
Optimizing parameters of a Motion Detection System
by Means of a Genetic Algorithm

Alessandro Bevilacqua, Member, IEEE
ARCES�DEIS (Department of Electronics, Computer Science and Systems)

University of Bologna, Viale Risorgimento, 2
ITALY (40136) Bologna

abevilacqua@deis.unibo.it

ABSTRACT
Visual surveillance and monitoring have aroused interest in the computer video community for many years. The
main task of these applications is to identify (and track) moving targets. The traffic monitoring application we
have developed requires that a large number of parameters is tuned in order to work properly. About thirty
parameters concerning the detection algorithm have been considered as to be optimized. Accordingly, this paper
shows how a Genetic Algorithm (GA) represents a powerful task in order to automatically compute sub-optimal
parameter settings in a motion detection system. Besides, to our knowledge this work is the first attempt of using
GAs to such a problem. Accurate experiments accomplished on a challenging test sequence show the relevant
results attained in terms of qualitative performance.

Keywords
parameter optimization, genetic algorithm, motion analysis, motion detection, visual surveillance, background
difference, traffic monitoring.

1. INTRODUCTION
Most of the computer vision systems or, generally
speaking, systems facing pattern recognition
problems rely on a high number of well-tuned
parameters in order to work properly. Coping with
parameter optimization by considering this task as a
separate task is usually a good practice which yields
efficient and stable systems. We call this stage
software system calibration (which has not to be
confused with camera calibration), here briefly only
calibration. This calibration step is indeed useful not
only once all the system parameters are already well
defined, therefore at the end of the development
stage, as one may think. It may also bring up a
helpful contribution during the development stage.
Namely, besides developing methods capable of
adapting to changing situations at run time, a good
understanding of the relationships between

parameters and their setup using challenging test
sequences are crucial tasks. For instance, a new
parameter added to the system may depend on the
ones already active. Or worse, those may depend on
it and this will require a full setup of all the already
existing parameters. In addition, often problems in
computer vision are ill-posed problems: small
changes in the last arrived parameter can heavily
alter final results.

Many methods are known in order to solve
optimization problems whether the input space is
continuous or discrete. Since in our problem input
parameters are of both types, we turn our attention to
methods coping with discrete parameters, which
usually can also address continuous input domains. A
few global search strategies are based on some
biological metaphor. Among the most known are
Tabu Search, Simulated Annealing and Genetic
Algorithm (GA). Tabu Search uses memory-response
to guide the search towards optimal/near-optimal
solutions, by dynamically managing a list of
forbidden moves. Simulated Annealing ([Bev01a],
[Bev02b]) mimics the annealing process for
crystalline solids, where they are cooled very slowly
from a high temperature, with the hope of relaxing
towards a low-energy state.

GAs are search methods that receive their inspiration
from natural selection and survival of the fittest

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WSCG SHORT PAPERS proceedings
WSCG�2003, February 3-7, 2003, Plzen, Czech Republic.
Copyright UNION Agency � Science Press

individuals in the biological world. GAs differ from
more traditional optimization techniques in that they
involve a search from a population of solutions
(chromosomes), not from a single point.

In a traffic monitor application some parameters need
dynamical tuning, at run time. However, a large
number of parameters requires to be tuned statically,
before the system starts working. Here, we present a
GA for optimizing these last type of parameters in a
motion detection algorithm. The motion detection
algorithm we have developed is made of a
background generation module, a blob segmentation
module and a shadow detection module. There are
about 30 parameters to tune among the three modules
so as the motion detection algorithm works properly.
Tuning this amount of parameters manually may
require weeks. Instead, once the GA�s parameters
have been tuned, a very good solution is reached
within few hours. Having a quick response about the
behavior of new parameters introduced in the
detection system proved to be very effective in order
to evaluate the goodness of a method at once. In
addition, this allows obtaining good results also
during a development stage. Besides, tuning by hand
the parameters internal to the detection algorithm
could �freeze� the algorithm and make it work only
under certain conditions. In fact, in case of changing
scene or filming modality, re-tuning parameters
could require weeks. At last, it is worth remarking
that to our knowledge this work is the first attempt of
using GAs to calibrate a motion detection algorithm.

This paper is organized as follows. In Section 2,
previous applications of GAs to video analysis
problems are given. In Section 3 the domain problem
(i.e., the motion detection algorithm) is presented. In
Section 4 the general scheme of the GA is depicted,
as well as some significant measures used in order to
assess the quality of results. Section 5 outlines the
most important motion detection algorithm
parameters to optimize. Experimental results are
shown in Section 6 and Section 7 draws conclusions.

2. PREVIOUS WORKS
No much work has been done with sequence
processing using GAs, mainly because of the large
amount of processing involved. In addition, to our
knowledge this is the first attempt to optimize
parameters in a motion detection application by
means of a GA. In [Mosch95] the authors cope with
a problem of motion estimation by assuming a
parametric motion model. Here, each chromosome is
formed by only six continuous parameters. In
[Kim00], [Kim01] and [Kim02] genetic
programming is used to segment video sequences.
Here each chromosome represents a pixel and
consists of a label and a feature vector. The fitness is

defined as the difference between the estimated and
the actual color vector at the location of the
chromosome on the image. The chromosomes are
classified as being stable or unstable, whether they
belong to background or moving object parts,
respectively. Two measures are used to evaluate the
quality of the segmentation results: the boundary
error and the misclassification rate. The proposed
method requires half a second to a distributed GA to
segment each frame in sequences showing very
simple movements. At last, in [Hwan01] a GA uses
both spatial and temporal information to segment and
track moving objects in video sequences. Each
chromosome is allocated to a pixel and consists of a
label and a feature vector. The chromosomes are
started from the segmentation results of the previous
frame and only chromosomes corresponding to the
moving objects parts are evolved. After creating
video object planes for each frame, they are then
tracked by tracking on the spatial segmentation level.

3. THE DOMAIN PROBLEM

The Motion Detection System
This section outlines the overall motion detection
system we arranged ([Bev01b], [Bev02a]). The
scheme of the algorithm is described in Fig.1.

The system includes a background generation

[Bev02c] and updating algorithm and a shadow
detection module. Thick boxes with rounded corners
are the basic modules which the algorithm is made
of. Thin boxes represent the input (output) images to
(from) the modules. Circles represent the
fundamental image operations that have been
accomplished.

The input of the system is constituted by a 100 frame
gray level sequence representing a daytime traffic
scene, with 384x288 frame size and working at 10

Figure 1. General scheme for the motion
detection algorithm

Hz. The algorithm processes one frame at a time and
it gives the segmented interesting blobs (i.e., a sort of
coherent connected regions, sharing common
features) as the final output. Blobs are made of
vehicles, humans, shadows or all of them. Within the
present work, �blobs� are made of �objects� and
these different concepts must not mislead.

After that a background has been generated during a
bootstrap phase and the arithmetic subtraction
between the reference background and the current
frame has been performed, one suitable threshold TF
must be chosen and applied in order to determine
which pixels are on the move. The image which has
emerged from this threshold operation represents the
starting point for all of the subsequent operations: a
wrong choice for the threshold could afflict final
results. In fact, if the threshold is kept too low, a lot
of true positive signals maybe are not detected. On
the opposite, an excessively high value includes most
of the moving pixels together with a lot of noise.

3.1.1 Blob segmentation
The difference image constitutes the input to the
following morphological step. In this system we use
both region-based and edge-based segmentation
techniques. In particular, the first approach is used to
find complete blobs, that is, blobs made of objects
and probable shadows. The second approach serves
to define just shadows, as we will see afterwards.

The morphological operation we realize ([Bev02d])
aims to give a measure of how much a pixel belongs
to a structural windowed region around it, thus
resulting in a very effective false positive reduction
step. The operation we perform acts in a slightly
different way with respect to the ones employing a
�classic� morphological operator. In fact, we
introduce the fitness of the pixel at the center of the
structuring element in respect of the pattern it should
belong to. The first step is to define the basic
structure we intend to address. Fig.2(a) shows the
basic structure and the compound structure (b) we
use. The latter is obtained by rotating the former by
90°, 180° and 270°. This is as to say that the basic
structure is searched by considering every spatial
arrangement. In addition to these two structures, we
define a cell-based structure (Fig.2(c)). It is built
through stemming from the compound structure (b),
the same as (b) has been built starting from (a). But

(b) is symmetric; thus (c) is formed basically by the
set of all possible occurrences of the compound
structure. Namely, in the example of Fig.2 the cell-
based element (c) is composed by 9 compound (cell)
elements (b), whose centers are the white circles plus
the black circle.

How does this method exactly work? In our
implementation, all the pixels of the elements
involved in (a), (b) or (c) are assigned �1�. In case of
the basic structure (Fig.2(a)), a logical AND between
the pixel pointed by the circle and each one of its
three neighborhoods is performed. The arithmetic
sum of these three partial results represents the
fitness of the pixel pointed by the circle. Further, a
hard threshold on this fitness value allows the pixel
to be assigned �1� or �0�; this occurs whether the
fitness is greater or less than the threshold,
respectively. In case of the compound structure
(Fig.2(b)), this procedure is accomplished for four
times. Unlike what we have made before, the partial
fitnesses computed for the pixels pointed by the
white circles are summed to each other instead of
being assigned to the pixel. The outcome of the
threshold operation performed on the total amount of
fitness is finally given to the pixel corresponding to
the center of the structure (the black circle). At last,
for the cell-based structure (Fig.2(c)), first we
compute the fitness for each cell and then the overall
fitness is assigned again to the central pixel pointed
by the black circle.

3.1.2 Shadow segmentation
The main problem encountered in designing a system
for outdoor motion detection is the reliability of
detecting targets despite changes in illumination
conditions and shadowing. Therefore, one of the
achievements of the system is to successfully
recognize and remove moving shadows attached to
objects.

We distinguish two types of shadows, based on their
photometric properties. The first category is
constituted by the so-called umbra, where the darker
inner side of the shadow is predominant. The second
category consists of penumbra, which is the zone
characterized by a soft luminance transition from
shadowed to non-shadowed background. This is the
outer side of a shadow.

The shadow detection module we setup starts from
the division between the background and the current
frame, within the regions detected by the blob
segmentation stage, and deals with shadows where
penumbra is almost negligible. Actually, both the
background and the current frame are smoothed, as
well as the division image, by using a mean filter.
The convolution kernel size is a parameter to

Figure 2. Structuring elements: basic (a),
compound (b) and cell-based (c)

optimize. The shadow segmentation algorithm relies
on gradient analysis. In fact, three gradient operators
(i.e., horizontal, vertical, oblique) are applied in
order to find roughly homogeneous regions, through
a thresholding operation. In addition, the division
image itself is thresholded in order to primarily
identify likely shadow regions. All these thresholds
are parameters to optimize. A further structural
analysis step must be performed in order to define
connected regions. Finally, a binary edge matching
operation allows to discard either the regions too far
from the blob�s boundary or the smallest ones. This
is accomplished by thresholding the percentage of
the blob�s border shared with the boundary of the
homogeneous regions just selected.

At the end, the detected image regions changed by
moving shadows will be deleted from the detected
blob before further processing.

4. THE GENETIC ALGORITHM
GAs are part of evolutionary computing (which is an
area of the artificial intelligence) and emulate the
evolutionary behavior of biological systems to create
subsequent generations that guide the search
towards optimal/near-optimal solutions. In a broader
usage of the term, a GA is an any population-based
model that uses selection and recombination
operators to generate new sample points in a search
space. Each sample point is a chromosome
(individual) made of genes (parameters of the
problem to solve) and a set of individuals constitutes
a population. Each iteration of a GA involves a
competitive selection that eliminates poor solutions.
The solutions with high fitness are recombined with
other solutions by swapping the parts of a solution
with another. Solutions are also mutated by making a
small change to a single parameter of the problem.
Recombination and mutation are used to generate
new solutions that are biased towards regions of the
space for which good solutions have already been
looked at.

The Algorithm
Fig.3 shows the flowchart of a typical GA, in
pseudo-code. This technique involves generating a
random initial population with a given number of
chromosomes (made of a set of genes). The initial
population of individuals is created either randomly

or by perturbing an input individual. The
initialization is not critical as long as the initial
population spans a wide range of variable settings
(i.e., has a diverse population). Thus, if one has
explicit knowledge of the system being optimized
such information can be included in the initial
population. That is, for example, a parameter value
(or range) come out by an earlier perfunctory hand
tuning phase.

In the second step, each individual�s fitness is
evaluated. The goal of the fitness function is to
numerically encode the performance of the
chromosome. For real-world applications of
optimization methods, like GAs, the choice of the
fitness function is the most critical step.

The third step is the natural selection step. This step
is implicitly coupled to the replacement step. As a
matter of fact, once a new individual comes to a new
population, another individual must leave. The
process of going from the current population to the
next population constitutes a generation of a GA.

The fourth step consists of the recombination and
mutation operators. Although in nature these tasks
are performed in one step, in GAs they are usually
separate in order to be handled in a better way. Two
chromosomes (parents) from the current population
are randomly selected to be mated. The
chromosomes which are not allowed to mate are
placed into the next generation unchanged.

At this point, steps two, three and four are then
repeated for each generation until a termination
criterion is met.

Now let us see the most common recombination and
mutation operators used for reproducing. In the one-
point crossover, one crossover point is selected along
the chromosome and the genes up to that point are
swapped between the two parents. Besides the one-
point crossover, more than one crossover point can
be selected and the fragments alone between those
positions can be exchanged (n-point crossover).
When the number of crossover points is equal to the
number of genes, we have the so-called uniform
crossover. A different approach is constituted by the
arithmetic crossover which considers the children as
a linear combination of the two parents.

Analogously, we may have different mutation
operators. The standard mutation operator simply
randomly changes the value of a gene. Besides the
standard approach, the step mutation changes the
gene value by a predefined (step) amount. The main
goal of mutation is to maintain the diversity of
population.

1. Create first random population
2. Fitness evaluation
3. while <Termination condition is false> do
4. Selection (and Replacement)
5. Recombination
6. Mutation
7. Fitness evaluation
8. endwhile

Figure 3. A basic GA in pseudo-code

GA�s Parameters
An evolutionary strategy needs to be adopted in
order to generate individuals for the next generation.
One of the most common methods and the one used
in our algorithm is constituted by an elitist
generation selection operator. Namely, the
individuals are ranked by their fitness and only the
best (here, 20% of the population) are selected and
taken unchanged into the next generation.
Accordingly, at the same time an equal number of
individuals chosen on the basis of their inverse
fitness value are replaced. In this way, we guarantee
that good individuals are not lost during a run.

In order to end the evolution of the population we
must choose a termination criterion. We implement
two criteria which are the average of the fitness of
the entire population and of the best individuals.
Usually, the evolution is stopped when the average
has reached a plateau. The final result of the GA
optimization is the best individual of the last
generation.

The Fitness Function
Essentially, the fitness is a function that gives a
�score� to the outcome of the system and its design is
probably the most critical task concerning both the
domain problem and the GA itself. In fact, it must be
based on the system�s features xi we want to measure
and most of the parameters within this domain
algorithm affect the outcome in a seesawly way. For
example, increasing a parameter value could improve
blobs� resolution but at the same time damage their
integrity.

Let H (Hit) indicate the number of detected objects
that really move, M (Miss) the number of moving
targets that will be classified as non-moving and FA
(False Alarm) the number of stationary objects that
will be erroneously classified as moving. At last, let
K=H+M be the total number of the actual known
objects. Based on the above definitions, we can
define DR=H/K (Detection Rate), MR=M/K (Miss
Rate) and FAO=FA/K (False Alarm per Object).

We must assign different scores to the results based
on the �correct� trade-off between detection rate DR
and FA and this relies on researchers� practice. The
fitness f(x) we conceived is a linear combination of L
local fitnesses fi(xi) properly weighted (Eq.1):

)1(,0,1),()(11 ixfxf i
L
i ii

L
i ii ∀∑ =∑= ≥== ααα

where iα represent the weights we want to give to
that measure, L=4 is the number of features we want
to study, x=(x1, �, xL) is a point belonging to the
feature space. Local fitnesses are defined as
fi(xi)=Cigi(xi) where gi(xi) are zero-mean Gaussian

functions as shown in Eq.2 and πσ 2iiC = are

normalization constants.

)2(
)/(

2

1
)(

2)2/1(ii

i
ii

x
exg

σ

πσ

−
=

Therefore, each local fitness fi(xi) is univocally
determined by iσ . In Fig.4 the model for the local
fitness functions is shown. The domain is ideally
divided into three distinct intervals, so as to reflect
more accurately the behavior of each feature we want
to measure. The interval at the right (the tail of the
function) points out a region where changing in
feature values yields a leak contribution to the
outcome. The middle region usually retains most of
the samples of the feature�s distribution. Here,
changing the feature value alters the outcome
significantly. Giving a measure of what
�significantly� expresses in this case, means finding
the right value for σi. At last, feature values in the
left interval are supposed to fall within the
neighborhood of the optimum value. Here, little
changes correspond to little, but significant,
increments towards the optimum value. A brief
description of the four fitnesses we used follows.

• f1(x1): x1 represents MR as a measure of the
frequency of missing blobs, in terms of their
number. Here, σ1=0.2.

• f2(x2): x2=max(area(M))/N is a kind of MR in
terms of area of blobs. Instead of considering
all the missed blobs, we just take into account
their maximum area. Actually, this value is
normalized with respect to N, the total number
of pixels of the image. Here, σ2=0.1. The lower
value for σ2 if compared with σ1 means that the
maximum area of the missed blobs is
conceptually more important than their number.

• f3(x3): x3 represents FAO in terms of number of
blobs. Here σ3=0.4.

• f4(x4): x4 represents FAO in terms of area of
blobs. Here σ4=0.2.

Figure 4. The model for the local fitness
functions

As a final consideration, we could note that even
though x3 and x4 can hold values greater than one,
usually their values are less than one.

5. PARAMETERS TO BE OPTIMIZED
In this Section we summarize the key parameters that
the GA should optimize and their features. The
configuration of a GA needs investigating several
points. First, a representation for the individual of the
population must be chosen. As previously said, an
individual is constituted by the parameters of the
domain problem, here the motion detection
algorithm. One of the most important elements
affecting choices regarding a GA are the numbers
and the type of the genes. Actually, in these
experiments we use 29 parameters which are both
integer and floating point types. Besides its own
value, more properties for each parameter are stored:
its plausible minimum (min) and maximum (max)
value and the incrementing step.

 type min max step
TF int 8 18 1

k_morph_x int 3 9 2
k_morph_y int 3 9 2
morph_ts int 40 150 1

k_mean_sh_x int 1 5 2
k_mean_sh_y int 1 5 2

TM int 70 95 1

Td int 1 6 1
Table 1. Some parameters used in the

optimization process.
Table 1 summarizes the most significant parameters
and their properties. Parameters are listed as they are
presented and used within the algorithm. They are
grouped on the basis of the operation they perform.
The full description follows.

• TF: the threshold value used in the background
subtraction operation;

• k_morph_x, k_morph_y: the size of the
structural kernel (Fig.2(c)) used in the structural
analysis operation to find the whole blobs
(Section 3.1.1). Similar parameters are used in
the structural analysis operation of the umbra
segmentation module (Section 3.1.2);

• morph_ts: the threshold for the fitness in the
same operation as above;

• k_mean_sh_x, k_mean_sh_y: the kernel size of
the mean filter used for the smoothing
operation described in Section 3.1.2;

• TM: the threshold value used in the smoothed
division (Section 3.1.2);

• Td: the gradient threshold value described in
Section 3.1.2; there should be three of them,
actually, they share the same value.

6. EXPERIMENTAL RESULTS
The GA, as well as the motion detection algorithm,
has been written in C and works under Windows,
Solaris and Linux OS�s.

In order to perform our experiments, we split our set
of 100 frames into two sets, each containing 50 quite
uncorrelated frames. One set has been used in order
to train the GA so that it could tune its parameters at
best. After that, we use that set of parameters in
order to perform our motion detection algorithm on
the second set of frames so as to test the best
individual previously obtained.

The analysis of results is accomplished on the basis
of the outcome of the GA. Two different results are
analyzed. The first concerns GA�s parameters,
namely we establish how good the solution achieved
by the GA is. The second is the performance, in
terms of quality, of the pure motion detection
algorithm.

A quantitative comparison between estimated and
true foreground is crucial both to evaluation and
comparison systems. For this reason, we extract the
�ground truth� foreground pixels by hand.

GA�s Parameters
Some genetic operators have been tested in order to
exploit at best the capability of the GA. Good
choices for mutation and crossover lead the GA to
better escape local minima. We implement the
different methods for crossover and mutation
described in Section 4 and we adaptively swap them
during the GA life cycle, according to the behavior
of the fitness values.

We also try different sizes for population in order to
deeply explore our search space. Our experiments
showed us that a population made of 40 individuals
represents a good trade-off between performance and
quality of solution.

In regard to the selection methods, we use the
�elitist� operator. When using this operator, usually a
percentage of the population is taken unchanged
between two further generations. We see that 20%,
hence 8 individuals, is an appropriate value.

At last, we tested different termination criteria. We
focus our attention on two criteria which consider the
state of the evolution: the average of the fitness of
the best individuals and the average of the fitness of
the entire population. Their variation and the change
of fitness of the best individual during the evolution

is shown in Fig.5. We can see that the trend of the
best individual is clearly much more correlated with
the value of the best 8 individuals than with the
average of the whole population. Hence, it is
probable that small fluctuations on the best
individuals� fitness would mean the achievement of
the best result (in Fig.5 this happens after nearly 100
generations). Thus, we stop the evolution of the GA
when the fluctuation in the average of the fitness of
the best 8 individuals remains within a small fixed
threshold.

 f(x) f1,2 f3,4

iα 0.600 0.400

best 0.939 0.967 0.898

hand-tuned 0.929 0.959 0.885

Table 2. From top to bottom: the weights iα of the
local fitnesses; a comparison between best

individuals and hand-tuned�s global and local
fitnesses

Table 2 shows the best values we obtain for the
fitness by starting with a random population. Here
f1,2=0.3f1+0.7f2 and f3,4=0.2f3+0.8f4. We usually group
these two couples of fitnesses since both the fitnesses
of one couple concur to the same goal. During an
earlier stage, the selection of the motion detection
algorithm�s parameters was performed manually; we
refer to this procedure as the �hand-tuned� one. The
best fitness value is the average of the best 8
individuals of the last generation and can be
compared with the hand-tuned values. We see that
each fitness value coming from GA executions is
better than the corresponding hand-tuned value.
Hence, the global fitness f(x) improves. Even though
the improvement over the hand-tuned values could
seem slight, we want to stress that while hand-tuned
results have been obtained through trials long several
months, GA allows to achieve good results also
during a development stage.

The Motion Detection Algortihm
Fig.6 shows a significant output frame. For instance,
here there are globally 11 blobs: 9 H, 0 M and 1 FA
(blob ID 11, the hedge). To the following analysis
we only consider the result attained on the test set,
since it does not differ significantly from the training
one. In addition, the values are reported in terms of
number of entities (not of pixels), whether they are
blobs with shadow (blobs) or just shadows. f-shad
(�foreground� shadows) indicate all the moving
shadows detected below the nearest (from bottom)
pedestrian crossing of Fig.6. Oppositely, all the
shadows above are �background� shadows (b-shad).

 H DR MR FAO
blobs 468 91.2% 8.8% 9.6%

f-shad 43 97.7% 2.3% X

b-shad 18 56.3% 43.7% X
Table 3. Values for the most significant quality

parameters related to the number of blobs, f-shad
and b-shad.

Table 3 shows results attained in terms of DR, MR
and FAO. The sensitivity of the system reaches
91.2% with a low value for FAO with regard to the
number of blobs. We see also that all of the f-shad,
but one, are detected (and this removed!) while a
large percentage of the thinner b-shad is not
detected. Basically, the shadow detection algorithm
has been devised quite for f-shad, where the
penumbra region is negligible with respect to the
umbra. In addition, this kind of shadows is easier to
detect because they are larger and well defined. As
for the detection of b-shad, at first sight results
attained by the system could be considered quite
poor. However, they should be yet more appreciated
when considering the objective difficulty for those
shadows to be detected. In fact, mostly they refer to
far away vehicles whose overall shapes is not yet
fully visible. On the other side, this bad visibility
makes sure this loss in shape definition does not
cause too heavy a visible consequence.

Figure 6. An output frame where the moving
objects (freed of shadows) have been contoured

Figure 5. Values of the fitness of the best
individual, average of the best 8 individuals

and average of the population during the

To conclude, we depict in Fig.7 the most significant
part of two extended Receiver Operating
Characteristic (ROC) ([Shir95]) curves, plotted by
varying the threshold TF. One related to the hand-
tuned (dashed line) method and one for the optimized
scheme attained through the GA (solid line). We can
see that the sensitivity of the optimized scheme is
always a little greater than in the hand-tuned case.
Even if at first sight this could seem only a slight
improvement, nevertheless, it is extremely important
because such increment is related to a high-quality
region, within which it is very difficult to obtain
further improvements. In addition, while the hand-
tuned methods required weeks in order to achieve
that result, once the GA�s parameters have been
tuned, starting from a random population an optimal
configuration is reached within one day on a Pentium
III 866 MHz equipped with 1.5 GB RAM.

7. CONCLUSIONS
In this work we have presented an automated method
for parameter optimization in a motion detection
system by means of a GA. To our knowledge, this is
the first attempt of using GAs to automatically find
out the �best� parameter setting in a motion
detection algorithm. To manually tune about twenty
parameters a few weeks are required. Instead, once
the GA�s parameters have been tuned, a good
solution involving thirty parameters has been reached
within few hours. In addition, having a quick
response about the behavior of new parameters
introduced in the motion detection algorithm
shortens the time needed to evaluate the effectiveness
of a method. At last, tuning by hand the parameters
internal to the detection algorithm could �freeze� the
algorithm and make it work only under certain
conditions. In fact, in case of changing scene or
filming modality, re-tuning parameters could require
weeks.
As for future works, since here the fitness evaluation
is solved independently for each individual, this
feature could be exploited in a parallel development

of the algorithm. At last, more local fitnesses could
be introduced in order to evaluate more motion
detection algorithm performance measures.

8. REFERENCES
[Bev01a] Bevilacqua, A. A Problem Independent

Parallel Simulated Annealing on a SMP System,
in IASTED 2001 International Conference on
PDCS conf. proc., Anaheim, CA, USA, pp.414-
418, 2001

[Bev01b] Bevilacqua, A., and Roffilli, R. Robust
Denoising and Moving Shadows Detection in
Traffic Scenes, in IEEE CVPR 2001 Technical
Sketches conf. proc., Kauai, Hawaii, pp.1-4, 2001

[Bev02a] Bevilacqua, A. A System for Detecting
Motion in Outdoor Environments for a Visual
Surveillance Application. PhD thesis, Department
of Electronics, Computer Science, Systems,
Bologna, Italy, 2002

[Bev02b] Bevilacqua, A. A Methodological
Approach to Parallel Simulated Annealing on a
SMP System. Journal of Parallel and Distributed
Computing, Vol.10, No 2, pp.1548-1570, 2002

[Bev02c] Bevilacqua, A. A Novel Background
Initialization Method in Visual Surveillance, in
MVA 2002 conf. proc., Nara, Japan, pp.614-617,
2002

[Bev02d] Bevilacqua, A. Effective Object
Segmentation in a Traffic Monitoring
Application, in ICVGIP 2002 conf. proc.,
Ahmedabad, India, pp.125-130, 2002

[Hwan01] Hwang, S.,] Kim, E.Y., Park, S.H., and
Kim, H.J. Object Extraction and Tracking Using
Genetic Algorithms, in 2001 IEEE Signal
Processing Society ICIP 2001 conf. proc.,
Thessaloniki, Greece, Vol.2, pp.383-386, 2001

[Kim00] Kim, E.Y., Park, S.H., Jung K., and Kim,
H.J. Genetic Algorithm-based Segmentation of
Video Sequences. Electronics Letters,
Vol.36(11), pp.946-947, 2000

[Kim01] Kim, E.Y., Hwang, S., Park, S.H., and Kim,
H.J. Spatiotemporal Segmentation Using Genetic
Algorithms. Pattern Recognition, Vol.34(10),
pp2063-2066, 2001

[Kim02] Kim, E.Y., Park, S.H., Hwang, S., and Kim,
H.J. Video Sequence Segmentation Using
Genetic Algorithms. Pattern Recognition Letter,
Vol.23(7), pp.843-863, 2002

[Mosc95] Moscheni, F., and Vesin, J.-M. A Genetic
Algorithm for Motion Estimation, in 15ème
Colloque sur le Traitement des Signaux et Images
conf. proc., Juan-les-Pins, France, Vol.1, pp.825-
828, 1995

[Shir95] Shirvaikar, M.V., and Trivedi, M.M. A
Neural Network Filter to Detect Small Targets in
High Clutter Backgrounds. IEEE Transactions on
Neural Networks, Vol.6(1), pp.252-257, 1995

Figure 7. Extended ROC curves of the motion
detection algorithm on the test set. They have

been plotted by varying the threshold TF

