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ABSTRACT 

The ray-scene intersection test is the most costly process when a scene is rendered. This process may be 
improved using any strategy to be able to speed-up it. Generally, any strategy used is based on the building of a 
spatial indexing in the scene domain or in the rays domain. However, there is no theory to formalize these 
techniques. In this paper, a formal framework approach for this technique is proposed. 
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1. INTRODUCTION 
Usually the programs based on ray tracing include 
acceleration techniques in order to improve the ray-
scene intersection test. In theses terms, a lot of effort 
has been employed in the development of efficient 
solutions to the problem of ray-scene intersection 
test. However, there is no theory that formalizes the 
behavior of a generic optimizer and the techniques 
used in order to improve the intersection test process. 
In general, these techniques are based on some kind 
of spatial indexing. 

 In this paper we propose an abstract model of a 
generic optimizer as a function which selects a set of 
candidate objects for a given scene and a given ray. 
We also propose a model of optimizer based on 
spatial indexing. All of these concepts will be 
presented in order to establish theoretical premises to 
compare the efficiency of ray-scene intersection test 
when a spatial indexing technique is used. 

2. CONCEPTS, DEFINITIONS 
AND NOTATIONS 
We focus our framework on optimizers that improve 
the ray-object intersection test using a spatial 
indexing scheme.  

This scheme is a representation of the spatial 
distribution of scene objects. It is composed of a set 
of voxels, which will be called here volumetric 
objects. Each volumetric object may contain 
information of a subset of scene objects, which are 
contained in it. The ray-object intersection test 
performs the test with each volumetric object and 
returns a list of scene objects. 

To formalize the optimizer behavior, we use the 
graphic objects theory [Tor92, Tor93] and a previous 
work about formalization of acceleration techniques 
[Rev01]. 

Graphic Object Theory 
A graphic object o is a pair (µ,α), in which: µ is a 
function called presence function defined as µ : R3 → 
P, where P is a presence domain, and α is a function 
called aspect function with domain in R3 and range in 
T,  where T  is called aspect domain. 

Where P= {0,1}⊆ R. The aspect domain T is not 
defined because it is not necessary in the current 
framework. The set of all graphic objects is denoted 
by O. 
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For each graphic object o⊆  O, we define the spatial 
region Vol (o) ⊆  R3 as the set of all points p⊆  R3 
such that µ (p)=1. Formally it is: 
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Where µ  is the presence function of o. 

The null or empty graphic object, denoted by φ, is the 
unique graphic object satisfying the following 
property 
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Where φ=(µ,α). This graphic object fulfils Vol(φ)=Φ 
(Φ denotes the empty set of points). The presence 
domain satisfies the properties of a boolean algebra. 

3. OPTIMIZER ABSTRACT 
CHARACTERIZATION 
Rays 
We can define a ray as a graphic object. A ray r is a 
graphic object (µ,α) such that exists a unique point 
q∈ R3, and a unique direction vector u∈∇  such that: 
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Where R+⊆ R is the subset of real values strictly 
greater than zero, and ∇  is the set of unit length 
vectors in R3. The point q is the origin of the ray, and 
the vector u is the direction of the ray. The set of all 
rays is denoted by R. 

We define the set R* as R*= R∪ {∞}, where ∞ is any 
element that it is not included in R. This value is used 
to denote an infinity distance. By definition, any 
value x∈ R holds x<∞ 

Intersecting Rays and Objects 
Let r∈ R, be a ray, and let o∈ O be a graphic object, 
we define S(r,o) as follows: 
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Where is the presence function of o, q is the origin of 
r, and u is the direction vector of r. When S(r,o)≠Φ, 
an intersection occurs between the ray and this 
graphic object. Function S returns the set of distances 
from the origin to all points in the ray which belongs 
also to the volume of the object. In fact, we only need 
the lowest one of these real values. 

We define the function I with the same domain of S 
and values in R*. For each r∈ R, and o∈ O it holds: 
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Where inf denotes the infimum of a set of real values, 
which is always defined even for graphics object 
whose volume is not a closed region. 

The main interest of the above definitions consists of 
determining which graphic objects in a given scene 
are intersected by a given ray. In what follows, we 
will use the symbol S to mean the set of all scenes. 

Objects Intersected by a Ray 
Let r∈ R be a ray, and let s∈ S be a scene, we define 
C(r,s) as the set of graphic objects intersected by r, as 
follows: 
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C(r,s) will contain the graphic objects in s intersected 
by r. Therefore, the condition C(r,s)⊆ s. We also want 
to know the nearest intersected graphic objects with 
respect to the ray origin. We also define Cn(r,s) as the 
set of nearest graphic objects intersected by r as 
follows: 
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The expression Cn(r,s)∈ s  is also satisfied. 

Strict Optimizer 
Let A be a function with domain in R×S and values in 
S. A is a strict optimizer if and only if it fulfils the 
following condition: 
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In other words, the best optimizer is one which holds 
C(r,s)=A(r,s), whereas the worse optimizer is one 
which always holds  A(r,s)=s, that is, it always yields 
the whole scene. 

Optimizer 
Let A+ be a function with domain in R×S and values 
in S. A+ is an optimizer if and only if fulfils the 
following condition: 
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It is easy to prove that any strict optimizer is an 
optimizer by using the relation Cn(r,s)⊆ C(r,s) which 
always holds. 

Spatial Representation 
Let m be a function with domain in S and values in ε, 
this function m is a spatial indexing method (from 
now on SIM) if and only if for any given scene 
s={o1,o2,…,on} and any given spatial representation  
e={v1,v2,…,vk} the following equality is satisfied: 
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Let r∈ R be a ray, let s∈ S be a scene, and let e∈ε  be a 
spatial representation, we consider that when an 
intersection occurs between an object o∈ s and a 
volumetric object, this volumetric object is also 
intersected by the ray r. This set is noted as Ψ(r,s,e). 
This set is more formally defined as follows: 

}
/|{),,(

φφ ≠∩∧≠∩
∈∃∈=Ψ

rvov
evsoesr

                  
 (13) 

Obviously, Ψ(r,s,e) ∈  s is always satisfied. 

4. SPATIAL INDEXING 
METHODS 
Nowadays, it is possible to propose a SIM 
classification taking into account the strategy used to 
build them. In this purpose, we can propose three 
alternatives to describe a SIM.  

Basic SIM 
This strategy is useful for spatial indexing which can 
be built by a unique call to SIM procedure. That is, 
from a given scene, this procedure will return a set of 
volumetric objects for the whole scene satisfying the 
expression (12). 

Recursive SIM 
This strategy is proposed for scenes which have more 
complexity (many scene objects). A way to get the 
volumetric objects is applying some scene 
partitioning strategies. Thinking in it, two ways to get 
this purpose will be introduced. Both methods are 
based on a recursive technique to manage to do the 
purpose above mentioned. These methods are 
proposed lower. 

4.2.1 Recursive SIM Using a Prefixed 
Bounding Box 
This strategy is based on a recursive procedure. In 
this SIM, a termination criterion can be one of these: 
When no graphic object totally o partially is allocated 
in the prefixed bounding volume, when a known 
recursive depth level had been reached. This value is 
an integer number greater than zero. And when the 
number of graphic objects allocated into the prefixed 
bounding volume is less or just as known borderline 
value. This concept is called maximum number of 
objects allocated. This value is set greater than zero. 

Therefore, a recursive SIM of this category depends 
on four parameters: 

•  Prefixed bounding volume which has allocated 
the scene objects. 

•  Basic SIM used in order to partition the prefixed 
bounding volume. 

•  Maximum recursive depth level. 

•  Maximum number of objects allocated into a 
volumetric object. 

In order to formalize it, and to minimize the notation, 
we introduce a function ρ. This function associates a 
SIM for each four parameters above defined. 
Therefore, the domain of ρ is O×M×N×N and its 
range is M. 

The formal definition of function ρ is based on a 
condition. Let q be a basic SIM, let v be a graphic 
object, and let l and t be integer values satisfying l≥0 
and t>0. In these terms, m=ρ (v, q, l, t) if and only if 
for any scene s the following equality is satisfied: 
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where: 

•  s’ = {o∈ s / o ∩ v ≠ φ }. 

•  mi = ρ(vi, q, l-1, t). 

•  { v1, v2, …, vn } = q(s). 

4.2.2 Recursive SIM Using a Classification 
Function 
In this case, we start having into account the idea to 
subdivide the scene into simpler scenes (a less 
number of scene objects). In a first step, a 
classification of the scene into subscenes is done. For 
each subscene, an arbitrary bounding volume is set. 

The subdivision of the scene into subscenes is carried 
out using a classification function. The domain of this 
function is S and its range is P(S). ϒ is a classification 
function if and only if the following equality is 
fulfilled:  
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The set of all classification functions is denoted by C. 

When a set of subscenes is computed by this kind of 
SIM, it also must returns a bounding volume which 
includes whole subscene it obtained. Therefore, this 
SIM must join a function to compute this bounding 
volume. 
Let b be a function to compute the bounding volume 
for a given set of graphic objects. This function has 
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domain in S and range in O. For all scenes s∈ S, this 
function fulfils the following expression: 
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The set of all functions satisfying the above 
expression is called B. Due to this SIM is recursive, 
some parameters are necessaries in order to 
determine when the process must stop. Recursive 
depth has reached a known value. This value must be 
greater than zero. A recursive SIM of this category 
depends on the following four parameters: 

•  A classification function used to subdivide a 
given scene into subscenes. 

•  A function to compute the bounding volume for 
a given scene (set of graphic objects).  

•  Maximum recursive depth level. 

•  Maximum number of objects allocated into a 
volumetric object. 

Using a similar formalization than the previous 
recursive SIM, we also introduce a function ρ’. This 
function associates a SIM for each four parameters 
above defined. Therefore, the domain of ρ’ is 
O×B×N×N and its range is M.. 

The formal definition of function ρ’ is based on a 
condition. Let ϒ be a classification function, let b be 
a function to compute the bounding volume for a 
given scene, and let l and t be integer values 
satisfying l≥0 and t>0. In this terms, m=ρ’ (ϒ,b,l,t) if 
and only if for any scene s the following equality is 
satisfied: 
where: 

•  mi = ρ’(ϒ, b, l-1, t). 

•  { s1, s2, …, sn } = ϒ(s). 

Optimizer Based On Spatial Indexing 
There are many different classes of optimizers. Our 
attention will be focused on a sub-type or category. 
This sub-type will be called optimizers based on 
spatial indexing. 

 Let A be an optimizer. A is an optimizer based on 
spatial indexing if and only if the following property 
is fulfilled: 

When an optimizer of this category is implemented 
the necessary algorithm to build m(s) must be 
designed and implemented. After this, it is possible to 
process a wide set of rays. From this set of voxels we 
obtain the set of objects intersecting them. The 
function Ψ models this algorithm. 

5. AN OPTIMIZATION 
EFFICIENCY MEASUREMENT 
Using the above definitions and results, an 
optimization efficiency measurement can be defined.  

A way to get this measurement is to use a random 
distribution of rays for a given optimizer, and for the 
whole scene, and after this to compute the relative 
gain in efficiency. This computation can be formally 
expressed by introducing: 
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where Card is the function which returns the number 
of elements which are in a set, and P(r) is a 
probability measure function which models the 
probability distribution of the rays to be processed.  

6. CONCLUSIONS AND FUTURE 
WORKS 
In this work, a formal model of optimizer is 
proposed, and a model for optimizers based on 
spatial indexing has been proposed. A measure 
function to study the performances of any optimizer 
with respect to other one was proposed. 

As future work, we are planning to produce 
definitions of concrete optimizers by applying this 
formal framework. This measurement can be useful 
to select the best optimizer. Moreover, it will also 
allow comparing the performances between any two 
optimizers. 
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