Efficient Image-Based Projective Mapping using
the Master Texture Space Encoding

Randall Stevens
ArchVision, Inc.
110 South UpperSt.
Lexington, KY 40507

rstevens@archvision.com

David Guinnip, David Rice, C hristopher
Jaynes
Dept.of Computer Science
University of Kentucky
Lexington, KY 40506

jaynes@netlab.uky.edu
ABSTRACT

We introduce an encoding technique that supports efficient view-dependent image-based rendering applications
that combine photorealistic images with an underlying surface mesh. The representation increases rendering
efficiency, reduces the space required to store large numbers of object views, and supports direct image-based
editing for realistic object manipulation. The Master Texture Space encoding transforms an original set of
exemplar images into a set of Master Textures that share a globally consistent set of texture coordinates based on
underlying object geometry and independent of camera positions used to create the exemplar views.

An important property of the master texture space is that an arbitrary but fixed pixel position in all the Master
Textures correspond to the same point on the object surface. This property increases rendering efficiency for real-
time dynamic image-based rendering applications because new texture coordinates do not have to be loaded as a
function of viewpoint. In addition, changes in a Master Texture image can be rapidly propagated to all views to
add/remove features, generate new viewpoints, and remove artifacts to a pre-existing image-based scene. Results
presented here demonstrate that the technique reduces real-time rendering rates by 1.6 milliseconds per frame for
reasonably complex models on a commodity graphics card. Two example scenarios demonstrate how the Master

Texture encoding supports efficient update of an image-based model.

Keywords

Image-based rendering, texture mapping, compression, image processing.

1. INTRODUCTION

Image-based rendering has emerged in recent years as
an approach to rendering three-dimensional scenes
[Lip80] without the representation of an overly
complex geometric model. As opposed to pure
geometric approaches, the image-based approach uses
real-world images of an object or scene as the basis
for rendered viewpoints to achieve photorealism.

The image-based approach maximizes realism (by
using real-world imagery) while minimizing
rendering time. Image-based rendering is particularly
successful for complex objects that are cumbersome
to represent in a purely model-based domain (e.g.
Cars, Trees, and People). Today, image-based
content is used in both still renderings, off line
animations, and in real-time interactive applications
[Arc02].

Permission to make digital or hard copies of all or part
of this work for personal or classroom use is granted
without fee provided that copies are not made or
distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first
page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific
permission and/or a fee.

Journal of WSCG, Vol.11, No.1., ISSN 1213-6972
WSCG’2003, February 3-7, 2003, Plzen, Czech Republic.
Copyright UNION Agency — Science Press

There have been many techniques introduced for
representing image-based content [Che93, Deb98,
Gor96, Lav94, Lev96]. All of these techniques can
be described as view dependent, in that images
captured from known positions in the world are
dynamically selected (or interpolated) based on the
current rendering view. Each technique utilizes some
geometric representation of the object to be rendered
in order to incorporate the image-based model into a
scene. Model complexity varies from a single plane
to complex surface meshes, onto which images are
statically or projectively mapped.

This continuum of full geometry versus complete
image-based rendering offers users the ability to
represent objects based upon application needs.
Points in this continuum can yield different levels of
detail depending upon the application requirements.
A single polygon and 200 views may be a sufficient
for a model of a person that is to be inserted into an
office scene and rendered from a distance. On the
other hand, a vehicle, rendered from nearby may
exhibit significant perspective distortion that is not
modeled in the available viewpoints. In this case, a
simple object mesh can be combined with the
available images to improve the rendered result.

This paper will focus on view-dependent projectively
texture mapped (VDTM) objects with an underlying
mesh of moderate complexity. We introduce an

encoding technique designed to support
photorealistic image-based rendering, and view-
dependent projective texturing of objects. The
encoding process transforms an original set of object
views into Master Texture Space, so that the new
images share a globally consistent, single set of
texture coordinates regardless of the camera positions
used to create the initial images.

This global set of texture coordinates only needs to
be stored once and is invariant with respect to the
number of images used for the image-based model.
For standard conditions the Master Texture encoding
can achieve reasonable compression rates while
increasing rendering efficiency.

The encoding process guarantees that Master Texture
images are pixel-wise aligned to one another. This
alignment property supports efficient image-based
editing, straightforward view interpolation, and
efficient updating of previously captured image-based
scenes.

2. IMAGE-BASED APPROACHES AND
RELATED WORK

At the heart of image-based rendering techniques is
direct processing of image data to derive new views
of an object or scene. Typically, a set of exemplar
images is captured of a scene of object from many
viewpoints. These images are, combined with
known camera positions, are the basis for rendering
new views either by directly placing the captured
image data into the scene or first by interpolating
between known views. Surface constraints, (e.g. that
the model is piecewise planar), can be used to
constrain the interpolation process. As opposed to a
purley image-based approach, explicit use of a low-
resolution model has been shown to improve
rendering quality and extend the range of viewpoints
available for novel views [Nis99, Deb96].

The Master Texture encoding is applicable to image-
based rendering techniques that combine a geometric
model with view dependent texture mapping
(VDTM). Techniques described in [Deb96] employ
VDTM to achieve photorealistic novel views from a
sparse set of images by projecting interpolated pixel
data directly onto low-resolution models. A distinct
advantage of this approach is the ability to
realistically integrate image-based models into
computer-generated scenes. Even low-fidelity
geometric representation supports model interaction
within its environment (e.g. illumination, shadow
casting). Combination of image-based views of an
object with an underlying surface representation can
be efficiently implemented as a projective texture
map [Hec91], and is widely supported in rendering
engines, real-time displays, and graphics hardware.

Image-based modeling and rendering techniques that
do not exploit a geometric representation [Mat02,
Che93, Lav94] use morphing maps of adjacent

images to render a new images from viewpoints not
contained in the original set of basis views.
Interpolation requires accurate camera calibration to
the object coordinate system, or known relative
calibration between the exemplar views for
constrained epipolar interpolation [Car01]. Although
approaches that use partially reconstructed surfaces or
range data to constrain the interpolation process
[Deb98, Mcm97] have been introduced, interpolative
methods still rely heavily on accurate point
correspondences between images and are typically
only robust given a dense sampling of base images.

Explicit estimation of the Plenoptic function has
advantages similar to the view dependent texture
mapping in that novel viewpoints can be
reconstructed from a set of basis images without
modeling the optic flow of pixels as they move from
one camera to another [Mcm95]. Light-Field
rendering [Lev96] and the Lumigraph [Gor96,
Bue01] reduce the dimensionality of the plenoptic
function while utilizing a sparse mesh representation.
A drawback these techniques share is the dependence
on a large number of images for accurate estimation.
Furthermore, these approaches are not widely
supported in hardware and do not support real-time
image-based rendering.

Regardless of the particular tradeoff between
exemplar views and geometry that each of these
approaches make, rendering quality and resolution is
limited by the number of basis images that can be
stored and efficiently rendered. The large number of
exemplar images, calibration information, and object
mesh required for VDTM pose a significant challenge
to efficient storage and rendering of photorealistic
models. As a result, researchers have been
addressing representation, manipulation, and efficient
rendering of image-based data [Che02, Deb98].

In work perhaps most similar to our own, [NisO1]
describes an encoding scheme that stores all the
views of a particular model face in a single image
texture. This representation has the advantage of
being amenable to off-line compression methods and
results show that the technique is able to achieve
between 5:1 and 15:1 compression rates with little or
no loss in image fidelity. However, manipulation of
the representation is cumbersome and, more
importantly, rendering of an object encoded using the
Eigentexture [NisOl] do not support real-time
applications because texture coordinates are computed
at rendering time based on viewpoint.

Our approach is motivated by the observation that a
single set of texture coordinates for any number of
basis views is desirable for render-time compression
and efficiency. The Master Texture Space preserves
image fidelity contained in the exemplar views,
achieves reasonable compression, and facilitates
efficient rendering and manipulation of the encoded
images.

(0)

(l’.])3m

Figure 1: Traditional view-dependent projective
texture mapping approach. Exemplar images of
a real-world object from » viewpoints (top left)
are dynamically combined with a mesh using a
set of texture coordinates based on the current
view.

3. MASTER TEXTURE GENERATION

Current approaches to projective texture mapping
first select or create an appropriate image of the scene
using the exemplar images based on the view of the
object to be rendered. This image is then projectively
mapped to the object mesh to support lighting
effects, and induce depth effects (such as
foreshortening) not present in the mesh alone
[Deb96]. Because it is infeasible to compute texture
coordinates in real-time using the available projection
matrices, the mapping between object vertices and
image coordinates must be precomputed and stored
as a set of texture coordinates with each image.
Given a mesh containing m triangular faces, and n
exemplar images, between 3m*n and m*n texture
coordinates must be stored with the model. In total,
then, the images, model, and texture coordinates are
used at render time to facilitate a dynamically texture
mapped, photorealistic model. Figure 1 depicts this
general approach.

Although VDTM successfully combines
photorealistic images with simple geometric models,
the amount of data required to achieve a high
fidelity, accurate representation of the object is
significant.

The general approach to computing the Master
Texture space encoding is to precompute the
relationship between all exemplar images and the
object mesh. Mesh elements are projected into all
exemplar images to produce a corresponding set of
image regions (facets) that are extracted, warped and
stored in the Master Texture space.

When facets are moved from the original image space
to the Master Texture space, a new set of texture
coordinates are created under the constraint that all

Master Textures share a single set of coordinates.
Given a mesh containing m faces associated with n
exemplar images, only 3m coordinates are needed to
completely represent the relationship between mesh
faces and any number of example images.

The encoding process requires a significant amount
of processing. It is important to note, however, that
this is a one time encoding cost that is not
recomputed at rendering time. As will be shown in
Section 4, advantages of the Master Texture
representation outweigh this one-time cost.

The Master Texture encoding guarantees that a pixel,
(i,j), in Master Texture image k corresponds to the
same point on the surface as pixel (i,j) in all other
Master Textures. This pixelwise correspondence is
an important advantage of the Master Texture
encoding both because it represents a significant
compression over storing all texture assignments
explicitly, and image-based operations such as
interpolation can occur on the now pixel-aligned data
directly in Master Texture space.

The Master Texture Encoding Algorithm
The first step in creating a set Master Texture images
from a set of n different exemplar images is to
project each of the m mesh triangles into each view
to produce n*m image facets. For a single mesh
triangle, n facets, comprised of 3 image coordinates,
(u,v)1,23, are generated for each of the n views using
the known projection matrix corresponding to each
view:

m 3 Vone
S e fs |- 2|

1.0

(Equation 1)

For non-degenerate cases, a mesh triangle
corresponds to a triangular region in each image.
Pixel data within each triangular region is rasterized
to produce a facet containing image information
Next, the n different facets corresponding to a single
mesh face m, are transformed to be of uniform size
and shape.

All facets are warped to a right triangle of width w
and height 4, where w and 4 are the maximum
independent width and height of any the n facets
corresponding to a single mesh face. For a given w
and 4, an affine warp, given by the matrix C of
Equation 2, is applied to each of the n facets:

X Yo Zo 0 0 O
0 0 0 x, » 2z
e xx y z 0 0 O B-

0 0 0 x y 2z
X, ¥y, z, 0 0 O

> o o =2 o o

0O 0 0 x, y, 2z

A'B=C (Equation 2)
Where A is the set of initial image coordinates of the
mesh triangle, B is a vector containing the target
coordinates of the warped facet. Note that B is
constructed so that the resulting facets are all aligned
with the image axes. Figure 2 shows three facets
from a single face m, as seen from different views of
an object before warping (inset top row) and after
they have been warped to Master Texture space.

Figure 2: Example of facet extraction and
warping. (top row) Three images of a real-
world car object. A single mesh face
corresponding (insert on each view, top row) as
seen in each image. (bottom row) Facets are
extracted and warped to uniform shape and
size.

Once all facets corresponding to a particular mesh
face have been warped, they are of uniform size and
shape regardless of their initial projectively warped
shape. This step ensures that corresponding facets in
different Master Textures can be pixelwise aligned
and that the facets are of maximum fidelity.

Ultimately, each exemplar view will be discarded and
replaced by a corresponding Master Texture. Each
Master Texture image is composed of m different
facets corresponding to the m different mesh faces as
seen from that view. The m different facets are
placed into the Master Texture according to a packing
algorithm that minimizes unused pixels in the
Master Texture image.

An exemplar view is selected and the m facets,
produced for that view are packed into a new image.
The algorithm proceeds from the largest to the
smallest facet, placing each into the Master Texture

as efficiently as possible. Prior to packing, each
facet is paired with a facet of similar area and
reflected across the x and y-axes. A bounding box is
fit to the result. Figure 3 shows two facets before and
after the facets been oriented and fit to a bounding
box. The resulting bounding region is packed into
the new Master Texture image.

Figure 3: Example of facet combination and
packing. (top row) Facets belonging to the
same view are paired according to size. Facet
at top right is rotated and combined with next
largest available to fit both into a bounding
box (bottom left). Result is inserted into a
Master Texture image using the packing
algorithm.

Bounding boxes are packed into the image at the
leftmost and topmost position that the bounding box
will fit. This process is repeated until all m facets
corresponding to a single image have been placed
into the Master Texture for that view. Figure 4
shows a Master Texture derived from a single view
of the car example.

When the process terminates, a packing map that
determines how all facets are placed into the Master
Texture is stored. Because each facet in a Master

Figure 4: A master texture image computed
for view 17 of the BMW model shown in
Figures 1 and 2. Resulting image resolution
is 438x686.

Texture corresponds to n-I other facets that are
exactly the same size and shape, this same packing
map can be used to efficiently generate the remaining
n-1 Master textures. These new images, the mesh,
and a single set of texture coordinates are all that is

(@)

Figure 5: Results of the Master Texture encoding applied to the three different test objects. Each
example shows an exemplar image (top left), object mesh (bottom left), example Master Texture , and
the rendered view (at right). (a) Lamp example, n views, m polygons. (b) Helicopter example, 36
views and 436 polygons. (c) Vehicle example, 28 views and 820 polygons. For related videos the
reader is encouraged to visit www.metaverselab.org/research/digital-objects/master/index.html.

needed for efficient, view-dependent rendering of the
object using the available images. Because only
redundant information was destroyed in the encoding
process, renderings that use the Master Texture
encoding have the same fidelity as those that make
explicit use of the original image data.

4. RESULTS AND EXAMPLE
APPLICATIONS

The master texture space-encoding algorithm was
tested on several datasets to demonstrate compression
rates and efficient use of the Master Texture space.
We demonstrate the encoding on datasets of varying
mesh complexity and varying numbers of exemplar
images. The criteria for evaluating the approach are 1)
efficiency of rendering a Master Textured object from
changing viewpoints, 2) compression rate of the
Master Texture encoding as compared to traditional
texture mapping 3) efficiency in editing the image-
based data while it is stored in the Master Texture
representation.

Three datasets were used to understand the behavior
of the Master Texture encoding (shown in Figure 5).
Exemplar images for the Lamp and Helicopter
objects were rendered using a very-high resolution
object mesh with surface markings. Exemplar
images of the third object, a BMW 325ti, were
captured from the real word. These images were
calibrated from a target placed in view of the
exemplar images.

Encoding times are dependent on mesh resolution
and number of exemplar images. Typically encoding
times range from 8 minutes, for 436 polygons to 26
minutes for 8020 polygons on a Pentium IV 1.7Ghz
machine.

Once encoded into Master Texture space, rendering
efficiency is improved by removing the need for
multiple sets of texture coordinates. The transfer
time required to move new texture coordinates from
system memory into the graphics pipeline must be
taken into account when rendering complex image-
based data that cannot all be stored on a graphics
card. For a polygon mesh of 8020 polygons we
measured this transfer time to be 1.6 milliseconds for
each view on a Pentium IV 1.7Ghz machine with a
4x AGP bus and a GForce III graphics card. Using
the Master Texture encoding, this fixed, per-view,
overhead is eliminated.

Mesh | Views |Image [Master |Compression

Size Size Texture |Ratio
Size

Lamp

1842 |90 640x480 [466x932 [1:2.2

Heli

436 360]720x576(316x540 |1:2.4

6,604 |72 720x576 |620x12141 : 1.76

7,259 136 720x576 [820x1650(3 : 1

Car

651 28 640x480 |438x686 |1 : 1.1

Table 1: Compression ratios for three different
datasets of varying mesh size, exemplar image size,
and number of views.

Compression rates each of the three different objects
were measured and, in the case of the “Heli” dataset,
mesh complexity was varied. Compression rates are
measured as the ratio of total bytes required for
traditional VDTM versus VIDM using the Master
Texture encoding. Table 1 summarizes the results of
the experiment.

Compression rates, particularly for complex meshes
and many exemplar views, are not dramatic. This
trend is demonstrated by the “Heli” model in Table
1. As mesh complexity and the number of views
increases, mesh faces are likely to be seen as small
(foreshortened) triangles in some views. These are
resized to the maximum image triangle as seen in
any view during the encoding process. This
increases the resulting Master Texture size and
decreases compression rates. This is unsurprising, in
that the master texture encoding was developed to
support image-based rendering scenarios. As the
mesh size increases, the geometry begins to dominate
the image data and the situation begins to
approximate traditional geometric rendering. In cases
were the mesh size is reasonable, the Master Texture
encoding significantly decreases the amount of
storage required for VDTM while increasing
rendering efficiency.

Image-Based Editing

Once a set of images are captured under controlled
conditions or rendered for an image-based rendering
dataset, post-editing of the image data is a
cumbersome process [Sei98]. For example, using a
calibrated camera to capture multiple views of an
indoor scene may be used to render photorealistic
architectural walkthroughs. If the scene is to be
modified (i.e. a billboard advertisement may be
inserted), all images must be modified by back
projecting the geometric position of the new object
into all views wusing the camera calibration
information. This requires /6*n* v multiplies for an
object of v vertices, seen in n different exemplar
views.

Alternatively, an image-based approach may be taken
by painting the new billboard into each view

appropriately. Editing of an exemplar view,
however, requires that pixel correspondences are
known for all exemplar views containing the new
object. Discovering correspondences can be costly
and, particularly in the case of real-world imagery,
may be prone to error.

Because Master Texture images are pixel-wise
aligned across all views regardless of the relative
viewing geometry between the model and each view,
changes to any one of the master textures can be
easily propagated to all views. This is can be
performed efficiently without the need to rediscover
pixel correspondences.

We demonstrate this technique using two examples.
In one example, changes made directly to an
exemplar image are propagated to all views to
support photorealistic rendering of the object
containing the new data. In a second, more complex
example, changes on the underlying geometry are
first rendered to create a new image that is encoded
using a known packing map to produce a new Master
Texture image that can then be incorporated into the
master texture space.

4.1.1 Direct Image-Based Editing of an
existing Master Texture Encoded Space

A dataset was first created by capturing 28 controlled
views of a car rotating in front of a calibrated digital
camera. Exemplar views were captured at a
resolution of 640x480 pixels. A corresponding
geometric model containing 651 polygons was
created by hand digitizing points on the object. The
object mesh and an exemplar view are shown in
Figure 5c).

Using the mesh, images, and corresponding camera
calibration information, each exemplar view was

Figure 6: An image-based editing example. Original image and corresponding Master Texture
shown at top left. Edited image and new Master texture are shown top column (a license plate has
been added in this case). Pixelwise subtraction of the new Master Texture from the old reveals pixels
that have changed (top right). These pixels are written directly into all Master Texture views to
update the complete model that can then be viewed from new positions (bottom row).

encoded into a Master Texture space. This results in
28 Master Texture images. An example Master
Texture image created from one exemplar is shown in
Figure 6 (top left).

Exemplar view, /, directly behind the car was editied
by inserting a licence plate. The resulting image, I’
was encoded to produce a new Master Texture image,
M. Figure 6 (top row) shows the initial exemplar
image I, its Master Texture encoding M, the edited
exemplar /’, and the new Master Texture, M.

Since / and I’ were both encoded using the same
procedure, M and M’ will also be identical except for
the edited regions. Therefore subtraction of M and
M’ yields a set of pixels, A, in the Master Texture
space that correspond to edited regions for all views.
Figure 6 (top right) shows a difference image
containing only pixels from the set A.

All views in the Master Texture space are updated
through a pixel-wise addition of A. This operation
requires no processing to determine (or search) for
pixel correspondences and does not make explicit use
of the camera calibration information (that has
already been implicitly used in the creation of the
Master Texture Space). Furthermore, pixelwise
addition of image arrays can be easy implemented in
hardware. The bottom row of Figure 6 shows the car
rendered from three views using the modified Master
Texture images.

4.1.2 Updating Master Texture from Changes
in an Arbitrary View

A second example demonstrates how the Master
Texture space supports efficient updating of images
when a new view is introduced that does not
correspond to an existing exemplar image (as in the
previous example). Using techniques similar to the
one shown here, relighting of the object mesh,
changes to material properties on the surface,
shadowing effects, and other object space updates,
can be rapidly propagated into an existing Master
Texture space.

Starting with the original dataset described in section
4.1.1, a tree model and light source are placed into
the virtual scene containing the car mesh. A shadow
is then cast on matte shaded mesh surface. In a
traditional image-based rendering scenario, update of
all existing exemplar views with the new lighting
effect requires significant computation.

In order to propagate the new effect into Master
Texture space, a viewpoint that shows the desired
effect (in this case the shadow) is selected. From that
view, the shaded mesh is rendered both with and
without the desired effect enabled, resulting in two
new images / and [, respectively. An image of the
object mesh with the shadow effect enabled is shown
in Figure 7 (top left).

Both images are then encoded into the master texture
space using the same packing map P of the original

Figure 7: An image-based editing example.
This example adds a shadow to the sequence
of master images by projecting a computer-
generated shadow onto the geometric model
of the car.

dataset. As before, a set of difference pixels are
derived by subtracting the two new Master Texture
images M and M’. The difference image is shown
Figure 5 (top right). These differences are propagated
into all views through pixel wise addition across the
n Master Texture views.

Once a new set of Master Textures has been
computed, the new image-based model can be
dynamically observed without having to recompute
the effects of the shadow at render time. Figure 7
(bottom row) shows two views of the new model
texture mapped with the modified Master Textures.

In this example, the shadow will appear consistent in
scenes where the car and shadow are stationary.
Figure 8 depicts the new image-based model placed
into a scene containing the shadow-casting tree.
Using image-based techniques for efficiency, static
shadows for all objects in the scene are precomputed
and texture mapped onto a planar surface (Figure 8a).
Placement of the old image-based model into the
scene results in car without shadow and a
perceptually inconsistent scene (Figure 8b). The new
image-based scene appears consistent without the
need for expensive shadow casting operations to be
computed at render time, and can now be viewed

from any view in real-time (Figure 8c) (see
www.metaverselab.org/research/mastertexture for
related videos).

CONCLUSION

We have introduced the master texture encoding and
have demonstrated how it can be used to improve
compression and efficiency for view-dependent
texture mapping applications. Examples, presented
here, show that for sparse meshes and large numbers
of images, the master texture encoding achieves over
50% compression for common image-based, view-
dependent texture mapping scenarios.

(@)

(b)

Figure 8: Rapid relighting of a Master Texture dataset. (a) Scene containing precomputed shadows.
(b) Car object added before relighting effect. Inconsistent shadow cues destroy realism. (c) Object
added to scene after the master textures have been modified.

The pixel-wise alignment of the master texture
images supports rapid modification of the master
texture space that can be directly propagated into all
views without explicit use of image calibration
information. We are currently exploring how the
master texture encoding can support entire scenes
rather than a single object. We expect that a single
set of globally consistent texture coordinates can be
applied to site walkthroughs, for example

5. REFERENCES
[Arc02] ArchVision RPC technology. Real trees, real
people. www.rpcnet.com

[BueO1] Buehler, C., Bosse, M., McMillan, L.,
Gortler, S., Cohen, M. Unstructured Lumigraph
Rendering. In Proceedings ACM SIGGRAPH 2001,
pp- 425-432 August 2001.

[Car01] Carpenter, C.S., Seales, B., Jaynes, C., and
Stevens, R. Automated basis-view and match-point
selection for the ArchVision RPC image-based
model. In Proc. of the Inter. Conf. on Multimedia,
September 2001.

[Che93] Chen, S. E. Williams, L. and View
interpolation for image synthesis. In Proceedings,
ACM SIGGRAPH 1993, pp. 279-288 July 1993.

[Che02] Chen, W-C., Bouguet, J-Y., Chu M.,
Grzeszczuk, R. Light Field Mapping: Efficient
Representation and Hardware Rendereing of Surface
Light Fields. In Proceedings, ACM SIGGRAPH
2002, pp. 447-456 2002.

[Deb96] Debevic, P., Taylor,C., and Malik, J.
Modeling and rendering architecture from
photographs: A hybrid-geometry and images-based
approach. In Proceedings, ACM SIGGRAPH 1996,
pp- 11-20, August 1996.

[Deb98] Debevic, P., Yizhou, Y.,and Borshukov, G.
Efficient View-Dependent Image-Based Rendering
with Projective Texture-Mapping. Eurographics
Rendering Workshop 1998, pp. 105-116, June 1998.

[Gor96] Gortler, S., Greszczuk, R., Szeliski, R., and
Cohen., M. The lumigraph. In Proceedings, ACM
SIGGRAPH 1996, pp. 43-54, August 1996.

[Hec91] Heckbert, P. and Moreton, H. Interpolation
for polygon texture mapping and shading. State of
the art in Computer graphics: Visualization and
Modeling, 1991.

[Lav94] Laveau, S. and Faugeras, O. 3-D scene
representation as a collection of images. In
Proceedings of 12th Inter. Conf. on Pattern

Recognition, Volume 1, pp. 689-691, 1994.

[Lev96] Levoy, M. and Hanrahan, P. Light field
rendering. In Proceedings, ACM SIGGRAPH 1996,
pp. 31- 42, 1996.

[Lip80] Lippman, A., Movie-Maps: An Application
of the Optical Videodisc to Computer Graphics. In
Proceedings, ACM SIGGRAPH 1980.

[Mat02] Matusik, W., Pfister, H., Ngan, A.,
Beardsley, P., Ziegler, R., and McMillan, L. Image-
Based 3D Photography using Opacity Hulls. In
Proceedings, ACM SIGGRAPH 2002, pp.427-437,
2002.

[Mcm97] McMillan, L. An Image-based Approach
to Three-Dinensional Computer Graphics. PhD
thesis, U. of North Carolina, Chapel Hill, 1997.

[Mcm95] McMillan, L., and Bishop, G. Plenoptic
Modeling: An image-based redering system. In
Proceedings, ACM SIGGRAPH 1995.

[Nis99] Nishino, K., Sato, Y,, Ikeuchi, K.
Appearance compression and synthesis based on 3d
model for mixed reality. ICCV 99, pp. 38-45, 1999.

[NisO1] Nishino K., Sato Y. and Ikeuchi K., Eigen-
Texture Method: Appearance Compression and
Synthesis based on a 3D Model, in [EEE PAMI,
23:11, pp.1257-1265, Nov., 2001.

[Pul97] Pulli, K., Cohen, M., Duchamp T., Hoppe,
H., Shapiro, L., and Stuetzle, W. View-based
rendering: Visualizing real objects from scanned
range and color data. In Proc. of 8th Eurographics
Workshop on Rendering, St Etienne, France, pp. 22-
34, June 1997.

[Sei98] Seitz, S. and Kutulakos, K. Plenoptic Image
Editing. In Proceedings of 5th ICCV, pp. 17-24,
1998.

