sharply only those objects that are at
this distance, thus there are many blurred objects in a
photograph (see Fig. 2). If an object is nearer than the
focal point, the sharp projected image will be behind
of the retina or the image plane. To move an object
into the focus, we should either change the focal
distance of the lens or modify the distance between
the image plane and the lens. Ordinary camera has fix
glass lens, thus it can use only the latter solution. On
the other hand a human eye has theoretically fix
distance between retina and lens, but lens is elastic,
thus muscles stretch it to find the right focus.

Figure 2. Example of Focus.

Pinhole Camera Model
Current real-time computer generated images are
rendered with the assumption of an infinitely small
“pinhole” lens. All objects scatter light rays in every
direction in the world space. Some rays will pass
through the pinhole if the source object is not
occluded by another object. There is no lens
refraction, thus the focus of lens is meaningless. The
image plane can be anywhere, and the projected
image on the image plane will be sharp (see Fig 3).

Thin Lens Model
Obviously, real lenses have a finite area, and rays
refract on lenses. Thus the projected image of a
source point is sharp only at a single image plane
position, which depends on the focus of lens. The
projections of most of the source objects are blurred,

because these are behind or in front of focus, where
rays are not concentrated in one point.

Figure 3. Infinitely small pinhole and thin lens.

Object Motion
The sensation of human eye receptors is not infinitely
fast, thus a receptor still senses rays for a while, after
its source is turned off. This makes images of fast
moving objects blurred. This effect can also be
observed in cameras since in order to collect enough
light for the film, the shutter of the camera is opened
for a given time. This effect is called motion blur.
This effect is difficult to simulate in computer
graphics, because it requires the calculation of object
motion between two frames. One possible method is
rendering several static images between two frames
and blending them. The speed of this solution is
proportional to the number of the blended images.

3. INVERSE POST FILTER
Previews
Current real-time hardware has many programmable
units to implement a lot of visual effects. Advanced
commercial graphics cards have two programmable
units: a pixel shader and a vertex shader. A vertex
shader can modify the geometry of the objects, thus
this unit is not suitable for image filtering. Pixel
shader, on the other hand, is responsible for the
programmable rasterization in two dimensions.
Therefore it is a primary candidate to implement an
image filter algorithm. Pixel shader fills a given two
dimensional triangle while executing a preloaded
program code. This program can read almost any
texture pixel and the most advanced cards even
implement the flow control [Mic02a] (version 3.0).
Thus an image filtering algorithm can be
implemented with a pixel shader program. The screen
can be covered with two triangles. Thus after
rendering the required image it should load the pixel
shader code, and render two triangles, which cover
the whole screen, carrying out the filtering operation.
The main disadvantage of his method is that this
architecture is not designed for image filtering, thus
cache hitting is not optimal. Increasing cache size is a
possible solution to solve this problem, but it is
usually prohibitively expensive.

Focus of object,
where is in focus

Object Space

Image Plane

Thin Lens

Pinhole Lens

No Focus of object

Blurred Point

Focus of Lens

Object Space
Projected Image

Convex Lens

Traditional Algorithm
To create camera effects, the easiest way is to apply
filtering with an appropriate mask. The size of such
masks is nn× , and their center is in the filtered
computed pixel. The result is computed from the
elements of this mask and from the neighborhood of
the actual pixel. In the simplest approach only
addition and subtraction instructions are used to
calculate the required pixel. If we can use more
instructions, the filter will be able to realize more
advanced effects. When the filter uses all 2n
elements, the processing time will be slow. If more
execution units work in parallel, the rendering time
can be reduced proportionally with the number
parallel execution units.
The other main drawback of image filtering is
memory accessing. Filter algorithms need many
memory reads. Current arithmetic processors can
process data significantly faster than fetching data
from the main memory. For realizing a filter
algorithm, we have to read 2n pixels for one result.
Memory bottleneck can be attacked by cache
memories. For the best performance, the required
cache size is
(min(image width , image height) + mask size - 1) *

(mask size - 1)*(pixel data size) .
Unfortunately, this number can be rather high.

Algorithm
Filtering performance can be improved by better
resource distribution. This solution is similar to
pipelining. To reach this goal, one pixel calculation
should be decomposed into many small stages. A
possible solution is the inverse calculation, when the
effect of a pixel is simultaneously distributed to all
pixels that might be affected, instead of gathering the
effects of pixels that might affect a certain pixel
[Had01]. In the distribution approach, the effect of
the pixel of the mask center is calculated onto other
elements of the mask. Thus one calculation cycle is
reduced from 2n to 1. To increase processing speed,
each element of the mask must be a processing unit.
To implement this algorithm, we should store the
temporary results and the final value is computed
from these temporary values. The temporary pixel
information can be stored in a pipe, which can be
realized by a configurable shift register. A shift
register can be implemented in hardware much more
easily than a full access memory. Full access
memories have many wire crossings and wires are
very long. Shift registers do not have many wire
crossings and the average wire length is short.

Architecture
To take these facts into consideration, we have
designed a new hardware architecture, which is called
the Inverse Post Filter. It has basically four different
parts: an input processing unit, an output processing
unit, an execution mask unit and a shift register
array. Practically all units are parts of a long data
pipe. The beginning of the pipe is the input
processing unit, which reads and processes the raw
pixel data from the video memory, including the z-
buffer value and the pixel color information. The shift
register array only stores data and shifts this data at
each clock cycle. The execution unit calculates
temporary results. At the end the output processing
unit calculates the final result from the temporary
data.

Figure 4. Inverse Post Filter architecture.
In the following subsections each unit is described in
detail, and an example is presented, in which the
execution mask size is only 3x3.

3.1.1 Input/Output Processing Unit
These two units are very similar, but their functions
are basically different. Input processing unit fetches
the required data from the video memory. Moreover,
it sets initial values of the temporary data. For
example, this data can be a pixel color or the radius
of the depth of field. At the end of the pipe the output
processing unit calculates the final result from the
calculated data.

3.1.2 Shift Register Array
The main function of the shift register array is storing
data, which is used in one of the following clock
steps. The number of register pipes in the shift
register is one less than the number of rows in the
filter mask. Only the first element of the pipe can be
written and only the last element can be read at each
clock cycle. The rendering target can be large, thus
we must use a long configurable shift register, in
order to avoid wasted step cycles. For example, if the
inverse post filter has a 1600 stage long fixed shift
registers and the rendering target is only 320, then
1280 cycles will be wasted, which is a great deal of
unnecessary wasted time. This problem can be solved
by a configurable length shift register.

Execution Mask
Unit

Shift Register Array

Input processing

Output processing

Video Memory

The main idea to construct a configurable length line
is based on the fact that all integer numbers can be
expressed as the sum of exponents of two. Thus the
shift register is made from exponents of two length
stages (1, 2, 4, 8 … length stages). Each stage can be
disconnected (see Fig. 5); in this case the data does
not enter into that stage. When the stage is connected
the total length is increased by the length of the stage.
Thus a shift register pipe can be configured with only
logarithm of the maximum line length number of
switches.

() peLengthOfPiN switches 2log=

Figure 5. Configurable shift register.

3.1.3 Execution Mask Unit
The execution mask unit is an image processing mask
(see Fig. 6). At each mask position there is an
execution processor. The center position is special
since it affects others in inverse processing. Center
position data can be read by others and use this
information to calculate their temporary data.

Figure 6. Execution unit mask.
One execution unit is similar to a pixel shader unit. It
has an arithmetic processor, a temporary memory, a
constant memory, center pipe data and own pipe data.
The processor has full access to its own pipe data, but
the data of the center position pipe is read only to
access all mask positions. The processor calculates
the filtered value and writes it into its own pipe data.
Each processor has a unique temporary memory to

create some intermediate calculation. Thus this
memory is readable and writeable. The processor can
be only a simple ALU processor unit or a complete
processor with flow control. Each processor has the
same program code with the difference of constant
values that determine the position of the mask or the
distance from the center position.

Figure 7. One execution unit.

4. ADDITIONAL CALCULATIONS
Performance Calculations
The performance of the inverse post filter is difficult
to analyze since it depends on the complexity of the
algorithm in the execution mask unit, processor speed
and memory speed. Each of these factors can be the
bottleneck of system. Thus we can provide only a
theoretical calculation.

At first suppose that the video memory is the
bottleneck. It means that the execution unit can
process data in one clock cycle. Current video cards
have about 270-320 MHz DDR RAM that has 128bit
or 256 bit memory interface. Thus the peak
bandwidth is 20 Gbyte per second. Moreover,
suppose that the rendering target dimension is
1600x1200 and it uses 32bit color and 32bit z-buffer
information. In this case each rendering surface must
be read, and only color information must be written.
Thus the accessed data size is approximately 22
Mbyte. It results that the total calculation time is
about 1ms (1000fps).

In fact if the execution algorithm is complex, the
video processor cannot provide fast enough
calculation speed. In this case the processing time is
directly proportional to the execution time of the
algorithm. At the previous example the speed will be
1ms*(algorithm time) if the core and memory clocks
are the same. Our aim is at least 20fps, which
corresponds to 50 ms calculation time. Thus a
realistic time for post filter calculation is about 20-30
ms, which means 20-30 clock cycles. This time
would be enough even for 80-120 instructions if the
resolution was only 800x600. With this instruction
number, quite sophisticated algorithms can be
implemented.

Processor of
Execution Unit

Temporary

Memory

Constant
Memory

Center
Pipe
Data

Own
Pipe
Data

Program Code

register

register register

register register register register

Configurable switch
(opened or closed)

Mask
point

Mask
point

Mask
point

Mask
point

Center
point

Mask
point

Mask
point

Mask
point

Mask
point

Shift
Register
Array

Output

Input

Further Architecture Solution
The bottleneck of a complex post filtering algorithm
is the processor, which means that the memory is not
used in many clock cycles. Thus rendering and post
filtering are worth executing in pipeline. In this case
the frame rate is raised, but the rendering latency can
still be high. For the human observers, 20-25 fps
speed is the minimum requirement. However, long
latency can result in large reactions times, up to 20-
100 ms, which corresponds to 50-10 fps.

The mask size is important for many visual effects. If
the mask size is small, effects will be less spectacular,
because the maximum distance between two pixels,
which are affected together, is small. On the other
hand, too large mask size requires a huge shift
register and many processor units.

To reduce the number of execution units, one unit can
execute data at more than one mask position.

To reduce the shift register length, the length of the
last stage cannot be an exponential of two, thus the
last stage length is calculated from the following
formula.

  12
1),min(

)(log 2 +−=
−+=

sizesizezelastloopsi
masksizeheightwidthsize

where width and height are the width and the height
of the maximum render target. Moreover, lastloopsize
is the length of last stage. Thus if the maximum
render target size is 1600x1200 and masksize = 17,
then size = 1216 and lastloopsize = 1216-1024+1 =
193. Thus last stage size is reduced from 1024 to
193.

Another possibility to reduce the shift register size is
decreasing maximum length of the shift register. If
the whole render surface is rendered in four parts,
then the maximum shift register length is a quarter of
maximum length plus the mask size and minus one.
However, in this case the execution has an overhead,
which is equal to the mask size minus one at each
row. Using the previous example, the shift register’s
maximum size is 416 and the overhead is
 (2*(17-1))*(4-1)*1600 = 153600

stages. Note that this is only 7,88% overhead, but this
solution needs about a quarter of the shift register
memory.

Filter for Image Processing
Edge detection, blur filters and many other filters can
be realized with the mask filter. Each mask position is
a number, which determines the weight of the
position. For example, a simple edge detection mask
is shown in Figure 8.

0 -1 0

-1 4 -1

0 -1 0
Figure 8. Example of edge detections.

To realize this algorithm on the inverse post filter
hardware, at first the input processing unit should be
activated. It loads pixel color from render buffer into
its pipe stage, allocates tmpColor and tmpWeight, and
fills up these values from the video and constant
memories. The output processing unit multiplies
tmpColor with tmpWeigth to get the weighted color.
The programming code of this algorithm is very
short; it is presented in Figure 9. The positionWeigth
is preloaded into the constant memory, and it contains
the mask weight.

tmpColor += centerColor * positionWeight;
tmpWeight += positionWeigh

Figure 9. Execution unit program code of mask
filtering.

5. DEPTH OF FIELD
There are many solutions for the calculation of the
depth of field (DOF), but the most of them are too
slow to use in real-time computer graphics. In real
time rendering accuracy is not so important if there
are no objectionable artifacts, and the speed is the
primary goal.

Potmesil and Chakravarty [Pot81a] were the first to
introduce a DOF algorithm in computer graphics.
This algorithm is a linear postfiltering one, and uses
RGB and Z depth for to compute the final image. The
main disadvantage of this approach is that filtering
does not recognize objects partially blocking the
CoC’s (“circle of confusion”) effect. This partial
occlusion can cause blurry backgrounds to affect
sharp foreground objects.

Potmesil and Chakravarty’s method is not accurate in
many cases. Thus there were many attempts to create
a fast and accurate DOF method. Cook, Porter, and
Carpenter [Coo84a] implemented a distributed ray
tracing algorithm. Haeberli and Akeley [Hae90a]
created an accumulation buffer to provide hardware
anti-aliasing, and it can also be used for DOF effects.
Shinya [Shi94a] adapted the distributed ray tracing
idea and converted it into a postfiltering process.
Fearing [Fea96a] introduced an importance ordering
algorithm to recalculate the DOF effect only at the
relevant part of the image.

DOF with Inverse Post Filter
The aim of the proposed algorithm is to realize a fast
depth of field algorithm without visual artifacts. The

following algorithm executed by the inverse post
filter hardware meets these requirements.

The input processing unit calculates the depth of field
radius (CoC) and the weight of CoC, which is
reciprocal of area of the circle. Moreover it clears the
weight of the pixel and register of the final color
value.

Name Size IPU op.

Color 48bit clear

ColorWeigth 8bit clear

AreaWeigth 8bit calculate

Radius 8bit calculate

OriginalColor 24bit copy

Z-Value 32bit copy
Figure 10. One stage of Pipe data. Name, size in

bit and input processing unit operation.
The code has to check two main conditions. The first
one corresponds to the classical solution. If the center
point is nearer than the actual mask point, then the
center point affects the actual point for sure. If only
this condition was used, artifacts would occur at the
borders of those objects which have different CoCs
size. In this case the blur of objects will not be
continuous, because at one part of the border the
foreground and the background objects’ weights are
about 50-50%, and at the other side these weights are
100%-0%. This creates a strongly noticeable visual
artifact for the human eye.

if (centerZ <= positionZ) {
 if (curDistance <= centerCoCRadius)) {
 tmpColor += centerColor * areaCenterWeight;
 tmpWeight += areaCenterWeight;
 }
} else if (positionCoCRadius < curDistance) {
 tmpColor += centerColor * areaPositionWeight;
 tmpWeight += areaPositionWeight;
}

Figure 11. Execution unit program code.
In the programming code (see Fig. 11) the second
conditions solves this problem. Thus the background
object affects the foreground object with CoCs of
rendered point. This method is still not fully accurate,
but do not create noticeable artifacts.

The centerZ, centerColor, centerCoCRadius and
areaCenterWeight are data of mask center position.
The centerZ is the Z-buffer value, Color is the color
value, centerCoCRadius is the CoCs value,
areaCenterWeight is a weight, which is calculated
from area of CoCs. Position prefix values are the data
of calculated position. More over their meaning are
similar to center prefix values. The centerZ,
positionZ and centerColor are data from the pipe, and

these data came from the rendering target. The
positionCoCRadius, centerCoCRadius,
areaCenterWeight and areaPositionWeight are
provided by the input processing unit. curDistance is
the mask position depended constant. The tmpColor
and tmpWeight are calculated for the output
processing unit. At the end, the output processing unit
computes the final pixel color from tmpColor and
tmpWeight.

Aliased CoC causes another visual artifact, because
there is a sharpness line where CoC size changes.
This effect is similar to the artifacts of bilinear
filtering. Therefore we used a dithered radius in input
processing. Another possible solution can be the
consideration of the border of the circle.

Figure 12. Two examples of Depth of Field
algorithm with dithered radius, fuselage is in

focus. Texture filtering is only nearest position to
stress the DOF effect.

This algorithm consists of at most four instructions,
and if it can be executed in five clock cycle, then the
example of section 5 (1600x1200x32, 310MHz DDR
RAM) can be processed in at most 5ms (200fps).

Figure 13. Examples of Depth of Field algorithm.
Original, CoCs size and final images.

6. CONCLUSION
This paper presented a hardware architecture, which
can execute image filtering and camera effect
algorithms. The hardware is called the inverse post
filter, and uses shift registers to cache the temporary
information. We also proposed a method to
dynamically configure the shift register line length.

Figure 14. Examples of Depth of Field algorithm.
Original, CoCs size and final images.

This paper also proposed a fast depth of field
algorithm, which do not have objectionable visual
artifacts. This hardware also is capable to compute
motion blur effects. It is more complex than the depth
of field, because it needs pre-calculation at each pixel
to determine the motion information of that point.
The inverse post filter programming code is also
longer. If depth of field and motion blur are used
together, it can be realized by a common inverse post
filter program.

7. ACKNOWLEDGMENTS
This project has been supported by the Slovene-
Hungarian Action Fund (SLO7/01) and by OTKA
(T029135).

8. REFERENCES
 [Bur81a] Burt, P.J. Fast filter transforms for image

processing. Computer Graphics, Image
Processing, 6:20-51, 1981.

[Coo84a] Cook, R., Porter, T., and Carpenter, L.
Distributed Ray Tracing. Computer Graphics
(SIGGRAPH), 18(3):137-145, 1984.

[Fea96a] Fearing, P. Importance ordering for real-
time depth of field. In Proceedings of the Third
International Conference on Computer Science,
pages 372-380, 1996.

[Had01] Markus Hadwiger, Thomas Theußl, Helwig
Hauser, M. Eduard Gröller, "Hardware-
Accelerated High-Quality Filtering on PC
Graphics Hardware". In Proceedings of Vision,
Modeling, and Visualization 2001, November
2001, June 2001, Stuttgart, Germany, pp. 105-112

[Hae90a] Haeberli, P. and Kurt, A. The
Accumulation Buffer: Hardware Support for High

Quality Rendering. Computer Graphics
(SIGGRAPH), 24(4):309-317, 1990.

[Mic02a] Microsoft DirectX help, 2002.
www.microdoft.com/directx

[Mul00a] Mulder, J. D., and Liere, R. Fast
Perception-Based Depth of Field Rendering,
2000.

 [Pot81a] Potmesil, M. and Chakravarty, I. A Lens
and Aperture Camera Model for Synthetic Image
Generation. Computer Graphics (SIGGRAPH),
15(3):297-305, 1981.

[Szi02a] Szijarto, G. Texture Filtering with Summed
Area Table in Hardware Rendering, First
Hungarian Computer Graphics and Geometrics
Conference, 2002.

[Szi95] Szirmay-Kalos, L. Theory of Three-
Dimensional Computer Graphics, Publishing
House of the Hungarian Academy of Sciences,
1995.

[Shi94a] Shinya, M. Post-filtering for Depth of Field
Simulation with Ray Distribution Buffer. In GI,
pages 59-66. Canadian Information Processing
Society, 1994.

