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ABSTRACT

This paper describes a method of symplectic ray tracing for visualizing non-linear dynamical systems. Sym-
plectic ray tracing is simply an extended version of the ray tracing techniques commonly used to generate
computer graphics. However, high performance in analyzing non-linear dynamical systems is achieved by
applying Hamiltonian dynamics, symplectic numerical integration, and automatic differentiation. The key
characteristics of this method are the capability to simulate any number of dimensions, numerical error esti-
mation, and code re-usability. This paper also demonstrates some visualization results for non-linear optical

phenomena computed by symplectic ray tracing.
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1. INTRODUCTION

Non-linear ray tracing is a natural extension of tra-
ditional ray tracing for visualizing non-linear phe-
nomena. Black hole space-time has been visualized
[Yam89][Nol96][WeiO0][Kob01] by calculating the
paths of light rays according to Einstein’s general
theory of relativity [Mis73]. Inhomogeneous space
has been visualized [Sai93][Sta96] by applying ge-
ometric optics. Equations of dynamical systems and
other general curves have been utilized to describe
curved light rays [Gr&95], while multi-layer approx-
imation of the space has been used to visualize mi-
rages and Newtonian rings [Ber90][Dia94][Hir99].
However, some problems remain. First, no gen-
eral approach to visualizing these phenomena has
yet been proposed. For each problem, a different
method has been required. Second, accuracy of cal-
culation results is not guaranteed because in conven-
tional studies, the classical Runge-Kutta method has
been used to solve the differential equations of light
rays. The method causes accumulation of numerical
errors for calculating the flow of dynamical systems

in long-term.

The author thus proposes a unique method to
overcome such problems by integrating ray tracing
[Whi80], Hamiltonian dynamics [Gol80], symplec-
tic numerical integration [San91][Yos93], and auto-
matic differentiation [Gri89][Iri88].

Symplectic numerical integration for Hamiltonian
dynamics has been developed by mathematicians
and physicists over the last few decades, but it has
not been applied to computer graphics. This paper
demonstrates that symplectic numerical analysis is
well suited to ray tracing simulation of various opti-
cal phenomena.

2. NON-LINEAR RAY TRACING

In this section, a process and its problem for extend-
ing traditional (linear) ray tracing to non-linear ray
tracing are presented. The following is a typical pro-
cedure of non-linear ray tracing. This algorithm is
commonly used in almost all related works.

1. Fix the location of an observer (the eye in Fig.
1);
2. fix the view screen of the observer (the center

plane in the figure);

3. trace the light rays until they cross the object
(the dotted curves indicate light rays);

4, obtain the color on the object surface at the
crossing point (the left plane indicates the ob-
ject);



Figure 1: Model of non-linear ray tracing. The hu-
man eye on the right represents an observer, and
the galaxies at the left represents an object arranged
in space. Although the non-linear light rays travel
along the dotted curves, the human eye perceives the
paths of the rays as solid lines. As a result, the ob-
server sees a warped image, indicated by the illus-
tration on the center.

5. render a pixel according to the color.
The main problem with this approach are as follows.

(a) For calculating the paths of light rays, which
physical models and equations should be intro-
duced?

(b) Which method should be introduced to solve
the equations? (The equations are typically
non-linear differential equations)

First of all, conventional ray tracing employs
straight lines to calculate the paths of light rays. The
equation of a straight line is given here in vector
form:

r=a-+ sv (D

where a is a starting point, v is a direction vector
and s is a parameter. Equation (1) can be rewritten
as follows for the components of the vectors:

T; = a; + 8vU; 2)

where z; is a component of vector r. By differen-
tiating twice, Eq. (2) can be rewritten as a form of
differential equation:
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Traditional ray tracing is thus a rendering technique
in which the path of a light ray is calculated by solv-
ing Eq. (3).

In an inhomogeneous transparent object, the
equation for a light rays is given by
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where n is the refractive index and the other vari-
ables are the same as in Eq. (3). Equation (4) is

derived from the Fermat’s principle in geometric op-
tics. When n is constant, Eq. (4) reduces to Eq. (3).
In black-hole space-time, the equation for a light
ray is given by
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where I“fcl, called the Christoffel symbol, is a func-
tion used to calculate the curvature of space and the
other variables are again the same as in Eq. (3).
Equation (5) is known as the geodesic equation.
When the gravitational force of a black hole is very
weak, Ffd becomes zero and Eq. (5) also reduces to
Eg. (3).

As shown above, past studies have adopted equa-
tions such as the geodesic equation, the Helmholtz
equation, the Eikonal equation, and so on. How-
ever, from a mathematical viewpoint, we know that
most such equations can be represented in terms of
Hamilton’s canonical equation:
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where ¢; indicates the location component , p; in-
dicates the momentum of ¢; , and H is a Hamilto-
nian constructed from g; and p;. One purpose of this
paper is to generalize non-linear ray tracing by ap-
plying Eq. (6). Since this equation is applicable to
a great many types of dynamical systems, this ap-
proach can be used to solve problem (a).

To solve differential equations that describe a dy-
namical system numerically, the classical Runge-
Kutta method has been used widely in past studies.
The classical fourth order Runge-Kutta method is
very popular and applicable to solving any differ-
ential equation. However, it does not account for the
properties of the differential equations to be solved,
and the accuracy of the results is not guaranteed.
Thus, in this paper, the author introduces symplectic
numerical integration to solve Hamilton’s canonical
equation. Because symplectic numerical integration
considers the so-called “symplecticness”, which is
a property of canonical map preserving invariants,
good numerical results can be obtained[Hai02]. In
other words, existence of suitable method for solv-
ing the equation can be used to overcome problem

(b).

3. GEOMETRIC OPTICS BY
HAMILTONIAN DYNAMICS

In accordance with Hamiltonian dynamics, the
equations of motion of a light ray are obtained
from a scalar function, which is referred to as a
Hamiltonian. For example, the Hamiltonian that de-
scribes the uniform motion of a particle in three-
dimensional space is given as

1
H = (rz+p,+p) ™)



where (pz, Py, p-) denotes momentum of the parti-
cle. Since Eq. (7) leads to equations of a straight
line, we can introduce Eq. (7) as the Hamiltonian
for calculating the paths of light rays in ordinary flat
space. In other words, the Hamiltonian of Eq. (7)
can be applied to a conventional ray tracing.

In an inhomogeneous transparent object such as a
quantity of air above the ground, the Hamiltonian is
given as

1 L
H = on(z,y,2)(p; + Py +152), (8)

where n(z,y,z) is the refractive index at point
(z,y,z). For example, when the temperature in-
creases with increasing height above the earth’s sur-
face, the path taken by a light ray in the atmo-
sphere is as shown in Fig. 2a [Ber90]. This phe-
nomenon can be simulated by the Hamiltonian of
Eq. (8) as shown in Fig. 2b. In numerical simulation
with this Hamiltonian, the light rays are traced in
6-dimensional phase space: Three components are
location coordinates and the other three are for the
momentum. Note that the momentum components
are not used for rendering on the display.

From the general theory of relativity, the Hamil-
tonian for spherically symmetrical black-hole space-
time is given as
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where (¢,7,0,¢) are the components of a set of
four-dimensional polar coordinates, (ps, pr, Po, Ps)
denotes the corresponding momentum components,
and 7y, which is referred to as the black-hole ra-
dius, corresponds to the mass of the black hole. The
paths of the light rays in this case according to the
Hamiltonian are shown in Fig. 3. This illustrates the
so-called ”gravitational lens” effect. The difference
between a gravitational lens and an optical lens is
that the gravitational lens has no focus. More gen-
erally, the following formula can be used to derive
other Hamiltonians for black-hole space-time. For
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Figure 2: (a) Path taken by light rays when the
temperature increases with increasing height above
earth’s surface (illustrated by Berger [Ber90]). (b)
This phenomenon is simulated by the Hamiltonian.

any answer g™ of the Einstein equation,

3
1
H=3 ;Og Tpip; (10)

is a Hamiltonian for the light rays.

Above mentioned Hamiltonians can be used for
non-linear ray tracing. By partially differentiating
each Hamiltonian, we can obtain the equation of
motion of non-linear light rays. However, obtaining
partial differentials for all components is trouble-
some work. Moreover, the resulting form of Hamil-
ton’s canonical equation can not always be solved
analytically. Next section gives how to overcome
such problems by numerical computation.

4. SYMPLECTIC INTEGRATION
AND AUTOMATIC DIFFERENTI-
ATION

Symplectic integration[San91][Yo0s93] is a numeri-
cal methods specifically designed for solving Hamil-
ton’s canonical equation. Over the last two decades,
this method’s usefulness has been confirmed in
many scientific fields. The essence is to preserve
conserved physical quantities such as the total en-
ergy of a system.

One of the simplest symplectic solvers is the fol-
lowing implicit Euler method:
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where 7 is the step size of the numerical approxi-
mation. The implicit Euler method has first-order
numerical accuracy, which is lower than the fourth-
order accuracy of the classical Runge-Kutta method.
However, the symmetric decomposition [Yos90] or
fractal decomposition [Suz84] method can be used
to construct an accurate formula of any order from
the first-order implicit Euler method. A fourth-order
implicit symplectic intergrator, which is constructed
from the implicit Euler method by applying the sym-
metric decomposition method, is used to solve the
differential equations in this paper.

Figure 3: Paths of light rays subject to the gravita-
tional convex lens effect.
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Figure 4: Left: classical Runge-Kutta method used to solve Hamilton’s canonical equation. The orbits of
the photons produce a divergent curve. Right: symplectic method used to solve same canonical equation.
The orbits of the photons produce a closed curve. The analytical solution of Hamilton’s canonical equation
indicates the correctness of the graph on the right.
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Figure 5: Left: value of the Hamiltonian obtained by the classical Runge-Kutta method. The Hamiltonian
increases with each time step. After 4500 time steps, the Hamiltonian continues to infinity with accumu-
lated numerical errors. Right: value of the Hamiltonian obtained by the symplectic numerical method. The

Hamiltonian does not diverge, as long as slight vibrations are assumed negligible.

Figure 4 shows a very simple example comparing
symplectic and non-symplectic solvers. Each curve
in the (p — ¢) plane indicates the orbit of a light ray
for the case in which H = pg(p + ¢ — 1). The
left graph shows the result obtained by the classi-
cal fourth-order Runge-Kutta method while the right
figure shows that obtained by the implicit fourth-
order symplectic method. Since analytical solutions
of the equation give closed curves [Nak94], the right
figure should be a correct result. Figure 5 shows the
values of the Hamiltonian that have to be preserved.
For the left graph, the Hamiltonian increased with
each time step and after the number of time steps
reached 4500, the Hamiltonian continued to infin-
ity with accumulated numerical errors. For the right
graph, the Hamiltonian did not diverge as long as
slight vibrations could be assumed negligible.

In this test case, the form of the Hamiltonian is
very simple, so it appears that there are no problem
with the symplectic numerical method. However, it
is hard to apply the formula of Eq. (11) to a com-
plex Hamiltonian. This is because implementing the
symplectic method requires all the derivatives of the

Hamiltonian. For example, the Hamiltonian in ax-
isymmetric space-time is given as
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where a corresponds to the angular momentum of
the black hole, p? = r2 + a?cos?§, and A = r? —
rgT + a?. For the above Hamiltonian, Mathematica
outputs the derivative with respect to 6 as follows:
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Implementation of such a complicated expression
would lead to mistakes and a slow computation
speed. The author’s solution to this problem is
to employ fast automatic differentiation techniques
[Gri89] (Iri88]. In this approach, we define a vector
(f(:9), 0 f(p, ), 0y f(p,q)). We also define the
operations of the vector. For example, addition and
multiplication are defined as follows:

(f7 Pf?a f) ( Pg7aqg)
= (f+9,0,f +0pg,0,f + 049)
(f,0pf,04f) % (9,009, 0q9)

= (f9,0,f x g+ f x 0pg,0,f x g+ f x Og9)

We now give an example of the calculation. For a
Hamiltonian H = pq, fast automatic differentiation
calculates

(p,1,0) x (¢,0,1)

@XQ,WXq+pX%%%qu+pX%®
(pg,1 xqg+px0,0xqg+px1)
(
(
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H,0,H,8,H).

As shown above, the operations and partial differen-
tiations are calculated simultaneously without trun-
cation errors.

S. IMPLEMENTATION AND VISU-
ALIZATION EXAMPLES

In symplectic ray tracing, an “n-dimensional ray-
tracing” means a tracing of light rays in 2n-
dimensional space-time, constructed with n location
components and n momentum components. For ex-
ample, a 1-dimensional symplectic ray tracing traces
light rays in 2-dimensional phase space.

Ordinary ray tracing: 3- or 4-

dimensional case
The Hamiltonian for ordinary space is given by Eq.
(7). According to the special theory of relativity, Eq.
(7) can be extended to four dimensional space-time
in the form:
1 .
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where p; indicates the momentum of time. In polar
coordinates, the Hamiltonian takes the form:

1 1
H:;ﬁ+zm+ 9 -p}), (14

where (pr, pe, pg) denotes the momentums for polar
coordinates (r,8,¢). Equations (7), (13), and (14)
are for light rays traveling straightforwardly through
the space. These Hamiltonians yield the result illus-
trated in Fig. 6. The original picture in Fig. 6 was
taken by NASA’s Hubble Space Telescope ! (credit:
D. Figer and NASA).

Black-hole space-time: 4-dimensional

case

In this section, black-hole space-time refers to a
four-dimensional space with a black hole at the ori-
gin. According to the general theory of relativity, we
derive the Hamiltonian for spherically symmetrical
space-time:

_ AN Pt2 Tg pr2
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where (t, 7,6, ¢) denotes the components of a set of
four-dimensional polar coordinates, (p, pr, Do, Po)
denotes the corresponding momentum components,
and rg, which is referred to as the black-hole ra-
dius, corresponds to the mass of the black hole. The
Hamiltonian of Eq. (15) generates the result shown
in Fig. 7a. This phenomenon is known as the grav-
itational convex lens effect. When an observer turn
his or her face toward the opposite direction from
the black hole, the gravitational concave lens effect,
which is illustrated in Fig. 7b, is observed. This
case shows that the whole universe is observed at
a location close to the black hole, positioned to the
rear of the observer. The full details of both visual-
ization results have been given by, for example, Ne-
miroff’s paper [Nem92] with computer-generated il-
lustrations.

Figure 6: Symplectic ray tracing example for flat,
ordinary space-time.

Thttp://oposite stsci.edu/pubinfo/pr/1999/30/index.html
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Figure 7: (a) Visualization example for a spheri-
cally symmetrical black hole. The bright galaxies
are warped by the huge gravitation of the black hole.
(b) Visualization example for the gravitational con-
cave lens effect. The image shows that the whole
universe is observed at a location close to the black
hole, positioned to the rear of the observer.

Figure 8 is an example by using colors, tex-
ture, and volume rendering. The background im-
age shows global information, and some of the ob-
jects show local information. The transparent board
is rendered by a volume rendering technique taking
into account the gravitational force. As shown in
this case, symplectic ray tracing inherits many tech-
niques from conventional ray tracing.

Mirages: 3-dimensional case

For simulation in 3-dimensional space-time, we
construct a world model with an omni-directional
image as shown in Fig. 9a. This image was taken by
the HyperOmniVision [Yam93], which is an omni-
directional camera (Fig. 9b). In inhomogeneous
transparent objects such as a quantity of air above

Figure 8: Information visualization based on tex-
ture mapping, color, and volume rendering. (a) The
spacetime contains no black hole. (b) The spheres
and the board are colored by taking into account the
gravitational force.

the ground, the Hamiltonian is given as
1
H=—on(z,y,2)(p: +p, +p2),  (16)

where n(z,y,z) is the refractive index at point
(z,y,z). The equation of motion derived from Eq.
(16) is mathematically equivalent to Eq. (4). When
n = 1, Eq. (16) generates the result shown in Fig.
10a. This is a normal view of a park in Nara, Japan,
without the mirage.

On the earth, the function of the refractive index
can take many forms. For example, when the tem-
perature decreases with increasing height, the func-
tion can be modeled as [Sai93]:

n = 0.85 — 0.32% + 0.03 cos(3mx). (17)

Some kinds of mirages have been classified and vi-
sualized [Ber90]. Equation (16) is applicable to vi-
sualizing all of them. A visualization example is
shown in Fig. 10b. Light rays curved by mirages
generates this strange picture. With a drastic in-
crease in the ground temperature, the surface of the
earth behaves like a mirror.
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Figure 9: (a) Omni-directional image. (b) An omni-
directional camera, “HyperOmniVision™.

Figure 11 shows another kind of mirage. In this
case, the function of the refractive index is modeled
as:

n = 0.85 4 1.3(z + 1.2)> 4+ 0.03 cos(3mz). (18)

There is a deer at the bottom of Fig. 11a, while in
Fig. 11b, there is a deer at the bottom and a ghost
of the deer at the top. This mirage, called Vince’s
phenomenon, is caused when air near the ground is
cooler than the air higher up.

6. CONCLUSION

The author has introduced the concept of symplec-
tic ray tracing, a new approach to visualizing natu-
ral phenomena. Symplectic ray tracing enables lo-
cal error estimation, global numerical error control,
and quick implementation by employing Hamilto-
nian dynamics and symplectic numerical analysis.
This paper has demonstrated the numerical accuracy
of this approach by a simple test and produced ren-
dering results. The proposed method could be used
to visualize phenomena based on non-linear light
rays with high accuracy for long-term computation.
Although this method cannot be applied to phenom-
ena that are not described by a Hamiltonian, it does
provide sufficient generality for visualizing natural
phenomena.
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