
A Formal Framework Approach for Ray-Scene
Intersection Test Improvement

J. Revelles

Dpt. LSI
E.T.S.I. Informática

University of
Granada

 18071 Granada,
Spain

jrevelle@ugr.es

M. Lastra
Dpt. LSI

E.T.S.I. Informática
University of

Granada
18071 Granada,

Spain

mlastral@ugr.es

R. Montes
Dpt. LSI

E.T.S.I. Informática
University of

Granada
18071 Granada,

Spain

rosana@ugr.es

P. Cano
Dpt. LSI

E.T.S.I. Informática
University of

Granada
18071 Granada,

Spain

pcano@ugr.es

ABSTRACT

The ray-scene intersection test is the most costly process when a scene is rendered. This process may be
improved using any strategy to be able to speed-up it. Generally, any strategy used is based on the building of a
spatial indexing in the scene domain or in the rays domain. However, there is no theory to formalize these
techniques. In this paper, a formal framework approach for this technique is proposed.

 Keywords
Graphics object theory, spatial indexing, ray casting, and acceleration techniques.

1. INTRODUCTION
Usually the programs based on ray tracing include
acceleration techniques in order to improve the ray-
scene intersection test. In theses terms, a lot of effort
has been employed in the development of efficient
solutions to the problem of ray-scene intersection
test. However, there is no theory that formalizes the
behavior of a generic optimizer and the techniques
used in order to improve the intersection test process.
In general, these techniques are based on some kind
of spatial indexing.

 In this paper we propose an abstract model of a
generic optimizer as a function which selects a set of
candidate objects for a given scene and a given ray.
We also propose a model of optimizer based on
spatial indexing. All of these concepts will be
presented in order to establish theoretical premises to
compare the efficiency of ray-scene intersection test
when a spatial indexing technique is used.

2. CONCEPTS, DEFINITIONS
AND NOTATIONS
We focus our framework on optimizers that improve
the ray-object intersection test using a spatial
indexing scheme.

This scheme is a representation of the spatial
distribution of scene objects. It is composed of a set
of voxels, which will be called here volumetric
objects. Each volumetric object may contain
information of a subset of scene objects, which are
contained in it. The ray-object intersection test
performs the test with each volumetric object and
returns a list of scene objects.

To formalize the optimizer behavior, we use the
graphic objects theory [Tor92, Tor93] and a previous
work about formalization of acceleration techniques
[Rev01].

Graphic Object Theory
A graphic object o is a pair (µ,α), in which: µ is a
function called presence function defined as µ : R3 →
P, where P is a presence domain, and α is a function
called aspect function with domain in R3 and range in
T, where T is called aspect domain.

Where P= {0,1}⊆ R. The aspect domain T is not
defined because it is not necessary in the current
framework. The set of all graphic objects is denoted
by O.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WSCG POSTERS Proceedings
WSCG’2003, February 3-7, 2003, Plzen, Czech Republic.
Copyright UNION Agency – Science Press

For each graphic object o⊆ O, we define the spatial
region Vol (o) ⊆ R3 as the set of all points p⊆ R3
such that µ (p)=1. Formally it is:

}1)(|{)(, 3 =∈=∈∀ ppoVolOo µR (1)

Where µ is the presence function of o.

The null or empty graphic object, denoted by φ, is the
unique graphic object satisfying the following
property

0)(3 =∈∀ pp µR

Where φ=(µ,α). This graphic object fulfils Vol(φ)=Φ
(Φ denotes the empty set of points). The presence
domain satisfies the properties of a boolean algebra.

3. OPTIMIZER ABSTRACT
CHARACTERIZATION
Rays
We can define a ray as a graphic object. A ray r is a
graphic object (µ,α) such that exists a unique point
q∈ R3, and a unique direction vector u∈∇ such that:

 +=∈∃

=∈∀
+

otherwise
if

0
|1

)(3 tuqpRt
pp µR (5)

Where R+⊆ R is the subset of real values strictly
greater than zero, and ∇ is the set of unit length
vectors in R3. The point q is the origin of the ray, and
the vector u is the direction of the ray. The set of all
rays is denoted by R.

We define the set R* as R*= R∪ {∞}, where ∞ is any
element that it is not included in R. This value is used
to denote an infinity distance. By definition, any
value x∈ R holds x<∞

Intersecting Rays and Objects
Let r∈ R, be a ray, and let o∈ O be a graphic object,
we define S(r,o) as follows:

}1)(|{),(=+∈= tuqtorS µR (6)

Where is the presence function of o, q is the origin of
r, and u is the direction vector of r. When S(r,o)≠Φ,
an intersection occurs between the ray and this
graphic object. Function S returns the set of distances
from the origin to all points in the ray which belongs
also to the volume of the object. In fact, we only need
the lowest one of these real values.

We define the function I with the same domain of S
and values in R*. For each r∈ R, and o∈ O it holds:

Φ=∞
Φ≠

=
),(if
),(if)),(inf(

),(
orS
orSorS

orI (7)

Where inf denotes the infimum of a set of real values,
which is always defined even for graphics object
whose volume is not a closed region.

The main interest of the above definitions consists of
determining which graphic objects in a given scene
are intersected by a given ray. In what follows, we
will use the symbol S to mean the set of all scenes.

Objects Intersected by a Ray
Let r∈ R be a ray, and let s∈ S be a scene, we define
C(r,s) as the set of graphic objects intersected by r, as
follows:

}),(|{),(∞≠∈= orIsosrC (8)

C(r,s) will contain the graphic objects in s intersected
by r. Therefore, the condition C(r,s)⊆ s. We also want
to know the nearest intersected graphic objects with
respect to the ray origin. We also define Cn(r,s) as the
set of nearest graphic objects intersected by r as
follows:

)},()',(|'
),(|{),(

orIorIso
orIsosrCn

<∈∃/∧
∞≠∈= (9)

The expression Cn(r,s)∈ s is also satisfied.

Strict Optimizer
Let A be a function with domain in R×S and values in
S. A is a strict optimizer if and only if it fulfils the
following condition:

ssrAsrCsr ⊆⊆∈∀∈∀),(),(,, SR (10)

In other words, the best optimizer is one which holds
C(r,s)=A(r,s), whereas the worse optimizer is one
which always holds A(r,s)=s, that is, it always yields
the whole scene.

Optimizer
Let A+ be a function with domain in R×S and values
in S. A+ is an optimizer if and only if fulfils the
following condition:

ssrAsrCsr n ⊆⊆∈∀∈∀ +),(),(,, SR (11)

It is easy to prove that any strict optimizer is an
optimizer by using the relation Cn(r,s)⊆ C(r,s) which
always holds.

Spatial Representation
Let m be a function with domain in S and values in ε,
this function m is a spatial indexing method (from
now on SIM) if and only if for any given scene
s={o1,o2,…,on} and any given spatial representation
e={v1,v2,…,vk} the following equality is satisfied:

tt
k

j
j

n

i
i vo

11 ==

⊆ (12)

Let r∈ R be a ray, let s∈ S be a scene, and let e∈ε be a
spatial representation, we consider that when an
intersection occurs between an object o∈ s and a
volumetric object, this volumetric object is also
intersected by the ray r. This set is noted as Ψ(r,s,e).
This set is more formally defined as follows:

}
/|{),,(

φφ ≠∩∧≠∩
∈∃∈=Ψ

rvov
evsoesr

 (13)

Obviously, Ψ(r,s,e) ∈ s is always satisfied.

4. SPATIAL INDEXING
METHODS
Nowadays, it is possible to propose a SIM
classification taking into account the strategy used to
build them. In this purpose, we can propose three
alternatives to describe a SIM.

Basic SIM
This strategy is useful for spatial indexing which can
be built by a unique call to SIM procedure. That is,
from a given scene, this procedure will return a set of
volumetric objects for the whole scene satisfying the
expression (12).

Recursive SIM
This strategy is proposed for scenes which have more
complexity (many scene objects). A way to get the
volumetric objects is applying some scene
partitioning strategies. Thinking in it, two ways to get
this purpose will be introduced. Both methods are
based on a recursive technique to manage to do the
purpose above mentioned. These methods are
proposed lower.

4.2.1 Recursive SIM Using a Prefixed
Bounding Box
This strategy is based on a recursive procedure. In
this SIM, a termination criterion can be one of these:
When no graphic object totally o partially is allocated
in the prefixed bounding volume, when a known
recursive depth level had been reached. This value is
an integer number greater than zero. And when the
number of graphic objects allocated into the prefixed
bounding volume is less or just as known borderline
value. This concept is called maximum number of
objects allocated. This value is set greater than zero.

Therefore, a recursive SIM of this category depends
on four parameters:

• Prefixed bounding volume which has allocated
the scene objects.

• Basic SIM used in order to partition the prefixed
bounding volume.

• Maximum recursive depth level.

• Maximum number of objects allocated into a
volumetric object.

In order to formalize it, and to minimize the notation,
we introduce a function ρ. This function associates a
SIM for each four parameters above defined.
Therefore, the domain of ρ is O×M×N×N and its
range is M.

The formal definition of function ρ is based on a
condition. Let q be a basic SIM, let v be a graphic
object, and let l and t be integer values satisfying l≥0
and t>0. In these terms, m=ρ (v, q, l, t) if and only if
for any scene s the following equality is satisfied:

 ≤∨=
=

=

otherwise)(

)'(0if}{
)(

1
t

n

i
i sm

tsCardlv
sm (14)

where:

• s’ = {o∈ s / o ∩ v ≠ φ }.

• mi = ρ(vi, q, l-1, t).

• { v1, v2, …, vn } = q(s).

4.2.2 Recursive SIM Using a Classification
Function
In this case, we start having into account the idea to
subdivide the scene into simpler scenes (a less
number of scene objects). In a first step, a
classification of the scene into subscenes is done. For
each subscene, an arbitrary bounding volume is set.

The subdivision of the scene into subscenes is carried
out using a classification function. The domain of this
function is S and its range is P(S). ϒ is a classification
function if and only if the following equality is
fulfilled:

[] ssnisss
s

in ⊆=∀⇒=ϒ
,∈∀

...1},...,{)(1

S (15)

The set of all classification functions is denoted by C.

When a set of subscenes is computed by this kind of
SIM, it also must returns a bounding volume which
includes whole subscene it obtained. Therefore, this
SIM must join a function to compute this bounding
volume.
Let b be a function to compute the bounding volume
for a given set of graphic objects. This function has

 ≤∨=
=

=

otherwise)(

)(0if)(
)(

1
�

n

i
i sm

tsCardlsb
sm (17)

domain in S and range in O. For all scenes s∈ S, this
function fulfils the following expression:

)(sboso ⊆ , ∈∀ (16)

The set of all functions satisfying the above
expression is called B. Due to this SIM is recursive,
some parameters are necessaries in order to
determine when the process must stop. Recursive
depth has reached a known value. This value must be
greater than zero. A recursive SIM of this category
depends on the following four parameters:

• A classification function used to subdivide a
given scene into subscenes.

• A function to compute the bounding volume for
a given scene (set of graphic objects).

• Maximum recursive depth level.

• Maximum number of objects allocated into a
volumetric object.

Using a similar formalization than the previous
recursive SIM, we also introduce a function ρ’. This
function associates a SIM for each four parameters
above defined. Therefore, the domain of ρ’ is
O×B×N×N and its range is M..

The formal definition of function ρ’ is based on a
condition. Let ϒ be a classification function, let b be
a function to compute the bounding volume for a
given scene, and let l and t be integer values
satisfying l≥0 and t>0. In this terms, m=ρ’ (ϒ,b,l,t) if
and only if for any scene s the following equality is
satisfied:
where:

• mi = ρ’(ϒ, b, l-1, t).

• { s1, s2, …, sn } = ϒ(s).

Optimizer Based On Spatial Indexing
There are many different classes of optimizers. Our
attention will be focused on a sub-type or category.
This sub-type will be called optimizers based on
spatial indexing.

 Let A be an optimizer. A is an optimizer based on
spatial indexing if and only if the following property
is fulfilled:

When an optimizer of this category is implemented
the necessary algorithm to build m(s) must be
designed and implemented. After this, it is possible to
process a wide set of rays. From this set of voxels we
obtain the set of objects intersecting them. The
function Ψ models this algorithm.

5. AN OPTIMIZATION
EFFICIENCY MEASUREMENT
Using the above definitions and results, an
optimization efficiency measurement can be defined.

A way to get this measurement is to use a random
distribution of rays for a given optimizer, and for the
whole scene, and after this to compute the relative
gain in efficiency. This computation can be formally
expressed by introducing:

∫
∈

+
+ =

Rr

rdP
sCard

rsACardPsAM)(
)(

)),((),,((19)

where Card is the function which returns the number
of elements which are in a set, and P(r) is a
probability measure function which models the
probability distribution of the rays to be processed.

6. CONCLUSIONS AND FUTURE
WORKS
In this work, a formal model of optimizer is
proposed, and a model for optimizers based on
spatial indexing has been proposed. A measure
function to study the performances of any optimizer
with respect to other one was proposed.

As future work, we are planning to produce
definitions of concrete optimizers by applying this
formal framework. This measurement can be useful
to select the best optimizer. Moreover, it will also
allow comparing the performances between any two
optimizers.

7. ACKNOWLEDGMENTS
Special thanks to Carlos Ureña and Juan Carlos
Torres for their contributions to this work. This work
has been supported by a grant coded as TIC2001-
2392-C03-03 (Spanish Commission for Science and
Technology).

REFERENCES
[Rev00] J. Revelles, C. Ureña, M. Lastra. An

Efficient Parametric Algorithm for Octree
Traversal. Journal of WSCG 8(2), pp.212-219,
2000.

[Rev01] J. Revelles, C. Ureña. A Formalization of
Ray Casting Optimization Techniques. 11th
Spanish Conference on Computer Graphics
(CEIG’2001), pp.85-98. Girona (Spain) 2001.

[Tor92] J.C. Torres. Abstract Representation of
Graphics systems. Graphic Object theory. PhD
thesis, Dpt. of LSI. U. of Granada (Spain), 1992.

[Tor93] J.C. Torres, B. Clares. Graphics Objects: A
Mathematical Abstract Model for Computer
Graphics. Computer Graphics Forum, 12(5),
pp.311-328, 1993.

))(,,(),(
,,/!

smsrsrA
rsm

Ψ=
∈∈∀∈∃ RSM (18)

