
A Quantitative Analysis of Culling Techniques for
Real-time Rendering of Digital Elevation Models

Michael Hesse
University of Calgary

Dept of Computer Science
 Calgary, AB, Canada T2N1N4

Marina Gavrilova
University of Calgary

Dept of Computer Science
 Calgary, AB, Canada T2N1N4

ABSTRACT

The paper is concerned with investigation of effects of culling techniques on quality and smoothness of terrain
data visualization within a 3D interactive environment. We utilize the Real-Time Optimally Adapting Mesh
(ROAM) approach, extended with a number of efficient techniques such as implicit coordinates method within
the patch array representing ROAM and the viewpoint dependent triangle rendering method for dynamic level
of detail (LOD) updates. The method, which allows dynamic and interactive first person view, is combined with
the View Frustum culling, the Backface culling and an original Relational Position Culling. Standard error
metrics are used to verify the rendering consistency. The experimentation is conducted on two data sets
representing simple gradual contour changes (Susanville, California) and complex steep contour changes
(Kluane National Park, USA). Based on the results, applicability of each of the culling techniques to terrain
model is discussed.

Keywords
ROAM, culling techniques, error metrics, terrain data, GIS rendering.

1. INTRODUCTION
The performance of any graphical rendering system
is highly dependant on the type and amount of
information that is to be displayed. The greater the
realism, resolution or detail of the rendered object
will increase the overall scene complexity. The
increase in scene complexity will decelerate the
rendering of the final images. Overly complex
scenes can appear sluggish or jagged by the user,
which in turn will decreases the overall satisfaction
with the rendered scene. Data culling techniques
attempt to accelerate the rendering process by
eliminating unnecessary information from the scene
before it is rendered for the user. Essentially, data
culling techniques will eliminate any scene
information that will not directly contribute to the
final image. Successful culling scene data can
increase the rendering speed of a scene without the
loss of consistency or realism. There are numerous
data culling techniques that have been developed.
However, there has been no comprehensive study

comparing the performance of those techniques on a
variety of data sets, varying from simple gradual
contour to complex steep contours.

In this paper, we present the results of the empirical
study of three culling techniques: View Frustum
culling, Backface culling and an original Relational
Position culling method (quadrant based), and its
effects on the visual contiguity and smoothness of
the rendered terrain model. The quadrant-based
Relational Position culling technique is a new
technique that we introduce. This position based
method broadly cut unnecessary data during
rendering process, based on the user’s view point.

In our approach, we also utilize the error metrics
algorithms for increased realism of the visualization.
Real-time Optimally Adapting Mesh (ROAM)
method is selected as an extendable, efficient tool for
internal data representation and dynamical updates of
the terrain model. The method is extended with an
original implicit coordinates method within the
patch array and the viewpoint dependent triangle
rendering method for dynamic level of detail (LOD)
changes. The real-time level of detail reduction
method based on the underlying binary triangle tree
structure.

Overall, the method is characterized by the following
set of features:
• Reduction in the number of triangles rendered

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WSCG SHORT PAPERS proceedings
WSCG’2003, February 3-7, 2003, Plzen, Czech Republic
Copyright UNION Agency – Science Press.

• Smooth, continuous changes between different
surface levels of detail

• Dynamic generation of levels of detail in real-
time

• Introduction of implicit coordinates method
within the patch array for more efficient ROAM
representation

• Introduction of the viewpoint dependent triangle
rendering method for dynamic level of detail
(LOD) updates

• Implementation of culling techniques, including
the original Relational Position culling for more
efficient terrain rendering

• Application of error metrics for increased
smoothness and contiguity

The terrain data sets studied are the simple gradual
contour changes (Susanville, California) and the
complex steep contour changes (Kluane National
Park). The data sets are represented by greyscale
Digital Elevation Maps of 1024 pixels by 1024
pixels.
Each experiment set is internally represented by three
quadrant detail levels, corresponding to 16, 64 and
128 nodes per side within the binary tree structure.
Determining which combination of techniques work
best for each dataset is accomplished by examining
load time, total number of triangles per path, total
number of culled triangles per path, number of
frames per second and the number of triangles per
frame. In addition, the resulting rendered terrain is
examined for cracking and popping to confirm the
visual contiguity. The occlusions culling techniques
are individually and collectively combined with
ROAM technique and examined with the different
complexities of terrain data and representations of
detail levels within the binary tree. In addition, three
error metric algorithms are implemented (measuring
cracking, popping and examining the rendered terrain
within and outside the view frustum), guaranteeing
smoothness and contiguity of rendering.

The examination of unique combinations of culling
and error metric techniques allows us to derive a set
of heuristics for determination of the most beneficial
combination based on the characteristics of the
terrain data. This, in turn, leads to the development
of dynamically driven GIS system that could
immediately adapt to changing conditions based the
rendered data. This information is essential for
designing more efficient applications that can easily
be introduced into the growing Geographical
Information System industry, with obvious
applications in computer graphics, visualization and
computer modelling areas.

2. RELATED WORK
In the past decade, a significant progress has been
achieved in developing efficient GIS rendering
techniques and a variety of their applications. The
research usually is concerned with the data
representation and efficient algorithms for
performing dynamic level of detail (LOD) changes
[Lindstrom, Duchaineauy, DeBerg, Turner, Zhao],
implementing culling techniques[Assarsson, Coorg,
Zhang], verifying data consistence and smoothness
through error metrics [Carr, Lindstrom] as well as
utilizing tools for more realistic displaying of data
[Blow, Carr].

In 1996, P. Lindstrom [Lindstrom] proposed the real
time continuous level of detail terrain rendering
algorithm that focuses on a block based mesh
structure. In this paper, we expand Lindstrom’s error
metric design to better fit the ROAM approach and
the data culling methods that we introduce. The
ROAM algorithm, developed by Duchaineauy
[Duchaineauy], was the natural continuation of
Lindstrom’s algorithm. The ROAM algorithm uses
split and merge functions to dynamically adjust
similar triangles and construct the terrain mesh.
Instead of the ROAM technique being driven by a
bottom up approach, as with Lindstrom’s algorithm,
ROAM uses a priority queue structure to determine
which of the triangle diamonds need to be split or
merge. These two major enhancements enable the
ROAM algorithm to be significantly faster than
Lindstrom’s algorithm.

In this paper, we maintain the framework of
Duchaineauy’s ROAM algorithms while examining
ROAM’s interaction with various culling and error
metric techniques. We extend the approach with the
implicit coordinates method within the patch array
and the viewpoint dependent triangle rendering
method for dynamic LOD changes. Alternative data
structures (such as TIN, Delaunay triangulation)
methods were studied in [Carr, Zhao] however they
were not as suitable as the ROAM technique due to
their complexity and heavy computations. Data
culling techniques are used to determine which
information needs not be rendered without loss of
realism or generality. The methods chosen for this
project have been studied in [Coorg, Assarsonn,
Zhang]. In our paper, we utilize normal masks to
determine groups of unnecessary data. This
technique is easily combined within ROAM. We
also introduce a novel Relational Position culling
technique for increased efficiency. Quantitative
analysis of culling techniques in combination with
error metrics provides valuable insights on the best
approach depending on the terrain model rendered.

3. TERRAIN DATA REPRESENTATION
Digital Elevation Model (DEM) can refer either to a
specific elevation file format or to sources of
elevation data in general. Digital elevation model
data is usually stored as an array of regularly spaced
elevation values, referenced horizontally either to a
Universal Transverse Mercator (UTM) projection or
to a geographic coordinate system [Docks]. The grid
cells are spaced at regular intervals along south to
north profiles that are ordered from west to east. A
standard grid posting is interpolated directly from the
contour files to create DEMs with 10 - 90 meter (<1 -
3 arc second) resolution (depending on the source
paper map scale or contour interval). The U.S.
Geological Survey (USGS) produces five primary
types of elevation data: 7.5-minute DEM, 30-minute
DEM, 1-degree DEM, 7.5-minute Alaska DEM, and
15-minute Alaska DEM. In this paper, we use the
greyscale Digital Elevation Model (DEM) as the data
source. Each shade from black (low) to white (high)
represents a height level in context of the entire
contour model. The height levels are not defined
directly but rather as a ratio from low to high where
true black would represent 0% height and true white
would represent 100% height. The base dataset
DEMs chosen for this project are Susanville,
California (Fig. 1) and Kluane National Park (Fig. 2).
The Susanville DEM represents progressive contours
with gradual elevation changes where the Kluane
DEM illustrates sudden steeper elevation changes.

Figure 1. Susanville, California

Figure 2. Kluane National Park, Canada

4. REAL-TIME TERRAIN RENDERING
Our approach to terrain data rendering is based on
the Real-time Optimally Adapting Mesh (ROAM)
method. The idea is to create a system for
constructing triangular meshes for view dependent
terrain visualization. The ROAM system constructs a
consistent and dynamic detail representations of
terrain data by utilization of two main priority
queues. They are driven by split and merge
operations that adjust the terrain detail level
dynamically. The split and merge functions are both
built and changed from the data information held
within a preprocessed Binary Triangle Tree data
structure. In addition, we use a specific Level of
Detail procedure to reduce the total amount of
computations needed to render the terrain data.

4.1 Split and Merge Function and Queues
The ROAM algorithm is built around a Binary Tree
structure that supplies triangle information for the
split and merge functions [Lindstrom]. These two
functions are the driving force behind the dynamic
view-dependant rendering method. Two triangles
that share the same base and are on the same detail
level are referred to as a diamond (Fig. 3). The split
operation adds a new vertex at the diamond’s center
resulting in the creation of four new right-isosceles
triangles, which will increase the number of triangles
representing a terrain area. As the number of
triangles increase, the detail level that can be
represented will also increase. The merge operation
works inversely to the split operation [Duchaineauy].

Figure 3. Split and Merge Operations

In our implementation, the split and merge
operations provide a flexible framework for making
detailed updates to the triangulated mesh. The basic
idea of each queue is to keep the priorities for each
individual triangle in the mesh triangulation. The
split operations would then start with the base
triangulation level in the queue and then repeatedly
split the triangle until the highest priority triangle is
reached. The only requirement for the split priority
queue is that the child’s priority level must not be
more than its parent’s. The merge priority queue
allows the merge operation to start from the
previously rendered mesh triangulation. This allows
a more consistent and quicker frame-to-frame
coherence. The merge operation, which is similar to
the split queue, uses this queue as the starting point
of approaching merging of triangles.

4.2 ROAM Implementation
The ROAM implementation used in this paper is an
extrapolation of three main sources. In
[Duchaineau], the basic Real-time Optimally
Adapting Meshes algorithm that is based on a binary
tree structure is given. Each tree node references
isosceles right triangles that can be split recursively
and stored as the nodes child. The recursive splitting
and storing would continue until the desired detail
level is reached. In [Lindstrom], a structure called a
Quad tree that is used to represent a patch or
quadrant with the total landscape is described. A
Quad tree recursively tessellates the landscape
creating an approximation of the height dataset. The
Quad trees are very simple and efficient, however the
atomic mesh polygon is changed from the isosceles
right triangle to a patch of triangles. Combinations
of the above techniques are studies in [Turner].

This paper continues on with the idea of patches and
quadrants described in [Lindstrom] and [Turner],
which we use to create and manage the mesh
approximation within the terrain’s landscape. We use
the implicit coordinates method within an array of

patch objects to ensure more efficient memory usage.
Implicit coordinates, within the landscape, are stored
for the isosceles right triangles that will be rendered
onscreen. The advantage of our approach to data
representation is that implicitly defining coordinates
saves 36 bytes of RAM per triangle by not having to
reference the explicit X, Y and Z coordinates. An
index within the patch array references an individual
Binary Triangle Tree that in turn stores the
references to each triangle level of detail for that
patch. The size of the patch determines the relative
size of each patch within the landscape. The array
size must be defined before the program can be
executed. The patch objects are held within the
Landscape object. The landscape object is built by
combining each patch section until the entire terrain
is rendered.

4.3 Level of Detail (LOD)
A conventional method to reduce the amount of
computations needed to render a complex scene is to
apply Level of Detail (LOD) techniques [Turner]. In
this paper, we extend the LOD technique with the
viewpoint dependent triangle rendering method,
which allow more flexible information storage for
dynamic and interactive first person view rendering.
To accommodate this feature we allow portions of
the terrain that are currently too far away to be
rendered with few triangles, and also allows the same
sections of terrain to be rendered with more triangles
if the viewpoint moves closer. We accomplish this
task by examining the field of view with the view
frustum to determine which patch sections need more
detail due to their proximity to the user.

4.4 Binary Tree Triangle Data Structure
To satisfy the LOD requirement a binary triangle tree
structure will be used to hold the various levels of
detail that is needed by the graphics-rendering
engine. In the case of ROAM, a binary triangle tree
structure, or a bintree, is a recursive structure where,
at its lowest level, represents a right-isosceles
triangle. Each subsequent level of the tree splits the
triangle by subdividing. This is accomplished by
adding an edge from the apex vertex to the midpoint
of the hypotenuse of the triangle. This division
produces two smaller right-isosceles triangles that
can be further subdivided. The left-child
representation in the bintree is the child that is on the
left splitting edge when the triangle is viewed with
the apex point on top and the base at the bottom. The
right-child is the child to the right of the splitting
edge. The base-neighbors is the neighboring tree that
shares the hypotenuse edge of the tree and the right
and left neighbors are those adjacent triangles that

share the hypotenuse of the right and left children
respectively.

In our implementation, each patch of terrain will
have an individual bintree to define the triangle detail
levels. The triangle bintree structure starts with the
base terrain, either the least detail representation or
the detail level from the previously rendered image,
in the leaf components of the structure. If a
particular leaf, which holds an individual triangle of
the meshed terrain image, needs to increase in detail,
then the leaf will split into smaller pieces or new
leafs. This transformation will also cause the triangle
represented by that leaf to split. We determine the
need for a change in detail level by examining the
corresponding error metrics (see Section 5).

5. DATA CULLING TECHNIQUES
Data culling is a process of selecting, from the whole
scene, particular information that needs to be
rendered. Culling at this level is often achieved by
using geometry-based methods to determine which
scene information needs to be rendered. Although
geometric approaches are popular, there are other
algorithms that can be used to accomplish the same
task by examining the relationships and positions of
scene data without directly calculating geometric
measures. In this section, three types of geometric
culling algorithms that we implements are discussed:
View Frustum Culling, Backface Culling and an
original Relational Culling technique based on a pre-
process point of view approach.

The view frustum is the volume of space that includes
everything that is currently visible from a given
viewpoint. Six planes arranged in the shape of a
pyramid with the top removed, define the view
frustum area. If a point or object is inside this
volume then it is within the frustum area and is
potentially visible. Although the point or object is
within the view frustum area, it still may not be
rendered due to its positional relationship with the
other points and objects within the users view. If a
point is outside of the frustum then it is not visible to
the user and it needs not be rendered. To determine
the position of the points and object, their bounded
volumes are computed. Bounded volumes are
illustrated by surrounding objects with a specific
geometric shape that are located near to each other.
The geometric shape is then referenced to determine
the position of the object with respect to the frustum
area. If the bounded volume lies on one of the
frustum edges then that bounded volume is further
subdivided into smaller bounded volumes until each
object is either determined to be inside or outside the
frustum area. If at the lowest detail level an object

still lies on a frustum edge, the portion of the object
inside the frustum area is rendered while the rest is
culled.

Historically, the geometric shapes used as bounded
volumes are boxes, or spheres. For this project,
geometric spheres have been chosen. We store the
essential information described by the bounded
spheres in the hierarchies of bounded volumes as a
Direct Acyclic Graph (DAG). The root node of
DAG is connected to the subsequent inner bounded
volume nodes, which in turn continue until the final
child level of the graph. This level holds the
individual object descriptions. This structure will
allow for quick and easy access of object information
based on their relative positions.

The second method that we implement in this project
is the Backface culling. Based on a user’s eye-space,
Back-facing polygons are located on the far side of
an opaque object. Once the polygons are determined
to be Back-facing, they are culled before the scene is
rendered. We calculate the normal of the projected
polygon. Testing polygons within a scene for back-
facing properties requires that each polygon be
subjected to the back-facing test. This test involves
calculating the polygon’s normal and the vector
formed from the viewing point to any point on the
polygon. Although the rendered scene is displayed
in three-dimensional space the normal calculation is
calculated as if the scene were represented in two-
dimensional space. The geometric calculation will
result in either (0,0,a) or (0,0, -a) where a>0. A
negative a represents a polygon that is pointing into
the screen, or front facing where a positive a
represents a back-facing polygon that in turn will
need to be culled from the scene.

The third technique that we introduce is the original
Relational Position Culling technique, based on pre-
processing the terrain landscape into patches (see
Figure 8). Each patch would contain the Binary
Triangle Tree structure of its terrain data and store
each triangle’s detail information within its node.
Additionally, a visibility flag is stored to determine
which patch is seen within the view frustum. This
approach is developed to quickly cut the generalized
unnecessary terrain data from the terrain data set.
Initially, the algorithm determines the frustum
triangle corners from a two-dimensional (2D) view
frustum, which gives the algorithm the user and
user’s viewpoint’s positions. These three points are
used to determine the minimal rectangle that
encompasses the 2D view frustum. Any points not
within this rectangle are immediately culled.
Advantages of this method is its simplicity and
performance, that will be discussed in the
experimental section.

6. ERROR METRICS
The ROAM method described above in combination
with dynamic LOD algorithm is an accurate and
consistent algorithm for constructing terrain meshes
that optimize a flexible, view-dependant error
metrics. The use of error metrics in this fashion
produces guaranteed error bounds that achieves
specified triangle counts directly. We utilize three
major error metric techniques in order to obtain
realistic terrain rendering and validate the proposed
culling techniques. They help to determine which
polygons need to be rendered and to validate the
terrain for realism.

Cracks are introduced in a rendered terrain mesh
when two adjacent nodes are not subdivided to the
same detail level. The addition of cracks will prevent
the user from gaining an accurate or realistic
perception by viewing the rendered terrain. To avoid
cracks ensure that the two neighbours nodes have the
same number of vertices before being rendered.
Checking the node neighbours in all four directions
while rendering the node can determine if a crack
exists.

Popping occurs when the rendered terrain does not
move smoothly giving the impression that the
background mesh pops up and down due to the
adding and removing of vertices. Popping can be
rectified by producing only a limited number of
levels of details based on the terrain data and can
measured visually by looking at the terrain as it is
being rendered.

Using View First Frustum error metric easily allow
the terrain to be rendered to differentiate detail level
by examining the rendered terrain within and outside
the view frustum.

7. EXPERIMENTAL RESULTS
The algorithms were implemented in Open GL
environment, in a form of a user-friendly real-time
interactive software, which also allowed ‘fly-
through’ over the rendered terrain. A variety of
parameters could be selected from the drop-down
menus, such as patch sizes, culling technique to be
used, error metrics, rendering views or automated
pre-selected paths. Numerous statistics were
measured, including initialization time, number of
culled triangles, number of triangles per path,
number of frames per second and the number of
triangles per frame (Figure 4).

Figure 4. Sample Rendering of ROAM (above-

surface, below-triangulation)

The main goal of this research was to determine
more efficient methods for terrain data
representation, based on the dataset attributes. This
was accomplished by examining each combination of
culling techniques, View frustum, Position based and
Backface culling on two different terrain data sets.
The first data set is a representation of the town of
Susanville, California, which symbolizes a set of
simple and gradual terrain height contours. The
second dataset, Canada’s Kluane National Park
represents a more detailed and steep set of height
points. Each terrain data set will have a consistent
input path that will be defined prior to each map
being loaded. Both terrain datasets will be examined
by the size of each patch, which is referenced, by the
size of its corresponding patch array. The array size
number represents the size of the 2D array.

When examining the results from the aforementioned
experiment, several relationships were observed
throughout the entire procedure. One of the most
notable observations was the change of the number
of frames per second (frame rate) during each of the
paths corresponding step. Figure 5 demonstrates the
change in frame rate with View Frustum, Position
based and Backface culling enabled with three
distinct patch sizes represented by their
corresponding array size. The size-16 frame rate
performs as expected with the graph trend line
remaining rather flat and consistent throughout the
entire experimental path, except for its initial load up
stage, which is completed by the 25th frame. The
size-64 frame rate demonstrates some interesting
qualities. The first 100 frames emulates a similar
pattern as the size-16 trend line with the exception of
a consistently lower frame rate due to the increase of
the number of patches that need to be rendered. The
size-64 trend illustrates a significant increase in
frame rate from frame 100 to 170.

Frames per Second -- Kluane,
Frustum(on), Position(on),

Backface(on)

0
2
4
6
8

10
12

1 38 75 11
2

14
9

18
6

22
3

Frame

Fr
am

e
/ S

ec
on

d

Size 16
Size 64
Size 128

Figure 5. Frames per Second Chart

The same pattern is noticed when examining the
number of triangles per frame (Fig. 6). The decrease
in triangles per frame also corresponds to the first left
hand turn. This is due to the quick pace of the turn
and the difficultly of the rendering engine to
propagate the necessary triangle detail levels before
the next turn begins. As each turn is performed, the
viewed landscape’s true detail level is reduced.

The number of triangles per frame continues to
reduce as the turn progresses. This is the result of
the view frustum largely shifting out of the frame of
view. The trend line flattens as the forward
movement allows the rendering engine time to
increase the detail level of each frame, due to the
limited changes in the view frustum. As the next
turn progresses, the number of triangles per frame
reduces and the trend line continues to decrease. The

rise of the size-64 trend line frame 180 is due to
quick left and right turns which would leave the
middle section of the view frustum untouched with
only the frustum edges needing to be recomputed.
The largest increase in the size – 64’s trend line is
due to the experimental path moving directly
backwards.

The trend line in Figure 6 also demonstrates the
experimental path’s turn and increases its steep drop
corresponding to the reduction of the number of
triangles per frame. A similar correlation can be seen
through examining the size-128 Number of triangles
per Frame trend lines. As expected, due to the even
smaller patch size, any view frustum change is
amplified and can be seen as a more significant
change in its trend line. Additionally, the size-128
Frames per Second trend line illustrates the same
basic relationship as the size-64 trend line, but due to
the size-128’s smaller patch sizes, the change
between frame rates appears more gradual.

Number of Triangles / Frame --
Kluane, Frustum (on), Position (on),

Backface(on)

0

5000

10000

15000

20000

25000
1 44 87 13
0

17
3

21
6

Frames

Tr
ia

ng
le

s Size 16
Size 64
Size 128

Figure 6. Number of Triangles per Frame

The experimental path using Susanville data,
illustrates the same consistencies as the Kluane data.
This demonstrates that the change of landscape
parameters and detail levels hold little correlation of
this experimental path’s resulting data.

Additional experiments illustrate that having either
the Position based culling or the View Frustum
culling techniques correlate in the same fashion as
Figure 6, both Position and View Frustum techniques
active. However, the position based culling is more
susceptible to the frustum change than the frustum
technique.

The time management relationship of the split and
merge algorithms was also explored. The
experimentation demonstrated that patch size has a
correlation between the times being spent in each
algorithm. Larger patch sizes effectively provide
frustum buffer that allow the merge algorithm time to
reduce the triangle count of the patch before it is
eliminated. As the patch size becomes smaller the
merge algorithm becomes less effective as the split
function is now more in demand.

8. CONCLUSIONS
The main contribution of this paper is in the
development of adaptive real-time rendering
algorithm based on ROAM technique, combined
with culling and error metric techniques for increased
rendering speed, smoothness and realism. A novel
Quadrant Based Position culling technique is
introduced.

Quantitative analysis of culling techniques in
combination with error metrics is performed and
provides insights on the best approach depending on
the terrain model rendered. Examining both the
number of frames per second and the number of
triangles per frame suggests a number of
correlations. When investigating the experimental
path’s frame rates in respect to culling techniques, it
was shown that the patch sizes within the landscapes
are significantly related to the change of frustum
position. This correlation is confirmed by examining
the number of triangle rendered per frame. Within
the experimental culling technique sets, the results
indicate that Backface culling was a less dominate
method of View frustum or the Position based
culling techniques. Another conclusion that can be
drawn is that the Position based culling, while
working in broad cuts, is significantly related to the
change in movement of the frustum. View frustum
culling had similar effects as the Position based
culling but was not as heavily related to the motion
of the frustum.

9. REFERENCES
[Assarsson] Assarsson, U. and Moller, T. Optimized

View Frustum Culling Algorithms for Bounding
Boxes, Journals of Graphics Tools, 2000.

[Blow] Blow, J Terrain Rendering at High Levels of
Detail, in Proceedings of the Game Developers'
Conference, San Jose, California, USA, 2000.

[Burtch] Burtch, B Geographic Information Systems.
2000.

[Carr] Carr, J. Data Visualization in the Geosciences,
Prentice Hall 2002.

[Coorg] Coorg, S. and Teller, S. Real-Time
Occlusion Culling for Models with Large
Occludes, ACM Symposium on Interactive 3D
Graphics, 1997.

[DeBerg] De Berg, M. and Dobrint, K. On levels of
detail in terrains, Proc. 11th ACM Symposium
on Computational Geometry June 1995.

[Docks] Docks, J. Another Introduction to GIS, New
York: Bogus Press, 1997.

[Duchaineauy] Duchaineauy, M, Wollinshy, M.
ROAMing Terrain: Real-Time Optimally
Adapting [Meshes] Meshes, IEEE Visualization
’97 Proceeding, 1997.

[Garland] Garland, M.and Heckbert, P. Surface
Simplification Using Quadric Error Metrics,
SIGGRAPH 99, 1999.

[Lindstrom] Lindstrom, P, Koller, D. Real-time
continuous level of detail rendering of height
fields, Computer Graphics, SIGGRAPH 1996
Proceedings, pp 109-118, 1996.

[NMD] National Mapping Division, U.S. Geological
Survey, US GeoData Digital Elevation Models
http://geog.hkbu.edu.hk/QZone/Teaching/.

[Turner] Turner, B. Turner. Real-Time Dynamic
Level of Detail Terrain Rendering with ROAM,
Gamasutra 2000.

[Zhang] Zhang, H. and Hoff, K. Fast Backface Using
Normal Masks, SIGGRAPH 00, 2000.

[Zhao] Zhao, Y. Ji, Zhou et al. A Fast Algorithm For
Large Scale Terrain Walkthrough,
CAD/Graphics ‘2001, 2001.

