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ABSTRACT

A new model for representing an unorganised 3D data points set is proposed. Based on superquadrics, this model
allows to describe the points set with a union of superellipsoids. Two different segmentation and modeling methods
are developed in order to determine the whole model: a region growing approach and a split and merge one. This
second method leads to a low sensitive model compared to the one obtained by the region growing. The model
is simple and compact: only 11 parameters are needed per superellipsoid. It seems promising for 3D object
compression and 3D object indexing and retrieval. As the topological relations of the superellipsoids are known,
the model can be associated to a graph. The graph theory can thus be used in order to compare and to measure the
similarity between 3D objects.
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1 INTRODUCTION

This study concerns the segmentation and modeling
of an unorganised 3D data points set. The constraints
imposed to the model are related to the concerned ap-
plications:

• coarse visualisation of the 3D object represented
by the points set;

• indexing and retrieval of similar 3D objects from
dedicated databases providing a descriptor;
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• compression of the data set for transmission and
storage.

We need a simple descriptor which allows the repre-
sentation of a 3D data set using a very compact model
and the reconstruction of a coarse version with a con-
trolled distortion rate (fuzzy approximation). For this
purpose, we choose to describe 3D objects with a set
of primitives which are superellipsoids.

Superellipsoids have already been used to model 3D
object [3, 7, 10]. In the majority of these studies, range
images of the 3D object or the 3D scene are used for
modeling. Range data have regular layout and are or-
ganised in the sense that neighbouring points on the
image are mostly neighbouring points in space. We
want to deal with more general 3D data without any a
priori knowledge. The 3D points set considered in this
study is irregular and unorganised.

We propose to compare two different ways to obtain
the descriptor. The first one is an extension of the re-
gion growing method proposed by Leonardis [7, 8].
The second way is an original split and merge ap-
proach that we have developed.

Section 2 defines the primitive surface descriptor:
the superellipsoid. In section 3, we show how 3D data



can be approximated using only one superellipsoid.
Section 4 gives details on the two segmentation algo-
rithms. Finally, the qualitative and quantitative perfor-
mances of the two methods are illustrated in section 5.

2 SUPERQUADRICS AND SU-
PERELLIPSOIDS

The superquadric model [3, 4, 6] has been introduced
in computer graphics by A.H. Barr in 1981. As an
extension of quadric surfaces, four kinds of model can
be distinguished: supertoroid, superhyperboloid with
one or two sheets, and superellipsoid. As the last one
is the only one that defines a closed surface without
hole, it is usually the only one used in our domain area.
For the same reason, we will restrict us to describe 3D
objects with superellipsoids.

A superellipsoid is defined as the solution of the
general form of the implicit equation:
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In this equation, one can recognise an ellipsoid
form, enriched with two more parameters (ε1 andε2)
that allow to control the shape curvature. As for the el-
lipsoid case, thea1, a2, a3 parameters are scale factors
onx, y andz axis respectively.

This form provides an information on the position
of a 3D point related to the superellipsoid surface, that
is important for interior/exterior determination. We
have:

• f(x, y, z) = 1 when the point lies on the surface;

• f(x, y, z) < 1 when the point is inside the su-
perellipsoid;

• f(x, y, z) > 1 when the point is outside.

As an ellipsoid’s extension, a superellipsoid is the
result of the spherical product of two 2D models (two
superellipses). Then, superellipsoids can be defined as
a parametric model from this product:

S(η, µ) =

 a1 cosε1(η) cosε2(µ)
a2 cosε1(η) sinε2(µ)

a3 sinε1(η)

 ,
−π

2 ≤ η ≤ π
2

−π ≤ µ ≤ π

(2)
Being able to switch directly from the implicit to the
parametric representation is one main point of the su-
perellipsoid model. This is really an advantage, espe-
cially for sampling and rendering, because this is much
more difficult with an implicit model.

Moreover, this is a compact model defined by only
five parameters that permits to handle a large variety

of shapes, including: ellipsoid (ε1 = ε2 = 1), par-
allelepiped (ε1 → 0 andε2 → 0), cylinder (ε1 = 1
and ε2 → 0)...(see figure 1). In our application, we
constrainε1 andε2 to be less than2, in order to have
convex shape only. Obviously, the general position of
the superellipsoid is obtained with the addition of three
rotation parameters and three translation ones. Thus,
only eleven parameters are required to describe a su-
perellipsoid.

Figure 1: Examples of superellipsoids according toε1
andε2.

3 APPROXIMATION OF 3D
DATA WITH ONE SUPEREL-
LIPSOID

Given a set of N unstructured 3D data points, the first
challenge is to determine the parameters of our model
for fitting with a global distortion constraint. The
method was formerly proposed by F. Solina in 1990
[11] and is the most popular at the moment. This is
a least squares fitting method. The following global
distortion is minimised:

N∑
i=1

d(xi, yi, zi)2 (3)

where d(x, y, z) is the distance between a 3D data
point and the superellipsoid surface (see below).

When the points set is not closed, several superel-
lipsoids may approximate it correctly. Solina resolved
this difficulty by imposing a constraint which favours
the small superellipsoids. This is achieved by applying
the coefficient

√
a1a2a3 to the global distortion.



To compute this minimisation, one needs to know
how to calculate the distance between a point and the
surface. This computation will often be used during
the process and the common Euclidean distance is far
too expensive. Usually, the distance is estimated with
an approximation based on the implicit form of the su-
perellipsoid. Solina proposed this approximation for
the distance:

d(a, x, y, z) = f(a, x, y, z)
ε1
2 − 1 (4)

wherea represents the superellipsoid parameters and
(x, y, z) the point coordinates.

This leads toD, the mean distortion per point given
by:

D(a, x, y, z) =
√

a1a2a3

N

N∑
i=1

(f(a, x, y, z)
ε1
2 − 1)2 (5)

To minimise D, a non-linear regression method is
required. The Levenberg-Marquadt approach is a
numerical method that combines a gradiant and a
quadratic descent method [1]. It is most of the time
performant (especially for strongly constrained sys-
tem) and thus is widely used. Other approaches can
also be considered. The genetic algorithm gives bet-
ter results but the computation cost is not accept-
able. Downhill simplex method [9] could be used
too but gives results equivalent to those obtained by
Levenberg-Marquadt.

The previous distanced is size dependent. That
conducts to erroneous results when comparing two su-
perellipsoids with different scales, and also in oblong
cases. To improve the approximation and especially
whend is far from the Euclidean distance (figure 2),
other distance estimations have to be chosen. The
radial Euclidean distance [2] (that is the distance be-
tween the pointP and the intersection of theOP line
and the surface, whereO is the superellipsoid centre)
is not more expensive to compute and gives better re-
sults because it is adjusted according to the scale (fig-
ure 2c and 2g).

d(a, x, y, z) = ||−−→OP || ∗ (f(a, x, y, z)
ε1
2 − 1) (6)

Another estimation can be an approximation of the
Euclidean distance[8] based on Taubin approach [12]:

d(a, x, y, z) =
|f(a, x, y, z)− 1|
||−→5f(a, x, y, z)||

(7)

which is more expensive because of the gradiant com-
putation but more accurate when the point is near the
surface (figure 2d and 2h).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: Equidistant lines of an oblong superellipsoid
with Solina’s estimation (b,f) radial Euclidean distance
(c,g) the Taubin’s approximation of the Euclidean dis-
tance(d,h).

4 DESCRIPTION OF 3D DATA
WITH A SET OF SUPEREL-
LIPSOIDS

The main motivation of this study is to approximate a
set of unstructured 3D points using a set of superel-
lipsoids as presented in section 2. The main difficulty
consists in partitioning or segmenting the data in order
to obtain a compact set of primitives and to provide a
local approximation of good quality.

We develop two different algorithms. The first
one is an extension of the approach proposed by
Leonardis [7, 8], and the second is an original method
that we propose [5].

Note that we use the distance from equation 6 to per-
form the different approximations for these two meth-
ods.

4.1 The region growing approach

In 1994, Leonardis has proposed a method to model
range data with a set of superellipsoids [7, 8]. He
uses a algorithm based on the region growing prin-
ciple. The method can be divided in three steps: the
seeds initialisation, the growing process and the selec-
tion process. The algorithm starts with the first point



and then alternate with the last two at different oc-
curences.

Leonardis applied this method to deal with range
images. Such data are quite regular and well organised
(i.e. the neighbours of a point are known and these are
almost always at the same distance). We extend this
method to any unorganised 3D data points.

4.1.1 Seeds initialisation

The method is initialised with the creation of a seeds
set (figure 3). A seed is a small 3D data points set
which can be modeled with a superellipsoid.

The space is partitioned following a 3D grid. We
model with a superellipsoid the content of every cell
of this grid. If the distortion of the approximation is
less than a threshold, this new object is included in the
active seeds set, else it is rejected.

(a) (b)

Figure 3: Seeds initialisation (a) Original data (b)
Seeds.

4.1.2 Growing process

This procedure increases slowly the size of all the ac-
tive seeds until their associated points set corresponds
to full parts of the 3D object.

For each active seed, new points are included in or-
der to make it grow. The difficulty is to determine
which points belong to the same part. In order to re-
duce the research area, we restrict us to the neighbour-
ing points of the seeds, which are high potential can-
didates.

Then, the approach consists into fitting the union
of these candidate points and the ones of the growing
seed with an ellipsoid. If the distortion is less than a
threshold, all candidate points are merged in the grow-
ing set. Otherwise, considering that the seed can no
more grow, it is removed from the active seeds list and
set as inactive. The same procedure is applied for each
active seed until all seeds are fully grown. Figure 4
shows these different states during the region growing
and selection process, before obtaining the final de-
scriptor.

Some problems remain with our adaptation to a set
of unorganised points, especially in the choice of the
neighbourhood. We use thek-nearest points of the

seed, but they are less relevant than in the case of reg-
ularly spaced data (like in range images). Thus, our
seeds may not grow enough with this method. To im-
prove that, we have chosen to not reject the whole can-
didate points set if it is not appropriate. We split ran-
domly the new points set in two smaller parts. We try
to add each new subset and keep the subset that pro-
duces best results. The splitting process is repeated un-
til no more point can be added to the seed, or until the
approximation satisfies with the growing criteria and
in this case the subset is added to the seed. Another
delicate point is the determination ofk for the num-
ber of neighbours in the 3D case. Whenk is too high,
points belonging to an other part of the object can be
added. At the contrary, if it goes smaller, the seeds will
certainly not grow correctly and sufficiently. In com-
pensation, we also consider the maximum of distortion
to avoid including aberrant points.

4.1.3 Selection process

The seeds initialisation process can accept many seeds
per part of the object. More, after some growing steps,
some superellipsoids can overlap and model almost
the same points set. The aim of this third step is to re-
move redondant superellipsoids from the final descrip-
tor.

(a) (b) (c) (d)

Figure 4: (a-c) Steps of the region growing and selec-
tion processes. (d) The final descriptor.

To achieve this selection, Leonardis proposed to
maximize a function where the variable is a binary
vector of all possible configurations of the next round
(Q is aN vector andM is aN ∗N matrix whereN is
the active and inactive seeds number):

max
Q

(Q.M)

where:

• Q is the selection vector.Qi = 1 means that the
ith seed must be kept andQi = 0 means that the
ith seed must be removed from the descriptor;

• M is a matrix whose diagonal terms reflect the
size and distortion of the seed, and off-diagonal
ones correspond to intersecting points between
two superellipsoids.



Q is then computed by a greedy algorithm. Basically,
when a seed is selected, its contribution to neighbour-
ing seeds is reported on each row of theM matrix.

This is well suited for range images as the coeffi-
cient range is more or less unvarying and can be fixed
in advance. The same method is applied except that we
produce our own matrix coefficients more adapted to
irregularly spaced 3D points. AM ′ matrix is defined
with:

• M ′
i,i = K1(1− χi

T )ni

n whereni is the size of the
points set of theith seed,n the number of whole
data points,χi is the mean distortion of theith

seed andT the tolerated distortion contraint;

• M ′
i,j = −K2

χi,j

T
ni,j

ni
wherei 6= j, ni,j is the

size of the intersection of the points set of theith

and thejth seed andχi,j is the mean distortion
between the superellipsoid of theith seed and the
intersection points set of theith and thejth seed.

The selection can be processed after one or more
growth steps. But note that each seed rejected during
the process of selection will no more be approximated.
So, it is better to remove the seeds as soon as possible
to accelerate the whole process, but we have to take
care about not rejecting seeds with high growth capa-
bility.

4.1.4 Conclusion

As shown in the results presented in section 5, we
succeed to model some 3D objects with this method.
However, the results were not as good as expected,
mostly because of the initial data.

Two problems are to be underlined with this
method. The first is intrinsic to the approach. We do
not know whether each part of 3D object will be in the
final descriptor, because the seeds initialisation does
not insure that there will be a seed occurrence in each
part of the object. Moreover, we are not sure that an
important seed has not been removed during the selec-
tion process.

The second problem is linked to the data type. The
data points set is irregular and then not so suitable with
the growth step. This is due to the difficulty to find an
adequate matrixM ′ and to setK1 andK2 correctly,
because it depends on the scale of the object and on
the varying distance between points in a same part of
the object.

4.2 The split and merge approach

As an alternative to the previous algorithm and to deal
with more general 3D data, we propose a new method
based on split and merge approach [5].

Like usual split and merge algorithms, the method
occurs in two sequential steps: the split and the merge
procedures.

4.2.1 Split procedure

The aim of this first step is to split the data so that all
points in a subset belong to the same part of the object
(but two subsets can belong to the same part).

The split procedure must produce all the boundaries
of the object because the latter step (i.e. merge step)
will just remove superfluous ones but never create new
regions.

This procedure is recursive and consists in the sub-
sequent steps (figure 5):

1. The set of 3D points is fitted by one superellip-
soid (as seen in section 3).

2. If the distortionD is less than a thresholdT (the
tolerated distortion constraint), the procedure is
over. Otherwise, step 3 is processed.

3. The set of 3D points is splitted into two regions
using the planeP orthogonal to the inertia axis of
this set (P contains the centroid of the set).

4. Each half-subset is approximated independently
using one superellipsoid. For each subset, the
procedure is iterated from step 2.

(a) (b) (c)

Figure 5: Split procedure. (a) Original data and first
approximation. (b) First split step. (c) Second split
step. All subsets are well approximated.

At the end of this process, we obtain a partition
where each subset can be modelled with one superel-
lipsoid with a distortion less than the thresholdT . The
thresholdT doesn’t have to be the same that the qual-
ity T ′ we want for the final descriptor. But note that
we do not really know when the split process is over or
if one subset will be merged with another in the sec-
ond step. Each subset could arrive unchanged to the
final descriptor and so the criteria could be no more
compliant according to the global quality threshold.

The splitting plane is also of great importance (fig-
ure 5). The easiest way (and the fastest) is to split the



bounding box in two equal smaller boxes, but that pro-
duces poor results. We choose to split in a much more
intelligent way, using the properties of the inertia axis
which is easy to process. We do not really require a
thiner algorithm, because of the merge step that will
balance the rough splitting.

This procedure may be compared with the seeds ini-
tialisation process of the region growing approach. A
great difference is that no part of the 3D object can be
omitted here. Each subset of points owns its superel-
lipsoid and so will be in the final descriptor. Another
important point is that the resulting superellipsoids do
not overlap each other.

4.2.2 Merge procedure

Normally, all the points in the subsets created in the
previous procedure belong to the same part of the ob-
ject. Now, the subsets belonging to the same part will
be merged, in order to reduce the number of descrip-
tors per part (ideally one superellipsoid per part).

This procedure minimises the number of superel-
lipsoids without increasing the whole distortion. The
topological relations between 3D points are taken into
account while deciding to merge or not. The following
steps are processed (figure 6):

1. For each subset of points, we determine the list of
neighbouring subsets. The neighbourhood con-
sidered here is particularly large: a subset is
neighbour of another subset if it is the direct (con-
nex) neighbour (first order) or if it is the neigh-
bour of a direct neighbour (second order).

2. We try to merge each subset with each of its
neighbours. We merge the couple which min-
imises the approximation distortionD if this one
is less than a thresholdT ′ and if the sum of the
size of the two superellipsoids is not smaller than
the size of the new superellipsoid. The process
continues from step 3, otherwise if all the distor-
tions are greater thanT ′, the process is over.

3. A new set of superellipsoids is obtained. We go
back to step 1.

Testing all couples of neighbours before to merge
is tiresome, but this permits to be independant of the
order in which merges are processed. Special care is
taken to the size of the superellipsoids. Imagine that
the points set represents a table, the procedure may try
to merge two or more legs of this table. The approx-
imation of the “two legs” will be usually a plate. As
the legs are slim, the distortion will be small because
all points will be near the surface: each leg at one ex-
tremity of the plate. The criteria that helps us to reject
this kind of merge is the increase of the volume. The

(a) (b)

Figure 6: (a) The merge procedure starts. (b) Two su-
perellipsoids are merged. The final descriptor is the
union of two superellipsoids.

size of the plate is usually much greater than the sum
of the size of the two legs (figure 7).

(a) (b)

Figure 7: Merging (a) without size control (b) with
size control

4.2.3 Conclusion

Our new segmentation method seems to be more
adapted to our unorganised and irregular data than
the former region growing approach. In our approach
there is no reference to an a priori points relationship
knowledge like neighbourhood.

Furthermore, the split and merge algorithm permits
to keep topological relations between superquadrics.
In fact, during the process, the improving descriptor
is not only a set of unorganised superellipsoids but
a graph where the node are superellipsoids and the
edges label a neighbourhood relation. This is probably
more difficult to arrange hierarchically the descriptors
issued from the region growing process, because of the
descriptor progression way, and the fact that seeds can
intersect themselves.

5 RESULTS

We applied the two approaches on synthetic 3D ob-
jects obtained by combining superellipsoids. The data



points set are sampled on the surface of these objects
(figures 8a, 9a, and 10a).

For the object of figure 8, the final descriptor ob-
tained with the two methods has the same num-
ber of primitives than the original synthetic model.
The whole distortion is equivalent for these two ap-
proaches. In figure 9, the split and merge approach
finds the exact number of superellipsoids (4) whereas
the region growing conducts to a redundant descrip-
tor (15 primitives). Note that the distortion is higher
although the descriptor is more complex. Figure 10
gives another example with the split and merge method
which converges perfectly to the synthetic data set
with a quite good quality of approximation.

(a) (b) (c)

(d) (e) (f)

Figure 8: Model A (a) Original data (1746 points) (b)
The end of the split step (c) Split and merge result
(D = 0.0020) (d) Region growing seeds (d) An in-
termediate step of region growing (f) Region growing
result (D = 0.0051).

The split and merge approach was applied on real
data : the Stanford Bunny (figure 11a) and a duck
from the MPEG 7 3D objects database (figure 11c).
The obtained results let out a limit of the method. It
works perfectly as long as the parts of the object are
shaped like superquadrics. When trying to segment
objects with not so well defined boundaries, it gives
only a rough idea of the whole shape (figure 11 ). That
may be a problem for precise reconstruction applica-
tion, but is not so serious for indexation and objects
comparison.

To talk about implementation, note that every grow-
ing process for each seed can be computed separately
in the region growing method. In the same manner, the
approximation of every couple of neighbours during

(a) (b) (c)

(d) (e) (f)

Figure 9: Model B (a) Original data (2433 points) (b)
The end of the split step (c) Split and merge result
(D = 0.00005) (d) Region growing seeds (e) An in-
termediate step of region growing (f) Region growing
result (D = 0.022)

the merge procedure is realised independently. Then,
parallel computing can be easily used. With our imple-
mentation and without any other special optimisations,
the whole process takes a few minutes to achieve using
standard PC configurations.

6 CONCLUSION

A new model for representing an unorganised 3D data
points set is presented. This model is a set of superel-
lipsoids whose union leads to an efficient representa-
tion of the 3D objects. The basic model (superellip-

(a) (b)

Figure 10: Model C (a) Original data (2996 points) (b)
Split and merge result (D = 0.00039).



(a) (b)

(c) (d)

Figure 11: (a)The Stanford Bunny (8135 points) (b)
Split and merge result (D = 0.019) (c)The MPEG 7
Duck (3500 points) (d) Split and merge result (D =
0.016). .

soid) is simple and compact. Indeed, only 11 parame-
ters are necessary to describe such a model.

Two competing segmentation and modeling meth-
ods are developed using the set of superellipsoids. The
first one is a region growing approach which has not
proved to be very effective. It is indeed very sensitive
to the initialisation process and also to the parameters
needed for region growing. The second method is a
split and merge approach that leads to satisfactory re-
sults both in terms of compacity (final number of su-
perellipsoids) and approximation error obtained.

This second method seems promising for the appli-
cation domains such as 3D object compression and es-
pecially 3D object indexing and retrieval. The split
and merge algorithm allows to keep the topological
relations between the superellipsoids. This leads to a
graph. In other words, we can use the graph theory
to compare graphs and thus to measure the similarity
between 3D objects. This aspect is currently under in-
vestigation.
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